

Full-Scale Wall of Wind Testing of Variable Message Signs (VMS) Structures to Develop Drag Coefficients for AASHTO Supports Specifications

> Team Members -- Drs. Arindam Chowdhury, Amir Mirmiran, Fouad H. Fouad, Ian Hosch

Introduction

- Variable Message Signs
 - Programmable
 - Real time advisories
 - Inclement weather
 - Traffic accidents/congestion
 - Construction
 - Public service announcements
 - Support structure varies
 - Larger 3D profile
 - Weigh > 4000 lbs
 - Vulnerable to fatigue and premature failure

2

Engineering & Computing

FLORIDA INTERNATIONAL UNIVERSITY

Problem Statement

- AASHTO (5th edition 2009)
 - Provisions for Extreme Event and Fatigue
 - Wind drag effect can vary with wind speed
 - Structure geometry
 - Wind approach direction
 - Free stream turbulence
 - Extreme event wind loads
 - High mean annual winds speeds
 - May not ensure conservative design
 - Low mean annual wind speeds
 - Overly conservative for fatigue

AASHTO Standard Specification for Structural Supports for Highway signs, luminaires, and Traffic Signals

Engineering & Computing

FLORIDA INTERNATIONAL UNIVERSITY

Using the same C_D for strength and fatigue can produce inefficient designs

3

Project Objective

- Wind drag coefficients table in *Supports Specifications* (Table 3-6): "A value of 1.7 is suggested for Variable Message Signs (VMS) until research efforts can provide precise drag coefficients."
- The proposed research will address this issue by providing accurate drag coefficients for VMS signs, which can be used to provide a better estimate of the wind-induced loads on the VMS structures.

Research Tasks

This Project will include:

- Extensive literature review,
- Investigation of industry standards,
- Large scale experimental testing in the Wall of Wind
- In-depth analysis of obtained data
- Formulation of drag coefficient recommendations for incorporation into AASHTO specifications.

Experimental Procedure

12-FAN WOW RESEARCH NCTSPM

Engineering & Computing FLORIDA INTERNATIONAL UNIVERSITY

Experimental Procedure

- Phase I Testing (September 2012 completed)
 - Fatigue level winds (45 mph)
 - Tare Test (1 model, 2 tests)
 - Validation Tests (1 model, 2 tests)
 - Free Stream Wind (no model, 1 test)
 - Fatigue Level Drag Coefficients (9 models, 18 tests)

Experimental Procedure

- Phase II Testing (Spring 2013)
 - Extreme Event Winds (150 mph)
 - Tare Test (1 model, 2 tests)
 - Validation Tests (1 model, 2 tests)
 - Free Stream Wind (no model, 1 test)
 - Extreme Event Drag Coefficients (9 models, 18 tests)
 - Corner Mitigation (1 model, 2 tests)
 - Wind Driven Rain (1 model, 2 tests)
 - Galloping Potential (1 model, 2 tests)
 - Blockage Effect (2 models, 4 tests)

Experimental Setup

- Drag Coefficients
 - Fatigue Level Winds
 - Wind speed: 45 mph
 - Non-turbulent flow (I \approx 4.5%)
 - Wind direction 0° and 45°
 - Extreme Event Winds
 - Wind speed: 150 mph
 - Open terrain boundary layer (ASCE Exposure Category C)
 - Wind direction 0° and 45°

Engineering & Computing

Florida International University

9

Experimental Setup

- Support Structure
 - Single/double steel cantilever
 - Mounting height
 - 7.5' (bottom of model 6.5')
 - Load cell
 - 1350 lb capacity (Fx, Fy, & Fz)
 - Vertical supports
 - 6" x 6" x ¼" steel tubes
 - Horizontal arm
 - 6" x 6" x ¼" steel tubes
 - Connector plates
 - 12" x 12" x ¼" steel

Engineering & Computing FLORIDA INTERNATIONAL UNIVERSITY

Experimental Setup

- Validation
 - Model 1 (2' x 2' x 2.4")
 - Results compared to:
 - AASHTO & ASCE 7-10 (Letchford 2001)
 - Previous research
- Blockage Effect Test
 - 2 flat panel models
 - 10' x 2' x ½" and 5' x 1' x ½"
 - 2 wind speeds
 - 45 mph and 90 mph
 - Results plotted for blockage correction

Preliminary Phase I Results

- Tare Test
 - Longitudinal tare correction was determined to be a negative factor
 - Suction created behind model
 - Approximately 2% correction

Direction	Fx	Fy	Fz
0°	-0.73	0.04	-0.44
45°	-0.47	-4.45	4.96

- Free Stream Wind Correction
 - Mean correction 0.9984

Preliminary Phase I Results

• Phase I – Drag Coefficient (Cd) Results

Model No.	Aspect Ratio	Depth Ratio	Cd	
			0°	45°
1	1	0.1	1.6042	1.8720
2	3	0.1	1.6570	1.6024
3	5	0.1	1.6633	1.4268
4	1	0.4	1.5590	1.4450
5	3	0.4	1.6109	1.4348
6	5	0.4	1.5934	1.2945
7	1	0.7	1.3850	1.2911
8	3	0.7	1.5336	1.2650
9	5	0.7	1.5031	1.1110

Preliminary Phase I Results

Fatigue Level Drag Coefficients (45 mph) vs. Aspect Ratio

Summary

- Phase 1 (fatigue level) testing is complete
- Results confirm the initial hypothesis that partial reattachment of flow over the prismatic VMS reduces the drag coefficient
- Results for the 45° approach are significantly smaller than the 0° approach
 - This will be investigated further in Phase 2 testing
- Phase 2 testing is scheduled to begin this Summer (2013)

15

Florida International University

