
M
f

R
a

b

A
R
R
A

K
S
B
R
B
M

1

m
s
o
c
u
f
o
D
t

E
T

0
h

Accident Analysis and Prevention 58 (2013) 97– 105

Contents lists available at SciVerse ScienceDirect

Accident  Analysis  and  Prevention

journa l h om epage: www.elsev ier .com/ locate /aap

ulti-level  Bayesian  analyses  for  single-  and  multi-vehicle
reeway  crashes

ongjie  Yua,b,∗, Mohamed  Abdel-Atya

Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816-2450, United States
School of Transportation Engineering, Tongji University, 4800 Cao’an Road, 201804 Shanghai, China

a  r  t  i  c  l e  i n  f  o

rticle history:
eceived 18 November 2012
eceived in revised form 15 April 2013
ccepted 16 April 2013

eywords:
afety performance functions
ivariate Poisson-lognormal model
andom parameter
ayesian logistic regression
ountainous freeway

a  b  s  t  r  a  c  t

This  study  presents  multi-level  analyses  for  single-  and  multi-vehicle  crashes  on  a mountainous  free-
way.  Data  from  a  15-mile  mountainous  freeway  section  on  I-70  were  investigated.  Both  aggregate  and
disaggregate  models  for  the  two  crash  conditions  were  developed.  Five  years  of crash  data  were used
in the  aggregate  investigation,  while  the  disaggregate  models  utilized  one  year  of  crash  data  along  with
real-time  traffic  and  weather  data.  For  the  aggregate  analyses,  safety  performance  functions  were  devel-
oped  for the  purpose  of  revealing  the contributing  factors  for each  crash  type.  Two  methodologies,  a
Bayesian  bivariate  Poisson-lognormal  model  and  a Bayesian  hierarchical  Poisson  model  with  correlated
random  effects,  were  estimated  to  simultaneously  analyze  the  two  crash  conditions  with  consideration
of  possible  correlations.  Except  for the factors  related  to geometric  characteristics,  two  exposure  param-
eters  (annual  average  daily  traffic  and  segment  length)  were  included.  Two  different  sets  of  significant
explanatory  and  exposure  variables  were  identified  for the  single-vehicle  (SV)  and  multi-vehicle  (MV)
crashes.  It was  found  that  the  Bayesian  bivariate  Poisson-lognormal  model  is  superior  to  the Bayesian
hierarchical  Poisson  model,  the former  with  a substantially  lower  DIC  and  more  significant  variables.
In  addition  to  the  aggregate  analyses,  microscopic  real-time  crash  risk  evaluation  models  were  devel-
oped  for  the  two  crash  conditions.  Multi-level  Bayesian  logistic  regression  models  were  estimated  with

the random  parameters  accounting  for seasonal  variations,  crash-unit-level  diversity  and  segment-level
random  effects  capturing  unobserved  heterogeneity  caused  by the geometric  characteristics.  The  model
results  indicate  that  the  effects  of the selected  variables  on  crash  occurrence  vary  across  seasons  and
crash  units;  and  that  geometric  characteristic  variables  contribute  to the  segment  variations:  the more
unobserved  heterogeneity  have  been  accounted,  the  better  classification  ability.  Potential  applications
of  the  modeling  results  from  both  analysis  approaches  are  discussed.
. Introduction

Analyzing crash occurrence mechanisms and potential counter-
easures have been extensively researched to develop aggregate

afety performance functions (SPFs) using extensive method-
logies (Lord and Mannering, 2010). Additionally, to identify
rash-prone traffic statuses, disaggregate real-time crash risk eval-
ation models have been estimated. Aggregate analyses mainly
ocus on discovering the hazardous factors related to the frequency

f total crashes, specific crash types or crash injury severity levels.
isaggregate studies benefit from reliable surveillance systems

hat provide detailed traffic and weather data for crashes. This
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information could help capture the micro–level influences of the
hazardous factors that might lead to crash occurrence. Moreover,
different data resources have been utilized in traffic safety studies,
including traffic flow information (speed, volume, and lane occu-
pancy), roadway geometric characteristics, and weather factors
(visibility, precipitation).

This study presents both aggregate and disaggregate analyses
for single-vehicle (SV) and multi-vehicle (MV) crashes on a moun-
tainous freeway. Data from a 15-mile mountainous freeway section
on I-70 in Colorado were utilized. The studied freeway section fea-
tures a mountainous geometry (steep slopes up to 7%) and adverse
weather conditions. The objectives of this study are the follow-
ings: (1) to reveal different contributing factors for SV and MV
crashes with aggregate SPFs; (2) to identify the preferred mod-

eling technique by comparing the Bayesian hierarchical Poisson
model with correlated random effects with a Bayesian bivariate
Poisson-lognormal model; and (3) to develop real-time crash risk
evaluation models for SV and MV  crashes while accounting for the
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easonal variations, crash unit level and segment level unobserved
eterogeneity.

For aggregate analyses, SV and MV  crashes should be analyzed
eparately, as stated by Geedipally and Lord (2010). A previous
tudy (Yu et al., 2013a) on the same freeway section concluded
hat a Bayesian hierarchical Poisson model with correlated ran-
om effects is appropriate for analyzing the SV and MV  crashes
imultaneously. In the current study, a Bayesian bivariate Poisson-
ognormal model is introduced in addition to the hierarchical
oisson model with correlated random effects to model the SV and
V crashes. The difference between these two models’ structures

ies in the random errors for the MV and SV crash frequencies: for
he hierarchical Poisson model, each segment shares the same ran-
om error; for the bivariate Poisson-lognormal model, two  joint
istributed random errors have been assigned to each segment. The
wo models were compared regarding the model fits and parameter
stimations.

Moreover, disaggregate real-time crash risk evaluation models
re estimated for the SV and MV crashes separately. Pande and
bdel-Aty (2006a) stated that it is important to analyze the crashes
y type, particularly in real-time risk assessment. In this study, real-
ime crash risk evaluation models are estimated with multi-level
ayesian logistic regression models incorporating real-time traffic
ata, weather information and geometric characteristics. In addi-
ion to the basic logistic regression models, random parameters are
ntroduced to account for the distinct seasonal effects highlighted
n a previous study (Ahmed et al., 2012a). Furthermore, segment-
evel random effects are employed to account for the unobserved
eterogeneity caused by various geometric characteristics. More-
ver, crash-unit-level random parameter models are estimated to
resent the varying effects of different crash observations and their
atched non-crash cases.
This paper is divided into five sections. First, previous stud-

es related to SV and MV  crashes and the relevant modeling
echniques, such as Bayesian multivariate Poisson-lognormal and
andom parameter logit models, are discussed. The second section
rovides a brief description of the data preparation procedures, fol-

owed by a description of the methodologies used in this study. The
ourth section presents the model results and a discussion about
he estimated parameters and the model’s goodness-of-fit. Finally

 summary of the work is given.

. Background

.1. Aggregate analysis for crash types

Safety performance functions have been employed to ana-
yze crash occurrence contributing factors. Identifying crash
ccurrence-related variables can be useful in improving traffic
afety at both the planning and safety improvement re-design
tages of transportation practices. However, there is a question of
hether it is necessary to develop multiple distinct SPFs (for each

rash type) instead of a unique one for total crashes (Mensah and
auer, 1998). A variety of studies (Ivan et al., 2000; Qin et al., 2004;
e et al., 2009; Geedipally and Lord, 2010) have proved from dif-

erent aspects that it is beneficial to analyze SV and MV  crashes
eparately while considering their correlation effects.

Ma  and Kockelman (2006) utilized a multivariate Poisson model
o simultaneously analyze crash counts with different injury sever-
ty levels through the Bayesian paradigm, providing a systematic
pproach to estimating correlated count data. Recently, more-
dvanced multivariate Poisson-lognormal (MVPLN) models have

een adopted to analyze correlated count data. MVPLN models
ere argued to be superior to multivariate Poisson models because

he capability of accounting for over-dispersion and its more gen-
ral correlation structure allows for negative correlations. Several
and Prevention 58 (2013) 97– 105

studies (Park and Lord, 2007; Ma  et al., 2008; El-Basyouny and
Sayed, 2009) have utilized multivariate Poisson-lognormal models
to analyze crash frequency by severity.

In our previous study (Yu et al., 2013a), a Bayesian hierarchical
Poisson model was introduced to simultaneously model the SV and
MV crash frequencies. Correlated random effects were employed
to handle the over-dispersion problem and to consider the shared
unobserved heterogeneity for the two  crash types within the same
segment. In the current study, a simplified MVPLN model, the
Bayesian bivariate Poisson-lognormal model, is used to analyze
crash frequencies by crash types. The results are compared with
the Bayesian hierarchical Poisson model with correlated random
effects.

2.2. Real-time crash risk evaluation models

Real-time crash risk evaluation models were estimated to reveal
crash occurrence precursors where the results could be utilized
in traffic management systems. With advanced traffic surveillance
systems (loop detectors, speed radars, automatic vehicle identifi-
cation systems), traffic statuses prior to crash occurrence can be
identified and matched with crash records. Various approaches
have been adopted to develop the crash risk evaluation mod-
els, including matched case–control logistic regression (Abdel-Aty
et al., 2004), neural network (Pande and Abdel-Aty, 2006a,b; Pande
et al., 2011), Bayesian logistic regression (Ahmed and Abdel-Aty,
2012; Ahmed et al., 2012b) and support vector machine (Yu and
Abdel-Aty, 2013a) models. Based on such crash risk assessment
models, variable speed limit (VSL) systems have been developed
and tested through simulation to evaluate the effectiveness of
active traffic management (ATM) in improving traffic safety (Abdel-
Aty et al., 2007).

2.3. Random parameter logit models

Random parameter models have become popular because their
parameter estimations can vary across different levels, which is
important for capturing unobserved heterogeneity. The random
parameter logit model (or mixed logit model) has been widely
utilized in crash injury severity analyses (Milton et al., 2008;
Anastasopoulos and Mannering, 2011; Kim et al., 2012). Previous
studies have demonstrated that random parameter models can
account for unobserved effects (roadway characteristics, environ-
mental factors and driver behavior). However, to the best of our
knowledge the random parameter logit model has not yet been
employed to estimate real-time crash risk evaluation models. In
this study, random parameter logit models were introduced to
develop real-time crash risk evaluation models while revealing the
distinct seasonal effects and the various effects at the crash unit
level.

2.4. Random effects logistic regression models

Another approach to account for the unobserved heterogeneity
of the logit models is to develop hierarchical logit models. Huang
et al. (2008) introduced hierarchical Bayesian binomial logistic
regression models to perform multi-vehicle crash injury severity
analysis. By incorporating the driver-vehicle units’ correlations in
the same multi-vehicle crashes, 28.9% of the unexplained varia-
tions resulting from between-crash variance were accounted for.
Moreover, Yu et al. (2013b) employed hierarchical logistic regres-

sion models to analyze crash type propensity with segment-level
random effects to account for the unobserved heterogeneity, and
better classification accuracies were achieved with the additional
random effects. In this study, the random effects were formulized
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Table 1
Summary of variables’ descriptive statistics for the aggregate analysis models.

Variables Description Mean Std. dev. Min Max

Dependent variables
Multi-vehicle crash frequency Crash frequency counts for multi-vehicle

crashes
3.87 4.67 0 21

Single-vehicle crash frequency Crash frequency counts for single-vehicle
crashes

5.49 6.66 0 38

Independent variables
Degree of curvature Degree of curve per segment 1.44 1.53 0 4.25
Curve length ratio Percentage of curve length to total segment

length
0.52 0.46 0 1.0

Median width 25.23 15.26 2 50
Speed  limit 59.3 4.89 50 65
Three  lane 1 If three-lane segment; 0 if two-lane segment 0.58 0.49 0 1.0
Grade Longitudinal grade, eight categories: Upgrade:

0–2% = 1, 2–4% = 2, 4–6% = 3, 6–8% = 4;
Downgrade: 0-(-2)%=5, (-2)-(-4)%=6,
(-4)-(-6)%=7, (-6)-(-8)%=8
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LogAADT Logarithmic transformation of segme
LogLength Logarithmic transformation of segme

t the homogeneous segment level to account for the unobserved
eterogeneity caused by the geometric characteristics.

. Data preparation

The chosen freeway section starts at mile marker (MM)  205
nd ends at MM 220. This stretch of road contains the 1.69-mile-
ong Eisenhower Memorial Tunnel (MM  213.18–MM 214.87). In
ddition to several sharp horizontal curves, the roadway section
eatures longitudinal grades that vary from 1.3% to 7% (absolute val-
es). The elevations in the studied area vary from 8,700 ft to more
han 14,000 ft, with the highest peaks above the tunnel. Affected
y the high altitudes, the climate (visibility, temperature and pre-
ipitation) can vary abruptly within this short distance. All these
haracteristics make this freeway section a challenging but inter-
sting location for this traffic safety study.

.1. Aggregate analysis

Five years of crash data (from 2006 to 2010) on I-70 in Col-
rado were used along with roadway geometry information to
repare the aggregate analyses dataset. A total of 1171 crashes
ere documented within the studied period, among which 487
ere multi-vehicle crashes and the remaining 684 single-vehicle

rashes. The 15-mile freeway section was split into 120 homoge-
ous segments (60 in each direction) according to the major
egmentation criterion of roadway alignment homogeneity and
he Roadway Characteristics Inventory (RCI) data. Both horizon-
al and vertical alignments were scrutinized. A minimum-length
f 0.1 mile was used to avoid the low exposure problem and the
arge statistical uncertainty of the crash rates in short segments
Ahmed et al., 2011). Table 1 provides descriptive statistics of the
ignificant variables included in the final models. In the previous
tudies, daily vehicle miles traveled (VMT) was calculated by multi-
lying the segment lengths with the corresponding average annual
aily traffic (AADT) to represent the segments’ exposure. Because
any previous studies have concluded that single-vehicle crashes

re unrelated to high volumes, AADT and segment length were
sed separately to reflect different exposure measures for crash
ccurrence.
.2. Disaggregate analysis

Four datasets were included in the disaggregate analysis: (1)
rash data from Oct 2010 to Oct 2011 provided by the Colorado
T 10.26 0.06 10.14 10.28
th −1.59 0.54 −2.38 −0.08

Department of Transportation (CDOT); (2) roadway geometric
characteristic data from the RCI; (3) real-time weather data
recorded by 6 weather stations along the studied roadway segment;
and (4) real-time traffic data detected by 30 RTMS radars. A total
of 259 crashes were documented and matched with real-time traf-
fic and weather data. Of these crashes, 109 were multi-vehicle and
150 were single-vehicle.

Information about temperature, visibility and precipitation
were recorded by the weather stations. The weather data were not
recorded continuously; once weather condition changes reached
a preset threshold, a new record was added to the archived data.
Crashes were assigned to the nearest weather station according to
the MM.  For each specific crash, based on the reported crash time,
the closest weather record prior to the crash time was  extracted
and used as the crash time weather condition.

RTMS radars archived speed, volume and occupancy infor-
mation at 30-second intervals. The real-time traffic data that
correspond to each crash were prepared by first aggregating the
raw data into 5-min intervals (the 30-second raw data have random
noise and are difficult to work with within a modeling frame-
work). Traffic data 5–10 min  prior to the crash times were selected
to represent the traffic conditions. A previous study (Ahmed and
Abdel-Aty, 2012) investigated the optimal traffic data aggregation
level issue. In their study, 1-min speed data were aggregated to
different levels (2, 3, 5, and 10 min), and it was concluded that the
5-min interval provided the best accuracy in the models. More-
over, the 5–10 min  traffic variables prior to the reported crash
time were extracted to avoid confusing pre- and post-crash con-
ditions, as also used in many previous studies (Oh et al., 2001;
Abdel-Aty and Pande, 2005; Yu and Abdel-Aty, 2013a). For each
specific crash, information was collected from two  upstream and
two downstream RTMS detectors. For example, if a crash happened
at 15:25 at MM 211.3, the corresponding traffic status within the
time interval 15:15 and 15:20 recorded by upstream RTMS radars
at MM211.8 (U1) and MM210.8 (U2) and downstream radars at
MM213.3 (D1) and MM216.7 (D2) would be collected and matched
with the crash. Fig. 1 shows the RTMS detector names and their rela-
tionship with the crash locations. For each observation, average,
standard deviation and coefficient of variance values, the speed,
occupancy and volume were calculated for the four detectors. Thus,
there are 36 (3 traffic flow parameters × 3 measures × 4 detectors)

explanatory variables for each observation. Moreover, the matched
case–control design was  adopted in this study to create a non-crash
dataset. The matched case–control design is frequently utilized
in disaggregate crash occurrence studies because the confounding
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Fig. 1. Arrangeme

actors can be controlled for by matching (Breslow and Day, 1980).
or each specific crash case, four non-crash cases were identified
nd matched. The non-crash cases were selected according to the
ollowing example procedure: if a crash happened on Tuesday (May
4, 2011), four non-crash cases will be selected for the exact same
ime two weeks before and two weeks after the crash time (May
0, May  17, May  31, and Jun 7), given that a crash did not occur.

Finally, in the multi-vehicle crash dataset, there are 109 crash
ases matched with 429 non-crash cases, while for the single-
ehicle crash dataset, there are 150 crash cases with 562 non-crash
ases (due to detector malfunctions, not all crash cases were
atched with exactly four non-crash cases). Tables 2 and 3 present

he descriptive statistics for the significant variables included in
he multi-vehicle and single-vehicle real-time crash risk evalua-
ion models, respectively. Possible multicollinearity problems were
hecked in the preliminary analysis, which is not shown in the
aper.

. Methodology

To perform the multi-level crash type analyses, SPFs were first
stimated with the Bayesian bivariate Poisson-lognormal formula-
ion and the Bayesian hierarchical Poisson model with correlated
andom effects. Then, real-time crash risk evaluation models for
ulti-vehicle and single-vehicle crashes were estimated using the
ultilevel Bayesian logistic regression models, within which ran-

om parameters were utilized to capture the seasonal effects. The
egment level random effects were employed to account for unob-
erved heterogeneity caused by geometric characteristics.

.1. Bivariate Poisson-lognormal model

As concluded by previous studies utilizing multivariate Poisson-
ognormal (MVPLN) models (Park and Lord, 2007; El-Basyouny and
ayed, 2009), these models are able to handle the over-dispersion
ssue and provide a more general correlation structure. The bivari-
te Poisson-lognormal (BPLN) model is a simplified MVPLN model.
n the BPLN model, the crash frequency Yit has a Poisson distribu-
ion conditional on the �-field generated by the random variables
f unobserved heterogeneity ε1, ε2 and the set of independent
xplanatory variables Xit (Munkin and Trivedi, 2002). The model
an be set up as follows:

it∼Poission(�it for t = 1, 2)

og �it = log eit + Xit  ̌ + εt
he random errors ε1 and ε2 are assumed jointly normally dis-
ributed

ε1, ε2)∼N{(0, 0),  (�2
1 , ��1�2, �2

2 )}
f RTMS detectors.

where � is the correlation coefficient. Furthermore, the Bayesian
hierarchical Poisson model with correlated random effects can be
set up as:

Yit∼Poission(�it for t = 1, 2)

log �it = log eit + Xit  ̌ + bi

bt∼N(0, �2
b )

where the correlated random effects are set to follow normal dis-
tribution bi∼N(0, 1/a), w here a is the precision parameter and is
specified to be gamma  prior as a∼ Gamma  (0.001, 0.001).

4.2. Multilevel logistic regression model

Suppose the crash occurrence has the outcomes y = 1 or y = 0
with respective probability p and 1 − p. The multi-level logistic
regression can be set up as follows:

y∼Binomial(p)

log it(p) = log
(

p

1 − p

)
= XBt[i] + ˛j[i]

where ˇ0 is the intercept and X is the vector of the explanatory
variables. For t = 1,2, Bt[i] is the vector of random coefficients for the
explanatory variables,

Bt∼N(MB,
∑

B
), for t = 1, ..., T,

where MB represents the mean of the distribution of the coefficients
and �B is the covariance matrix representing the variation of the
coefficients. t represents the two  seasons (t = 1 for dry season and
t = 2 for snow season) or stands for the crash unit (crash observation
and their matched non-crash cases) index.

j[i] indexes the segment where observation i occurs and ˛j[i] is
the random effects variable defined in the model, which represents
the segment-specific random effects in this study:

˛j∼N(Uj�, �2
˛), for j = 1, ..., 120,

where U is the matrix of segment-level predictors, � is the vector of
coefficients for the segment-level regression, and �˛ is the standard
deviation of the unexplained segment-level errors.

4.3. Bayesian inference

Full Bayesian inference was  employed in this study. The random
effects (εt,bt, and ˛j in these models are unknown and thus have

their own  prior distribution, p(∅). The joint prior distribution is
(Gelman et al., 2004)

p(∅, �) = p(∅)p(�|∅),
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Table  2
Summary of descriptive statistics of variables for the multi-vehicle crash model.

Variables Description Mean Std. dev. Min  Max

Crash Binary index for crash occurrence (1 for crash
and 0 for non-crash cases)

0.20 0.40 0 1

D1  Av. Spd. D1 detector average speed (mph) 54.59 13.94 7 76.6
D2  Std. Occ. D2 detector standard deviation of occupancy 1.93 1.62 0 21.17
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nd the joint posterior distribution can be defined as

(∅, �|y) ∝ p(∅, �)p(y|, ∅�) = p(∅, �)p(y|�).

or each model, three chains of 15,000 iterations were set up in
inBUGS (Lunn et al., 2000), and 5000 iterations were used in the

urn-in step. Convergences of the models were checked by moni-
oring the MCMC  trace plots for the model parameters: if all values
ere within a zone without strong periodicities or tendencies, the
odel was considered convergent. For the aggregate analysis mod-

ls, DIC was selected as the evaluation measure. The DIC, recognized
s a Bayesian generalization of AIC (Akaike information criterion),
s a combination of the measure of model fitting and the effective
umber of parameters. A smaller DIC indicate a better model fitting.
ccording to Spiegelhalter et al. (2003), differences greater than 10
an rule out the model with a higher DIC. Differences between 5 and
0 are considered substantial. For the Bayesian logistic regression
odels, areas under the receiver operating characteristic curves

AUC) were used to represent the classification abilities for different
odels.

. Modeling results and discussions

This section discusses the modeling results of the safety per-
ormance functions for SV and MV  crashes, followed by real-time
rash risk evaluation models for the MV and SV crashes.

.1. Aggregate analysis

In the aggregate analyses, the crash frequency per segment for
V and SV crashes were analyzed simultaneously while consid-

ring their correlation effects. Two models were considered: a
ayesian bivariate Poisson-lognormal model and a Bayesian hier-
rchical Poisson model with correlated random effects. Table 4
rovides the parameter estimations, 95% confidence intervals and
oodness-of-fit for both candidate models.

For the multi-vehicle crashes, the degree of curvature is sig-
ificant with a negative sign, which indicates that segments with
harp curves are less likely to have crashes compared with flat
urves. Similar results have been reported in previous studies
Shankar et al., 1995; Anastasopoulos et al., 2008). This result

ay  be understood as drivers being more cautious when navi-

ating sharp curves. The curve length ratio variable represents
he percentage of curve length to the total segment length. This
ariable has a positive sign, which demonstrates that segments
ith longer curves are more likely to have crashes. The three-lane

able 3
ummary of descriptive statistics of variables for the single-vehicle crash model.

Variables Description 

Crash Binary index for crash occurrence (1 for crash and 0 for non-cra
D2  Av. Spd. D2 detector average speed (mph) 

D2  Log Vol. D2 detector logarithmic transformation of volume (volume per
D1  Std. Occ. D1 detector standard deviation of occupancy (%) 
2.97 2.54 0 7.1

indicator is negatively associated with high crash frequency, which
indicates that fewer crashes occurred at three-lane segments. The
median width variable is also significant with a negative sign,
which demonstrates that a larger median could most likely reduce
crash occurrence. Moreover, the two  exposure variables are both
significant with positive signs, which can be understood as longer
segments being likely to have more crashes, while a larger AADT
may  also increase the likelihood of crashes.

For the single-vehicle crashes, the three-lane indicator is again
significant with a negative sign, which indicates that two-lane seg-
ments are likely to have a higher crash frequency for both SV and
MV  crashes. The median width variable is negatively related to the
single-vehicle crashes, which indicates that narrow median seg-
ments increase the likelihood of single-vehicle crashes. The speed
limit variable was  found to be significant with a positive sign, indi-
cating that with higher speed limits drivers travel at higher speeds,
thus increasing the likelihood of single-vehicle crash occurrence. In
addition, the longitudinal grade variables are significant (reference
to the Grade [8], downgrade slopes range from 6% to 8%). Gener-
ally, the steeper the slope, the higher the crash risk, and segments
with downgrade slopes are relatively more hazardous than the cor-
responding upgrades with the same slope ranges. Furthermore,
segment length is the only significant exposure parameter, which
demonstrates that single-vehicle crash occurrence is unrelated to
high AADTs. This result is consistent with a previous study that
concluded that single-vehicle crashes are more likely to happen at
small volume-capacity ratios (Ivan et al., 2000).

For the model comparisons, DIC was chosen as the evaluation
criterion for comparing the two  models. The bivariate Poisson-
lognormal model has a substantially smaller DIC value than the
hierarchical Poisson model (more than 10), which indicates that
the bivariate Poisson-lognormal model is superior to the hierar-
chical Poisson model. In addition to the goodness-of-fit, in the
parameter estimation the degree of curvature and curve length
ratio variables are not significant at the 95% level in the hierarchi-
cal Poisson model, as their credible intervals cross zero, while both
are significant in the bivariate Poisson-lognormal model. Further-
more, although the correlated random effects in the hierarchical
Poisson model are able to capture the shared unobserved het-
erogeneity, the correlation coefficient of the two count variables
cannot be obtained. However, in the bivariate Poisson-lognormal
model, it can be seen that the correlation coefficient is 0.68 for the

SV and MV  crashes, which demonstrates that these two crash fre-
quency variables are highly correlated and that researchers should
consider the correlation effects when analyzing these two crash
conditions.

Mean Std. dev Min  Max

sh cases) 0.21 0.41 0 1
55.64 11.63 5.77 77.45

 5 min) 1.93 1.62 0 21.17
1.81 1.59 0 22.23
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Table 4
Parameter estimations and model goodness-of-fit for aggregate analysis.

Variable Bivariate Poisson-lognormal Hierarchical Poisson

Mean Std 2.5% 97.5% Mean Std 2.5% 97.5%

Multivehicle
Intercept 4.15 2.53 −0.46 8.6 −23.4 3.26 −28.3 −16.4
Degree of curvature −0.21 0.09 −0.4 −0.02 −0.03 0.07 −0.17 0.11
Curve  length ratio 0.67 0.27 0.14 1.21 0.17 0.19 −0.22 0.55
Three  lane −0.64 0.2 −1.05 −0.25 −0.85 0.19 −1.23 −0.46
LogLength 1.25 0.15 0.96 1.57 1.09 0.13 0.84 1.35
LogAADT 1.01 0.24 0.65 1.44 2.67 0.32 1.99 3.15
Median Width −0.016 0.006 −0.029 −0.004 −0.012 0.005 −0.024 −0.0001
�11 0.22 0.11 0.06 0.48 N/A

Single
Intercept 1.69 0.75 0.32 3.23 2.4 0.73 0.98 3.84
Lane  −0.48 0.2 −0.86 −0.08 −0.38 0.17 −0.72 −0.024
Median Width −0.016 0.006 −0.028 −0.004 −0.012 0.005 −0.023 −−0.001
Speed limit 0.04 0.012 0.014 0.06 0.025 0.011 0.002 0.046
Loglength 0.96 0.14 0.68 1.23 0.91 0.12 0.68 1.14
Grade  [1] −1.77 0.34 −2.43 −1.13 −1.49 0.31 −2.14 −0.88
Grade  [2] −0.52 0.23 −0.98 −0.08 −0.38 0.25 −0.88 0.08
Grade  [3] −0.56 0.16 −0.89 −0.24 −0.51 0.19 −0.94 −0.13
Grade  [4] −0.17 0.23 −0.63 0.29 −0.18 0.24 −0.66 0.29
Grade  [5] −1.58 0.31 −2.2 −1.0 −1.37 0.28 −1.92 −0.83
Grade  [6] −0.36 0.28 −0.92 0.18 −0.51 0.29 −1.04 0.06
Grade  [7] −0.4 0.25 −0.9 0.10 −0.28 0.24 −0.76 0.22
�22 0.48 0.12 0.28 0.74 N/A
�12 0.22 0.12 0.12 0.46 N/A
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Correlation 0.68 

Dispersion parameter N/A 

DIC  1183.77 

.2. Multi-vehicle crash risk evaluation models

Four models were estimated to assess the real-time crash risks:
1) a Bayesian fixed parameter logistic regression model; (2) a
ayesian random parameter logistic regression model account-

ng for seasonal variations; (3) a Bayesian multi-level logistic
egression model accounting for both the seasonal variations
nd unobserved segment-level heterogeneity; and (4) a Bayesian
andom parameter logistic regression account for crash level
nobserved heterogeneity. Tables 5 and 6 show the parameter esti-
ations and model fit for the four developed models.
Three variables were found to be significant in the multi-vehicle

rash risk evaluation models: the average speed recorded by the D1
etector is significant at a 95% level with a negative sign, which indi-
ates that congested conditions at downstream detectors would
ontribute to an increase in the likelihood of multi-vehicle crashes.
he visibility variable is significant and proved to be negatively
elated to multi-vehicle crash occurrence, which can be understood
s multi-vehicle crashes being more probable during poor visibility
onditions. Car-following and lane-changing maneuvers are much
ore difficult under poor visibility conditions, which can lead to

ideswipes or rear-end crashes. The standard deviation of occu-
ancy of the D2 detector is found to be significant with a positive
ign, which demonstrates that a turbulent area exists downstream,
orcing the approaching vehicles to slow down. Drivers who  are
nable to reduce their speeds efficiently are prone to causing rear-
nd crashes.

As stated and proved in the previous work (Ahmed et al., 2011),
ignificant seasonal effects exist on the chosen freeway segment.
he snow season ranges from October to April, and the dry season
egins in May  and ends in September. Thus, we  hypothesized
hat variable estimations may  vary across the two seasons, mak-
ng the Bayesian random parameter logistic regression model

ppropriate for estimation. As seen from the results, the average
peeds recorded by the D1 detector are nearly identical for the
wo seasons. The visibility variable has distinct effects for crash
ccurrence in the two seasons: visibility is not significant during
N/A
0.28 0.06 0.17 0.42

1195.41

the dry season, while during the snow seasons it is significant with
a negative sign. Moreover, the standard deviation of the occupancy
of the D2 detector is significant for both seasons and has a greater
effect on increasing the snow season’s crash occurrence likelihood,
with an odds ratio of 1.49, compared with the dry season, with
an odds ratio of 1.25. The abovementioned findings indicate
that employing the random parameters confers the benefits of
capturing the seasonal variation effects.

Although the seasonal random parameter model was able to
capture the distinct seasonal effects of the explanatory variables,
the cause–effects of the crashes in each season were averaged.
With the matched case–control design, each crash observation was
matched with four non-crash cases. These five observations were
considered as a crash unit, and, based on the crash unit level, ran-
dom parameters were employed in the Bayesian logistic regression
to account for the unobserved heterogeneity.

In addition to the seasonal variations, one more important
aspect that needs to be considered is the segment variations.
Despite the matched case–control design controls for the effects of
geometric characteristics on crash occurrence, the geometric fea-
tures may  have effects on the selected traffic and weather variables.
For example, roadway capacities would vary with the geometric
features. To account for the unobserved segment level hetero-
geneity, the Bayesian multi-level logistic regression model was
estimated. Median width and the three-lane indicator were found
to significantly contribute to the segment variation effects.

For the model comparisons, AUC reflects the models’ abilities
to correctly classify the crash and non-crash cases and was chosen
to be the evaluation criterion. The basic Bayesian fixed parameter
logistic regression model provides the worst goodness-of-fit with
an AUC of 0.75. Because the model accounts for more unobserved
heterogeneity the better model fit achieved, the Bayesian multi-
level logistic regression model has the best AUC of 0.78. However,

the four models’ AUC values are very comparable. The purpose of
introducing seasonal random parameters, crash unit level random
parameters and segment-level random effects to the basic Bayesian
logistic regression model is not to improve the goodness-of-fit.
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Table  5
Fixed parameter and seasonal random parameter model results.

Fixed parameter model Seasonal random parameter model

Variables Mean Std. 2.5% 97.5% Mean Std. 2.5% 97.5%

D1 Av. Spd. −0.032 0.004 −0.039 −0.025 −0.034 [Dry] 0.0066 −0.048 −0.022
−0.032 [Snow] 0.0046 −0.041 −0.023

Visibility −−0.159 0.049 −0.26 −0.064 −0.03 [Dry] 0.077 −0.18 0.12
−0.26 [Snow] 0.072 −0.41 −0.12

D2  Std. Occ. 0.33 0.067 0.21 0.47 0.22 [Dry] 0.11 0.02 0.45
0.40 [Snow] 0.08 0.23 0.57

ROC  0.75 0.76
Number of observations 538 538

Table 6
Multi-level model and crash-level random parameter model.

Variables Crash unit level random parameter model Multi-level model

Mean Std. 2.5% 97.5% Mean Std. 2.5% 97.5%

D1 Av. Spd. −0.032 0.004 −0.04 −0.02 −0.044 [Dry] 0.008 −0.06 −0.03
(0.007)a (0.004) (0.002) (0.018) −0.043 [Snow] 0.006 −0.06 −0.03

Visibility −0.168 0.054 −0.276 −0.065 −0.067 [Dry] 0.08 −0.23 0.09
(0.062) (0.042) (0.013) (0.168) −0.36 [Snow] 0.08 −0.54 −0.2

D2  Std. Occ. 0.343 0.083 0.195 0.519 0.25 [Dry] 0.12 0.03 0.48
(0.132) (0.105) (0.022) (0.414) 0.41 [Snow] 0.09 0.24 0.59

Median width 0.02 0.009 0.002 0.04
Three  lane 0.54 0.28 −0.02 1.09
Segment-level error 0.48 0.08 0.34 0.68
ROC  0.77 0.78
Number of observations 538 538

a Standard errors of the variance of the coefficients in parentheses.

Table 7
Fixed parameter and seasonal random parameter model results.

Variables Fixed parameter model Seasonal random parameter model

Mean Std. 2.5% 97.5% Mean Std. 2.5% 97.5%

D2 Av. Spd. −0.066 0.0073 −0.081 −0.052 −0.094 [Dry] 0.019 −0.14 −0.059
−0.06 [Snow] 0.008 −0.076 −0.045

D1  Std. Occ. 0.21 0.065 0.089 0.34 0.29 [Dry] 0.18 −0.047 0.64
0.20 [Snow] 0.07 0.072 0.35

D2  Log Vol. 0.37 0.081 0.21 0.53 0.62 [Dry] 0.21 0.23 1.06

R
p
s

5

s

T
M

ROC  0.755 

Number of observations 712 

ather, we want to investigate the seasonal effects on the selected
arameters, the variations of different crash units and reveal the
egment level variations’ contributing factors.
.3. Single-vehicle crash risk evaluation models

Similar to the multi-vehicle crash risk evaluation models, the
ame four models were developed for the single-vehicle crashes.

able 8
ulti-level model and crash-level random parameter model.

Variables Crash-unit-level random parameter model 

Mean Std. 2.5% 

D2 Av. Spd. −0.062 0.008 −0.078 

(0.006)a (0.003) (0.003) 

D1  Std. Occ. 0.202 0.075 0.059 

(0.095) (0.064) (0.023) 

D2  Log Vol. 0.328 0.096 0.137 

(0.062) (0.034) (0.018) 

Median width 

Segment−level error 

ROC  0.77 

Number of observations 712 

a Standard errors of the variance of the coefficients in parentheses.
0.32  [Snow] 0.088 0.15 0.49
0.76
712

Tables 7 and 8 present the results of the parameter estimations
and models’ fit. Three variables were found to be significantly
associated with the single-vehicle crash occurrence. For the D2
detector, the average speed and logarithmic transformation of the

5-min volume are significant, which reflects slow moving traffic
platoons at the downstream detector of the crash occurrence loca-
tions. Drivers traveling at high speeds from upstream approaching
the slow moving traffic platoon have to reduce their speed in

Multi-level model

97.5% Mean Std. 2.5% 97.5%

−0.045 −0.11 [Dry] 0.02 −0.15 −0.07
(0.013) −0.07 [Snow] 0.009 −0.09 −0.06
0.355 0.33 [Dry] 0.18 −0.03 0.69
(0.272) 0.18 [Snow] 0.07 0.048 0.32
0.517 0.68 [Dry] 0.21 0.29 1.14
(0.152) 0.41 [Snow] 0.09 0.22 0.61

0.015 0.007 0.006 0.03
0.45 0.08 0.32 0.63

0.77
712
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dvance to avoid rear-end crashes. Quick braking is very hazardous,
specially considering the steep slopes and that drivers may  lose
ontrol of their vehicles, resulting in single-vehicle crashes. The
tandard deviation of the occupancy of the D1 detector is sig-
ificant with a positive sign, which indicates large variations of
ccupancy downstream would increase the probability of single-
ehicle crash occurrence. A Bayesian random parameter model was
lso estimated. It can be seen from the estimation results that all
he variables are significant for both snow and dry seasons; the only
ifferences detected are that the variables’ impact effects on crash
ccurrence vary across the seasons.

Furthermore, considering the segment-level unobserved het-
rogeneity, a Bayesian multilevel logistic regression model was
eveloped. Median width is the only significant variable that was
ound to contribute to the segment variations. Moreover, the crash-
evel random parameter Bayesian logistic regression model was
stimated to represent the varying effects of different crash units.

For the model comparisons, identical results were obtained as
hose from the MV  models: the fixed parameter model has the low-
st AUC value of 0.755, while the multi-level model is the best, with
n AUC of 0.77. Again, the AUCs are very comparable for the four
eveloped models.

. Conclusion

This paper presents a systematic multi-level analysis for single-
ehicle and multi-vehicle crashes on a mountainous freeway. To
rovide a systematic approach for analyzing freeway crash data,
his study utilized data from a 15-mile mountainous freeway sec-
ion of I-70 in Colorado. Five years of crash data were analyzed in the
ggregate studies. Due to data availability limitations, the disaggre-
ate models were estimated based on one year of crash data along
ith real-time traffic and weather data. Previous studies found that

hat SV and MV crashes should be modeled separately both at the
ggregate (Geedipally and Lord, 2010) and disaggregate (Pande and
bdel-Aty, 2006a) levels. In this study, the MV and SV crash data
ere analyzed separately for the safety performance functions and

he real-time crash risk assessment models.
For the aggregate analyses, safety performance functions were

stimated for the two crash types separately while consider-
ng their correlation effects. Two models were developed: (1) a
ayesian bivariate Poisson-lognormal model, a simplified MVPLN
odel that is often adopted to analyze crash frequencies for

ifferent crash injury severities, and (2) a Bayesian hierarchical
oisson model with correlated random effects accounting for over-
ispersion and correlation issues. The MV  crash occurrence was
ound to be related to the degrees of curvature, curve length ratios,
ane numbers and median widths. The two exposure parameters
AADT and segment length) were both significant, which demon-
trate that a higher AADT increases the probability of MV  crash
ccurrence. The SV crashes were more associated with the median
idths, speed limits, lane numbers and longitudinal grades. Only

ne exposure parameter (segment length) was significant, as SV
rashes seem to be not related to high AADTs, which is consistent
ith previous studies. In addition, the Bayesian bivariate Poisson-

ognormal model outperformed the Bayesian hierarchical Poisson
odel, with a substantially lower DIC value and two more signifi-

ant variables. Moreover, the correlation coefficient for SV and MV
rash counts is 0.68, which again indicates that these two crashes
hould be analyzed separately, though still considering the corre-
ation effects.

In the disaggregate analyses, a traditional matched case–control

esign approach was employed to control for the impacts of
eometric characteristics on crash occurrence. Bayesian logistic
egression models were developed to capture the crash-prone traf-
c statuses. For the MV  crashes, the average speed at the D1
and Prevention 58 (2013) 97– 105

detector and the standard deviation of occupancy at the D2 detec-
tor are significant along with the visibility conditions. For the SV
crashes, the average speed and sum volume at the D2 detector
and the standard deviation of occupancy at the D1 detector are
significant.

Regarding the modeling approaches, the Bayesian random
parameter models are capable of accounting for the seasonal vari-
ation effects and the varying crash-unit-level effects. Furthermore,
the Bayesian multi-level models captured the unobserved hetero-
geneity caused by the geometric characteristics. Median widths and
the number of lanes contributed to the segment-level variations
in the MV  crash model. For the SV crashes, median width is the
only parameter found to significantly impact the segment varia-
tions. However, it is unacceptable to estimate a model with both
crash unit level random parameters and segment level variations
because the segment variations caused by geometric characteristics
have already been accounted for by the crash-unit-level random
parameters. The goodness-of-fit results for the four presented mod-
els are similar and comparable: the more complex the model, the
better the model fit. Moreover, the purpose of introducing the sea-
sonal random parameters, the crash-unit-level random parameters
and the segment-level random effects to the basic Bayesian logistic
regression model is not simply to improve the goodness-of-fit; we
wanted to investigate the seasonal effects on the selected param-
eters and the variations of different crash units and to reveal the
contributing factors of the segment level variations.

In addition to the abovementioned conclusions and method-
ological contributions of this study, the modeling results have
substantial application potential. For the aggregate analysis results,
because different crash occurrence contributing factors were iden-
tified for the MV and SV crashes, distinct sets of crash modification
factors (CMFs) can be estimated for the two  crash types. For exam-
ple, improving the curvature design would have a positive effect on
decreasing MV crashes, while lowering speed limits could allevi-
ate SV crash occurrence frequency. Furthermore, the sophisticated
real-time crash risk evaluation models are promising for use in ATM
systems. Crash occurrence probabilities can be calculated in real
time with on-line field data, and traffic management strategies such
as VSL can be triggered when the risk reaches certain thresholds. In
addition, because the SV and MV crashes have distinct crash hazard
factors, freeway managers can employ different control strategies
to reduce SV or MV  crash risks or to balance the two  crash risks
and utilize the optimal control strategies. However, all these possi-
ble applications of the model results require further investigation,
which could be addressed in future studies.

The results presented in this paper are based on the particu-
lar data from a mountainous freeway, which is somewhat unique.
Further research with different data and infrastructure types are
needed to confirm the results reported in this study. Moreover,
as indicated in Yu and Abdel-Aty (2013b) that informative priors
could improve the goodness-of-fit for the SPFs, the utilization of
informative priors in the crash risk evaluation models can also be
investigated.
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