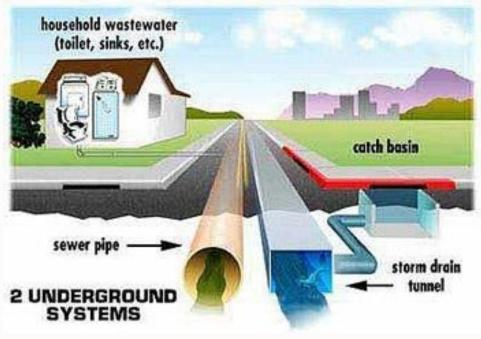
Reducing Service Interruptions in Linear Infrastructure Systems (Transportation and Water/Sewer) by Synchronizing Schedules for Selected Maintenance Activities

Member universities: Florida International University Georgia Institute of Technology

> Team members: Berrin Tansel (FIU) Xia Jin (FIU) Adjo Amekudzi (GT)

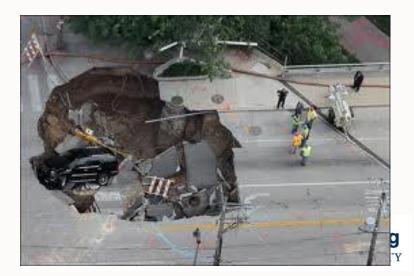
Sponsored by The National Center for Transportation Systems Productivity and Management (NCTSPM)

Interdependency of lifeline systems:

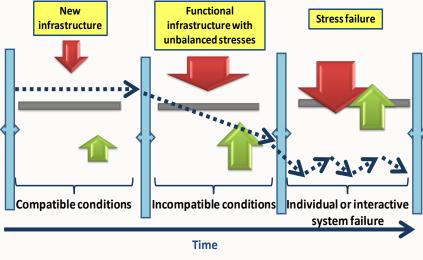

 Electric and potable water transmission and distribution, wastewater collection and treatment, highways, railroads, seaports and inland waterway ports.

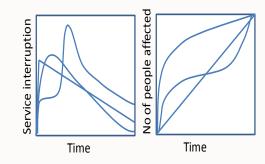
Interdependent linear infrastructure systems (ILIS)

• In ILIS events are linked by time and dynamics of the interactions between the systems.



Interdependent linear infrastructure systems (ILIS)

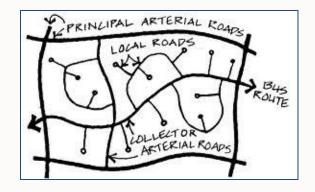

Interdependent linear infrastructure systems (ILIS)



Interdependent linear infrastructure systems (ILIS)

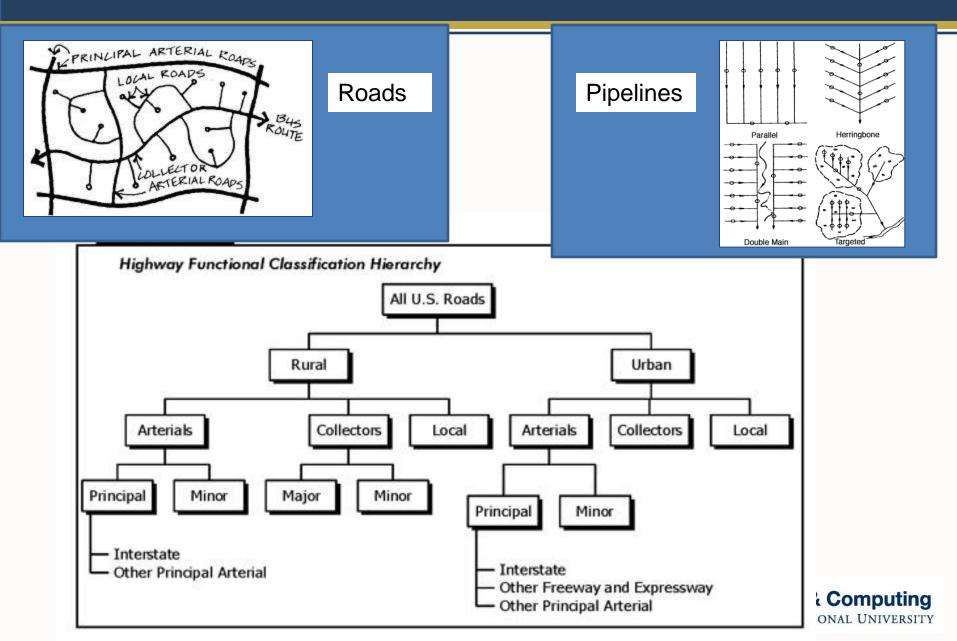
Engineering & Computing FLORIDA INTERNATIONAL UNIVERSITY

Project objectives


Objectives of this research are to:

- Characterize service interruption profiles in interdependent linear infrastructure systems (ILIS);
- Identify interactively the major events which cause service interruptions;
- Develop a tool to establish checkpoints for service quality.

Problem Statement


- What are the similarities in service interruption profiles in ILIS (transportation, water/sewer)?
- 2. How do the service failure events relate to one another in ILIS?
- 3. How can we establish check points?
- 4. How can we develop coordinated maintenance schedules to reduce service interruptions and increase maintenance cost effectiveness?

Classification hierarchy

Methodology

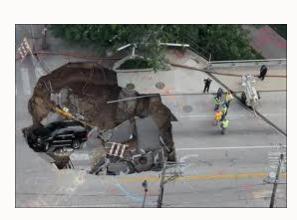
A. Identification of service interruption hazard modes in linear infrastructure systems (transportation, water & sewer, power)

1.Causes of service quality decline and interruptions (service specific maintenance factors)

(i.e., design and operational elements such as stresses during operation, aging and wear out, a software coding error, human errors, or operator-and-maintenance-induced factors).

2. Service quality and system redundancy

(Identification of mechanisms to detect service interruptions with ease and in a timely manner).

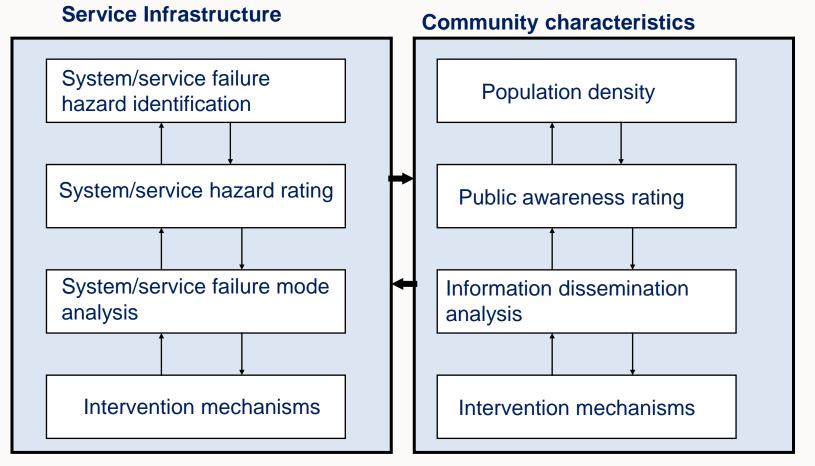

3. Service quality metrics

(Potential consequences due to quality decline and interruptions).

Methodology

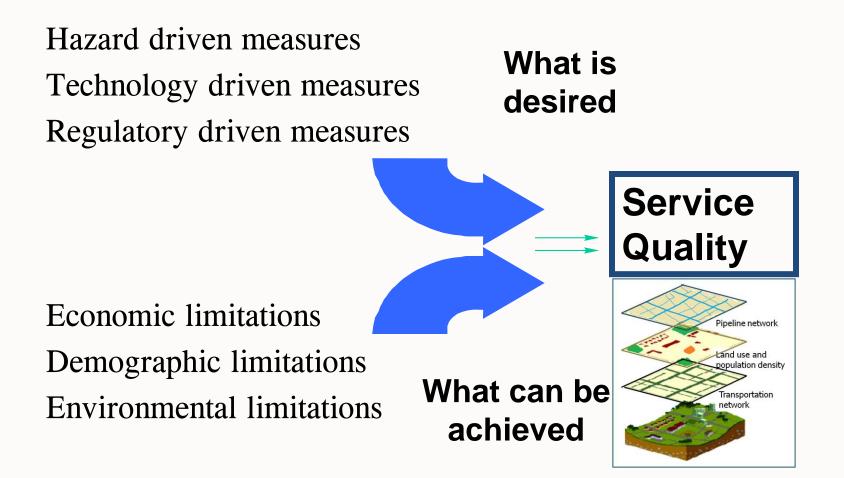
B. Service quality and priority assessment

- Interactive analysis to quantify the possible service interruptions due to system specific failure mechanisms.
- ILIS consequence number (ILIS-CN): Being developed using criteria based on frequency and severity of consequences.


Methodology

- C. Profiling, classification and rating of hazard modes
- A rating system (metrics) for different service interruption hazard modes based on:
 - Failure frequency
 - System redundancy for failure
 - Consequence rating
 - Potential impacts on functioning of other colocated linear infrastructures

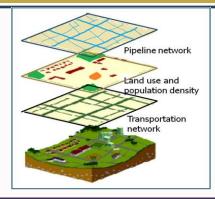
Methodology Risk management in lifeline systems



Service delivery factors

Social factors

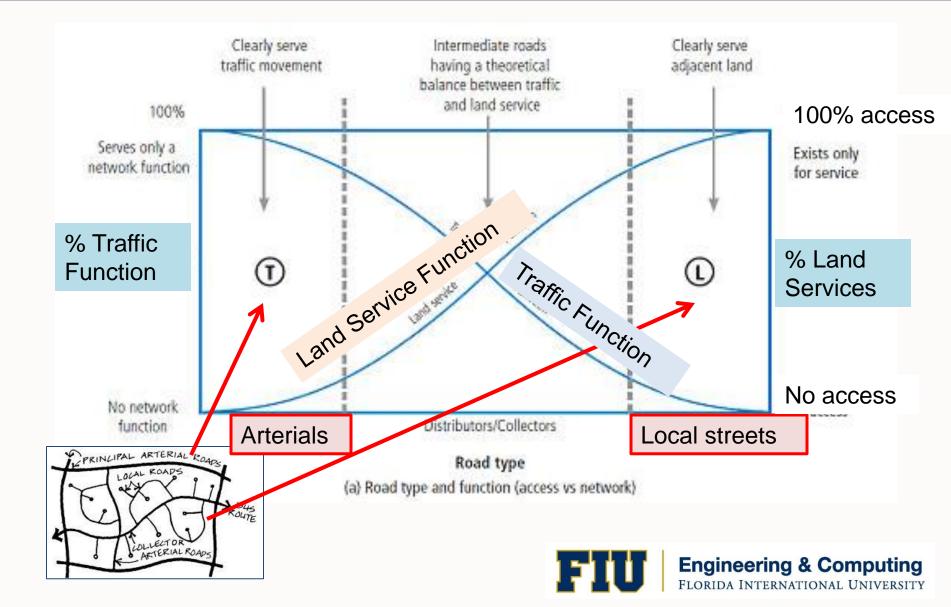
Methodology Risk management in lifeline systems


Methodology- Design factors

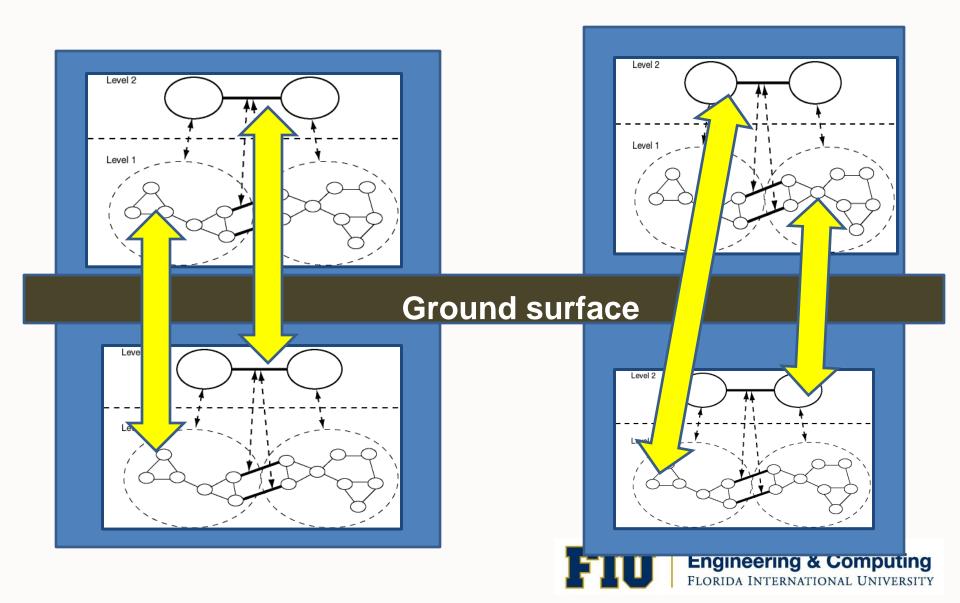
Origin	Pipeline Service Failure Risk Factors	Transportation Service Failure Risk Factors
	Age (D2)	Age (D2)
	Pipe Material (D3)	Road Material (D3)
	Pipe Length (D4)	Travel Distance (D4)
Design	Pipe Capacity (D5)	Road Capacity (D5)
	System Redundancy (D6)	System Redundancy (D6)
	Pipe Pressure (D8)	Traffic Load (D8)
	Material being piped (D9)	Transport needs (people, goods) (D9)

Methodology- Design factors

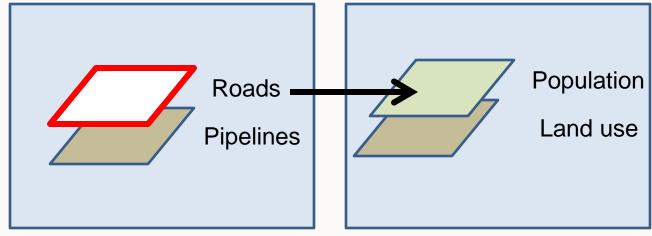
Origin	Pipeline Service Failure Risk Factors	Transportation Service Failure Risk Factors		
	Age (D2)	Age (D2)		
	Pipe Material (D3)	Road Material (D3)		
	Pipe Length (D4)	Distance (D4)		
Design	Pipe Capacity (D5)	Capacity (D5)		
	System Redundancy (D6)	System Redundancy (D6)		
	Degree of Automation (D7)	Degree of Automation (D7)		
	Pipe Pressure (D8)	Traffic load (D8)		
	Material being piped (D9)	Transport needs (people, goods) (D9)		
	No. of People Employed (O1)	No. of drivers (O1)		
	Periodic Training Program (O2)			
Operational	Frequency of Inspection (O3)			
	Work Hours (O4)	Work Hours (O5)		
	Morale (O5)	Morale (O6)		
	Work Ethics (O6)	Driving Habits (O7)		
	Geology (E1)	Geology (E1)		
	Geography (E2)	Geography (E2)		
Environmental	Weather (E3)	Weather (E3)		
	Vibration (E4)	Vibration (E4)		
	Nearby Activities (E5)	Nearby Activities (E5)		
	Earthquake (G1)	Earthquake (G1)		
	Arson (G2)	Arson (G2)		
Acts of God	Flood (G3)	Flood (G3)		
	Hurricane (G4)	Hurricane (G4)		



Urban Factors


- 1. Population density
- 2. Land use
- 3. Transportation network structure
- 4. Pipeline netwrok structure

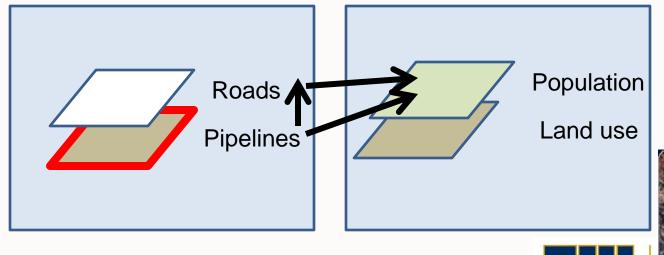
Numerical Analyses



Pipeline classification hierachy

Numerical Analyses (Roads)

Origin	Failure Risk Factor	Risk Factor Score	Detectability Score	Consequence Score	VPN
	Age	10	4	5	200
Design	Road Material	4	1	6	24
	Road Distance	10	6	5	300
	Road Capacity	2	2	6	24
	Road Redundancy	2	2	6	24
	Traffic Load	4	2	5	40
	Transport Need	4	2	4	32



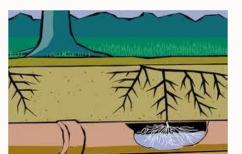
Numerical Analyses (Pipeline)

Origin	Failure Risk Factor	Risk Factor Score	Detectability Score	Consequence Score	VPN	Overall VPN
Design	Age	10	4	5	200	40000
	Pipe Material	4	1	6	24	576
	Pipe Length	10	6	5	300	90000
	Pipe Capacity	2	2	6	24	576
	System Redundancy	2	2	6	24	576
	Degree of Automation	4	2	5	40	1600
	Pipe Pressure	4	2	4	32	1024

Numerical Analyses

Vr = vulnerability due to road closure

Road closure = Population impact due to road closure


Vp = vulnerability due to pipeline breakage

Pipeline breakage =

Population impact due to road closure **X**

Population impact due to pipeline service failure

ineering & Computing IDA INTERNATIONAL UNIVERSITY

Road + Pipeline

Road only

Benefits for end users

• Developing strategies to minimize service interruptions

(i.e., identifying areas where agencies can coordinate maintenance schedules to maximize maintenance efficiencies to improve service quality and reduce cost);

- Improving service quality (technical, environmental, social, economic) factors;
- Improving service quality by smart maintenance planning for transportation and water/sewer infrastructure.

Engineering & Computing FLORIDA INTERNATIONAL UNIVERSITY

Thank you

Engineering & Computing FLORIDA INTERNATIONAL UNIVERSITY