DEVELOPMENT OF A CALCULATOR FOR ESTIMATION AND MANAGEMENT OF GHG EMISSIONS FROM PUBLIC TRANSIT AGENCY OPERATIONS

A Thesis Presented to The Academic Faculty

By

Brent A. Weigel

In Partial Fulfillment of the Requirements for the Degree Master of Science in the School of Civil and Environmental Engineering

> Georgia Institute of Technology August, 2010

DEVELOPMENT OF A CALCULATOR FOR ESTIMATION AND MANAGEMENT OF GHG EMISSIONS FROM PUBLIC TRANSIT AGENCY OPERATIONS

Approved by:

Dr. Michael D. Meyer School of Civil and Environmental Engineering *Georgia Institute of Technology*

Dr. Frank Southworth School of Civil and Environmental Engineering Georgia Institute of Technology

Dr. Laurie Garrow School of Civil and Environmental Engineering *Georgia Institute of Technology*

Date Approved: June 30, 2010

PREFACE

Portions of this thesis consist of text from the author's Transportation Research Board conference paper and *Transportation Research Record* journal paper "Calculators for Estimating Greenhouse Gas Emissions from Public Transit Agency Vehicle Fleet Operations" (1, 2).

ACKNOWLEDGEMENTS

The generous assistance of my advisor Dr. Meyer has been essential to my completion of a thesis that is on-target and on-time. Dr. Meyer's dedication to my learning and success has been invaluable in helping me navigate the research process. Working with Dr. Meyer and Dr. Southworth on the *Transit Greenhouse Gas Emissions Management Compendium* has helped me to develop as a researcher and has given me the special opportunity to pursue my work on this thesis. I am very grateful for Dr. Southworth's guidance and insight on academic research in general, and public transit research in particular.

The amount of time and energy that I have been able to invest in this thesis is very much a product of the support of my wife Tanya. Tanya's encouragement and help at home have helped me to see this work through.

TABLE OF CONTENTS

PREFACEiii
ACKNOWLEDGEMENTS iv
LIST OF TABLES viii
LIST OF FIGURES xi
LIST OF SYMBOLS AND ABBREVIATIONS xv
SUMMARY xviii
CHAPTER 1 INTRODUCTION 1
1.1. Thesis Overview1
1.1.1. Motivation1
1.1.2. Research Objective
1.1.3. Methodology
1.2. Background 6
1.2.1. Climate Change
1.2.2. Climate Change Mitigation and Transportation10
1.2.3. Public Transportation's Role in Climate Change Mitigation
1.2.3.1.Emissions Displaced by Transit171.2.3.2.Emissions Produced by Transit17
CHAPTER 2 LITERATURE REVIEW

2.1.	Transit GHG Emissions Management Compendium	21
2	2.1.1. Decision-Making Contexts for Managing Public Transit GHG Emissions	22
	2.1.1.1. Planning for System Expansions and Major Construction Projects	23
	2.1.1.2. Fleet Procurement Practices	23
	2.1.1.3. Fleet Operations and Maintenance Practices	24
	2.1.1.4. Other Activities	24
2.2.	Environmental Management Systems	25
2.3.	Life Cycle Analysis of GHG Emissions	26
2.4.	Studies of Transit GHG Emissions and Costs	29
2.5.	GHG Emissions Calculators	32
2.6.	Synthesis of Existing Calculation Capabilities and Needs	39

3.1.	Purpose and Capabilities		
3.2.	Calculator	r Architecture	45
3.3.	Calculatio	on Methodologies	50
3	3.3.1. Life	Cycle Analysis Approach	50
	3.3.1.1.	Boundary and Scope	51
	3.3.1.2.	Functional Units	53
3	3.3.2. Mob	ile Source Emissions	55
	3.3.2.1.	Direct Combustion Emissions	55
	3.3.2.2.	Fuel-Cycle Emissions	62
	3.3.2.3.	Vehicle-Cycle Emissions	67
3	3.3.3. Stati	onary Source Emissions	71
	3.3.3.1.	Direct Combustion Emissions	71
	3.3.3.2.	Fuel-Cycle Emissions	

3.3.4. Purchased Electricity Emissions
3.3.4.1.Indirect Combustion Emissions743.3.4.2.Fuel-Cycle Emissions77
3.3.5. Cost Calculations
CHAPTER 4 APPLICATION AND ASSESSMENT
4.1. GHG Inventory of MARTA (2008)
4.2. Cost-Effectiveness of GHG Emission Reduction Strategies
4.2.1. King County Metro Transit Articulated Diesel Hybrid Bus Evaluation
4.2.2. New York Metropolitan Transit Authority Grand Central Terminal Lighting
Replacement Evaluation
CHAPTER 5 CONCLUSION 112
APPENDIX A: Existing GHG Emission Calculators
APPENDIX B: Calculator Worksheets
APPENDIX C: Calculator Data Tables
APPENDIX D: MARTA GHG Emissions Inventory
APPENDIX E: Cost-Effectiveness Evaluations
REFERENCES

LIST OF TABLES

Table 1: Studies of Transit GHG Emissions and Costs 31
Table 2: GHG Emissions Estimation Frameworks and Protocols 35
Table 3: Example Calculation Tools for GHG Emissions and/or Cost Estimation
Table 4: GHG Emission Inventory Scopes and Associated Modal and Facility Activity
Table 5: APTA Required Performance Metrics (9)
Table 6: Data Quality Tiers for Mobile Source CO2 Emissions. Based on (6, 9). 56
Table 7: Data Quality Tiers for Mobile Source CH ₄ and N ₂ O Emissions. Based on (6, 9) 56
Table 8: GREET Fuel-Cycle Model 1.8c.0 Well-to-Pump Upstream GHG Emissions. Based on
(6, 46)
Table 9: Comparison of Upstream Well-to-Tank GHG Emissions Results from GREET and
GHGenius (46, 49)
Table 10: Vehicle-Cycle GHG Emission Factors. Based on (52) 68
Table 11: Data Quality Tiers for Stationary Source CO2 Emissions. Based on (6)
Table 12: Data Quality Tiers for Stationary Source CH ₄ and N ₂ O Emissions. Based on (6) 71
Table 13: Data Quality Tiers for Scope 2 CO ₂ , CH ₄ , and N ₂ O Emissions. Based on (6)74
Table 14: Purchased Electricity Upstream Fuel-Cycle Emission Factors. Based on (46)
Table 15: 2008 MARTA GHG Inventory Aggregated Data Input Values and Sources. 91
Table 16: 2008 MARTA GHG Inventory Aggregated Data Input Values and Sources (cont.)92
Table 17: MARTA GHG Performance Metrics, Annual CO ₂ e Scope 1 and Scope 2 Emissions
for 2008
Table 18: MARTA GHG Performance Metrics, Annual CO ₂ e Scope 1, 2, and 3 Emissions for
2008

Table 19: King County Metro Hybrid Bus Cost and Emissions Evaluation Data (61) 103
Table 20: NY MTA Grand Central Terminal Lighting Replacement Data (62) 109
Table 21: Inventory GHG Emissions Calculators for Transit Vehicles and Fuels (1) 117
Table 22: Life Cycle GHG Emissions Calculators for Transit Vehicles and Fuels (1)
Table 23: Vehicle and Fuel Types Covered by GHG Emissions Calculators (1)
Table 24: Vehicle and Fuel Types Covered by GHG Emissions Calculators (continued) (1) 120
Table 25: U.S. Default CO2 Emission Factors for Transport Fuels. Based on (6)
Table 26: Tier A Default CH ₄ and N ₂ O Emission Factors for Highway Vehicles by Vehicle
Type and Control Technology. Based on (6)
Table 27: Tier B Default CH ₄ and N ₂ O Emission Factors for Highway Vehicles by Vehicle Type
and Model Year. Based on (6)
Table 28: Tier C U.S. Default CH ₄ and N ₂ O Emission Factors for Highway Vehicles by Vehicle
Type. Based on (6)
Table 29: Default CH ₄ and N ₂ O Emission Factors for Non-Highway Vehicles by Vehicle Type
and Fuel Type. Based on (6)140
Table 30: U.S. Default Factors for Stationary Combustion CO ₂ Emissions. Based on (6) 141
Table 31: U.S. Default Factors for Stationary Combustion CO ₂ Emissions (cont.). Based on (6)
Table 32: Default CH ₄ and N ₂ O Emission Factors by Technology Type (Tier B) and Fuel Type
(Tier C) for the Commercial Sector. Based on (6)
Table 33: Stationary Combustion Upstream Fuel-Cycle Emission Factors. Based on (46) 144
Table 34: Stationary Combustion Upstream Fuel-Cycle Emission Factors (cont.). Based on (46)

Table 35:	eGRID2007	State GHG Annual Emission Rates. Based on (44)	146
Table 36:	eGRID2007	State GHG Non-Baseload Emission Rates. Based on (44)	147
Table 37:	eGRID2007	Subregion GHG Emission Rates. Based on (44)	148
Table 38:	eGRID2007	NERC Region GHG Emission Rates. Based on (44)	149
Table 39:	eGRID2007	State Power Mixes. Based on (44)	150
Table 40:	eGRID2007	State Power Mixes. Based on (44)	151
Table 41:	eGRID2007	Subregion Power Mixes. Based on (44)	152
Table 42:	eGRID2007	NERC Region Power Mixes. Based on (44)	153

LIST OF FIGURES

Figure 1: Historical global mean surface temperatures in the modern industrial era (13)
Figure 2: Atmospheric concentrations of GHGs from 0 to 2005 CE (13)
Figure 3: 2007 U.S. GHG Emissions (CO ₂ e) Allocated to Economic Sectors. Based on (16) 11
Figure 4: 2007 U.S. transportation sector direct GHG emissions, CO ₂ e. Based on (16) 12
Figure 5: The 4-legged stool of GHG reductions from transportation (19)
Figure 6: 2003 U.S. transportation GHG emissions, by source (21)
Figure 7: Typology of GHG impacts of public transportation (9)
Figure 8: Estimated CO ₂ emissions per passenger mile for transit and private autos (23)
Figure 9: Decision-making contexts for managing GHG emission reductions from public transit
agencies (26)
Figure 10: Organization and scopes of GHG emissions inventory worksheets
Figure 11: General functional layout of an inventory worksheet
Figure 12: Processes included within the life cycle analysis boundary of the developed
calculator
Figure 13: Calculator facility cost profile worksheet
Figure 14: Sample Cost-Effectiveness Calculations for Transit Bus Alternatives
Figure 15: Sample payback period calculation for a transit bus alternative
Figure 16: MARTA Scope 1 GHG emissions for 200894
Figure 17: MARTA Scope 2 GHG emissions for 200895
Figure 18: MARTA Scope 3 GHG emissions for 2008
Figure 19: MARTA direct and life cycle GHG emissions for 2008 100
Figure 20: Cost-effectiveness results for KC Metro hybrid bus evaluation

Figure 21: Payback period calculation for KC Metro hybrid buses (unsubsidized) 107
Figure 22: Payback period calculation for KC Metro hybrid buses (subsidized) 108
Figure 23: Payback period calculation for NY MTA Grand Central Terminal lighting
replacement
Figure 24: Simplified Diagram of Life Cycle GHG Emissions Producing Activities Related to
Transit Agency Vehicle Fleet Operations (1)
Figure 25: Calculator worksheet: Bus
Figure 26: Calculator worksheet: Bus (cont.)
Figure 27: Calculator worksheet: Bus (cont.)
Figure 28: Calculator worksheet: Bus (cont.)
Figure 29: Calculator worksheet: Bus (cont.)
Figure 30: Calculator worksheet: Bus (cont.)
Figure 31: Calculator worksheet: Bus (cont.)
Figure 32: Calculator worksheet: Bus (cont.)
Figure 33: Calculator worksheet: Bus (cont.)
Figure 34: Calculator worksheet: Bus (cont.)
Figure 35: Calculator worksheet: Bus (cont.)
Figure 36: Calculator worksheet: Bus (cont.)
Figure 37: Calculator worksheet: Bus (cont.)
Figure 38: MARTA GHG Emissions Inventory. Worksheet: bus_diesel 155
Figure 39: MARTA GHG Emissions Inventory. Worksheet: bus_diesel (cont.)
Figure 40: MARTA GHG Emissions Inventory. Worksheet: bus_diesel (cont.) 157
Figure 41: MARTA GHG Emissions Inventory. Worksheet: bus_CNG

Figure 42:	MARTA GHG Emissions Inventory.	Worksheet:	bus_CNG (cont.) 159
Figure 43:	MARTA GHG Emissions Inventory.	Worksheet:	bus_CNG (cont.)160
Figure 44:	MARTA GHG Emissions Inventory.	Worksheet:	Paratransit 161
Figure 45:	MARTA GHG Emissions Inventory.	Worksheet:	Paratransit (cont.)162
Figure 46:	MARTA GHG Emissions Inventory.	Worksheet:	HR163
Figure 47:	MARTA GHG Emissions Inventory.	Worksheet:	HR (cont.) 164
Figure 48:	MARTA GHG Emissions Inventory.	Worksheet:	Non-Rev_Veh165
Figure 49:	MARTA GHG Emissions Inventory.	Worksheet:	Non-Rev_Veh (cont.) 166
Figure 50:	MARTA GHG Emissions Inventory.	Worksheet:	Stat_Comb 167
Figure 51:	MARTA GHG Emissions Inventory.	Worksheet:	Purch_Elect168
Figure 52:	MARTA GHG Emissions Inventory.	Worksheet:	Purch_Elect (cont.) 169
Figure 53:	MARTA GHG Emissions Inventory.	Worksheet:	Purch_Elect (cont.) 170
Figure 54:	MARTA GHG Emissions Inventory.	Worksheet:	Purch_Elect (cont.) 171
Figure 55:	MARTA GHG Emissions Inventory.	Worksheet:	Purch_Elect (cont.) 172
Figure 56:	MARTA GHG Emissions Inventory.	Worksheet:	Purch_Elect (cont.) 173
Figure 57:	MARTA GHG Emissions Inventory.	Worksheet:	Purch_Elect (cont.) 174
Figure 58:	MARTA GHG Emissions Inventory.	Worksheet:	Purch_Elect (cont.) 175
Figure 59:	MARTA GHG Emissions Inventory.	Worksheet:	Cost_Vehicle176
Figure 60:	MARTA GHG Emissions Inventory.	Worksheet:	Cost_Vehicle177
Figure 61:	MARTA GHG Emissions Inventory.	Worksheet:	Cost_Vehicle178
Figure 62:	King County Metro hybrid bus GHG	inventory ar	nd cost-effectiveness180
Figure 63:	King County Metro hybrid bus GHG	inventory ar	nd cost-effectiveness (cont.) 181
Figure 64:	King County Metro hybrid bus GHG	inventory ar	nd cost-effectiveness (cont.) 182

Figure 65: King County Metro hybrid bus cost profiles	183
Figure 66: NY MTA Grand Central Terminal lighting replacement GHG estimation and	d cost-
effectiveness	184
Figure 67: NY MTA Grand Central Terminal lighting replacement GHG estimation and	d cost-
effectiveness (cont.).	185
Figure 68: NY MTA Grand Central Terminal lighting replacement cost profiles.	186

LIST OF SYMBOLS AND ABBREVIATIONS

AFV	Alternative Fuel Vehicle
АРТА	American Public Transportation Association
BTU	British thermal unit
B100	100 percent biodiesel
САР	Criteria air pollutant
CCAR	California Climate Action Registry
CFL	Compact fluorescent light
CH ₄	Methane
CNG	Compressed natural gas
CO ₂	Carbon dioxide
CO ₂ e	Carbon dioxide equivalent
DGE	Diesel gallon equivalent
DOE	U.S. Department of Energy
DOT	Department of transportation
DR	Demand response
EIA	U.S. Energy Information Administration
EIO-LCA	Economic Input-Output Life Cycle Assessment
FTA	Federal Transit Administration
GHG	Greenhouse gas
GREET	Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation
GRP	General reporting protocol

GUI	Graphical user interface
GWh	Gigawatt-hour
HFC	Hydrofluorocarbon
HHV	Higher heating value
HR	Heavy rail
ICLEI	International Council for Local Environmental Initiatives
ISO	International Organization for Standardization
KWh	Kilowatt-hour
LCA	Life cycle analysis (or life cycle assessment)
LCCA	Life cycle cost analysis
LCI	Life cycle inventory
LEM	Lifecycle Emissions Model
LHV	Lower heating value
LR	Light rail
N ₂ O	Nitrous oxide
MARTA	Metropolitan Atlanta Rapid Transit Authority
MB	Motor bus
MMBtu	10 ⁶ British thermal units
MWh	Megawatt-hour
NTD	National Transit Database
NY MTA	New York Metropolitan Transportation Authority
PFC	Perfluorocarbon
PMT	Passenger miles travelled (or, passenger miles of travel)

RITG	Radiatively important trace gas
SCF	Standard cubic foot (of natural gas)
TCR	The Climate Registry
TCRP	Transit Cooperative Research Program
TTW	Tank-to-wheels
VMT	Vehicle miles travelled (or, of travel)
WRI	World Resources Institute
WTP	Well-to-pump
WTT	Well-to-tank
WTW	Well-to-wheels

SUMMARY

As managers of extensive vehicle fleets and transportation infrastructures, public transit agencies present unique opportunities for reducing greenhouse gas (GHG) emissions from the transportation sector. To achieve substantial and cost-effective GHG emissions reductions from their activities, public transit agencies need tools and resources that enable effective GHG emissions management. This research thesis presents the background, methodology, and results of the author's development of a public transit agency-level life cycle GHG emissions calculator.

The development of the calculator involved a series of research efforts aimed at identifying and addressing the needs of transit agency GHG emissions management: a review of background information on climate change and public transit's role in mitigating climate change; a review of existing GHG emissions calculators for public transit agencies, a review of the methodologies for life cycle GHG emissions analysis; integration and adaption of existing calculation resources; development of calculator spreadsheets for estimating relevant lifecycle GHG emissions and quantifying GHG emission reduction cost-effectiveness; application of the developed calculator to a carbon footprint analysis for a typical mid-size to large-size transit agency; and application of the developed calculator to the evaluation of the cost-effectiveness of various potential strategies for reducing transit agency GHG emissions.

The developed calculator provides an integrative resource for quantifying GHG emissions and costs of public transit agency activities, including GHG emission reduction strategies. Further research is needed to calibrate the estimation of upstream life cycle GHG emissions, particularly for vehicle manufacture and maintenance.

CHAPTER 1

INTRODUCTION

This thesis presents the development of a calculator for the estimation and management of greenhouse gas (GHG) emissions from public transit agency operations. This introductory chapter provides an overview of the motivation, research need, and objective of the research, as well as background information on the context and importance of GHG emission reductions from public transportation.

1.1. Thesis Overview

1.1.1. Motivation

Public transportation systems offer unique and significant opportunities for mitigation of transportation sector GHG emissions. Effective management of GHG emissions associated with public transportation systems is important for several reasons. As operators of major vehicle fleets and extensive infrastructure systems, public transit agencies have an opportunity to demonstrate and highlight the benefits of a wide range of GHG emission reduction practices through both their day-to-day operations and their capital programs. Since the 1970 Clean Air Act the nation's transit agencies have served as test beds for emissions reducing vehicle technologies. In the current context of climate change mitigation, transit agencies can provide expanded leadership in society's efforts to develop more environmentally benign transportation systems (*3*). In addition to providing energy and emissions efficiency benefits to society at large, successful carbon management practices can bring some immediate rewards to the transit agency itself by helping to market services to environmentally conscious riders, reducing the costs of

purchased energy, making the agency more attractive to federal grant programs (4, 5), and preparing the agency for participation in climate change registries (6, 7) and carbon trading schemes (8), which offer funding opportunities for GHG emissions reductions. Finally, the need for GHG emissions management will likely increase as transit agencies face impending U.S. federal or state regulations and/or legislation.

Many stakeholders concerned with climate change, transportation sustainability, and energy efficiency are looking to public transportation as a means for reducing transportation GHG emissions and energy consumption. Public transportation can reduce GHG emissions and energy consumption through its accommodation of mode shift, congestion relief, and more travel-efficient land use (9, 10). It should be noted that the potential magnitude of GHG emissions reductions *from* public transportation is limited. Transportation GHG emissions are generally proportional to vehicle miles of travel (VMT), and in the U.S. in 2007, public transportation VMT was approximately 0.1 to 0.2 percent of all highway VMT (11). The limited total impact of GHG emissions reductions through public transportation is reflected in the much discussed and debated *Moving Cooler* report, which indicates that between 2010 and 2050 "transit capital investments, such as urban transit expansion and intercity and high-speed rail, could produce cumulative GHG reductions ranging from 0.4 to 1.1 percent of baseline emissions" (12).

Despite limitations in total impact, the unique efficiencies of public transit vehicle capacities and alternative fuel technologies represent considerable opportunities for improving transportation GHG emissions performance. By managing the procurement, maintenance, and operation of extensive vehicle fleets and infrastructures, public transit agencies provide an ideal test bed for implementing and evaluating more carbon efficient passenger transportation systems. It is likely that transportation system GHG emissions performance standards (measured in terms of GHGs/passenger-mile) will be imposed through federal legislation, regulation, and/or public funding eligibility requirements. As highly subsidized enterprises, public transit agencies may be required to evaluate and report their GHG emissions performance.

Public transit agencies are faced with the challenge of meeting increasing public demands with, in many cases, resources constrained by decreasing revenues. Therefore, a framework for evaluating and managing cost-effective public transit GHG emissions reductions must not only help agencies identify economically viable opportunities, it must also be easily implemented by personnel who have limited time and resources available for additional management responsibilities. To improve the GHG emissions performance of transit agencies, transit agency personnel need effective tools for managing their emissions. The managerial adage "You can't manage what you can't measure" is no less true in the context of GHG emissions management. *Measurement of transit agency GHG emissions requires tools for the quantification of GHGs from transit agency activities, and such tools should be appropriate to the unique context and needs of public transit agencies.*

1.1.2. Research Objective

The purpose of this research is to develop an integrative calculation tool for the estimation and management of public transit agency-level life cycle GHG emissions. An "integrative" calculation tool is one that consolidates calculation data and methods into a single resource and the intent of this research is to integrate calculation resources for the estimation of direct GHG emissions, life cycle GHG emissions, and the costs associated with GHG emission reductions.

The primary function of the calculation tool is to quantify the GHG emissions associated with consumptive agency activities. In broad terms, these activities include the provision of mobility services and the use of supporting services and facilities. The calculator may be applied to any scale of agency activity, from the operation of a single vehicle, to a complete footprint of an agency's GHG emissions. At the very least, the calculator is intended to help transit agencies quantify and evaluate the GHG emissions impact of core activities, such as the use of various types of vehicles and fuels.

Additionally, the calculator is intended for the quantification of life cycle GHG emissions of agency activities. Although upstream and downstream supply-chain GHG emissions are generally not the responsibility of transit agency managers, it is important for agency managers to quantify and thus better understand the impact of their resource consumption decisions. Quantification of life cycle GHG emissions enables accounting and management of the broader supply-chain impacts of agency activities. Quantification of displaced emissions (through mode shift, congestion relief, and land use change) is beyond the scope of this research.

An important objective of this research is to develop a calculation tool for managing costeffective reductions in GHG emissions from public transportation. The tool is designed to help agencies identify strategies that have the most GHG reduction impact, and that are the most costeffective. By helping agencies to identify the most cost-effective GHG emission reduction strategies, the calculator will support the management of not only GHG emissions, but also the associated asset costs. The quantification of cost-effectiveness will be based on the practice of incremental GHG emissions reduction – emission reduction strategies that provide marginal benefits relative to a baseline. Transit agency managers have a multitude of tasks and responsibilities beyond the management of GHG emissions. This research aims to provide a GHG emissions estimation and management tool that is easy to use and understand. In the interest of transparency and accessibility, the calculation tool is a spreadsheet-based model developed for use in Microsoft Office Excel®. The calculation tool is intended to help agencies calculate their emission baseline and identify the best use of available funds for the reduction of GHG emissions from agency assets and activities.

1.1.3. Methodology

The development of the public transit GHG emissions calculation tool employed a methodological approach consisting of research need identification and objective definition, literature review, design and synthesis, and finally assessment.

The research need and objective of the research were explained in this chapter. The research literature review, which is detailed in the following chapter, investigated methods, studies, and data related to public transit agency GHG emissions estimation and cost evaluation for vehicles, fuels, and infrastructure. Based on findings in the existing literature, the relevant existing or yet to be developed evaluation capabilities were identified for integration into the calculation tool. The calculation tool was then created to accommodate life cycle assessment and cost-effectiveness evaluation of agency GHG emissions – accounting for needed outputs and available data inputs. Upon creation of the calculation tool, the calculator was applied to an annual GHG emissions inventory of a medium- to large-size public transit agency to assess the calculator, both as an estimator of annual GHG emissions and as a tool for GHG emissions management. The calculator was then also applied to case studies of public transit agency GHG

emission reductions. The results of the GHG inventory and the case study calculations provide for a discussion of opportunities for improving the management of public transit agency GHG emission reductions.

1.2. Background

1.2.1. Climate Change

The Earth's climate is changing, and societies, nations, communities, corporations, and individuals around the world are looking for ways to manage this change. The most prevalent change, both measured and predicted, in the Earth's climate system is an increase in the global average surface temperature. This change is commonly referred to as "global warming" – a term that both clarifies and obscures the issue of climate change. In one sense, "global warming" is a more precise characterization of the issue of climate change, in that it identifies the primary intrinsic variable (temperature or heat) and defines the positive direction of an otherwise ambiguous change. Yet "global warming" as a term ignores the array of significant climatic changes that are expected to occur as global average surface temperatures increase. Such changes include but are not limited to more extreme high and low seasonal temperatures, more frequent and more intense storm systems, and more intense droughts. In addition to these climatic changes are other significant Earth system changes, such as the melting of glacial ice, the rising of sea levels, watershed flooding, the drying and erosion of soils, and a vast and largely uncertain array of associated ecological impacts. New extremes in the climatic and natural environment bring considerable threats to humanity, such as flooding of communities, accelerated degradation of critical infrastructure, reduced access to freshwater, reduced agricultural productivity, and the loss of many important ecosystem services that sustain humanity. Although the negative impacts

of climate change will vary significantly across different geographies, the overall extent of the impacts is generally global in scale.

Most climate scientists today support the theory of anthropogenic, or human-induced, climate change. Although Earth's climate systems are naturally in a continuous state of flux, there is a significant body of evidence indicating that human activities are altering the otherwise natural state or flux of Earth's climate system (*13*). Figure 1 below shows the historical global mean surface temperatures in the modern industrial era.

Figure 1: Historical global mean surface temperatures in the modern industrial era (13).

Although considerable variability exists in annual global mean temperatures, and despite various sub-cycles of increasing and decreasing trends, it is apparent that the annual global mean temperatures have been increasing since the beginning of the modern industrial era. The modern industrial era has been of period of intense industrial activity, powered largely by the combustion

of fossil fuels. The combustion of fossil fuels, and other industrial practices, affect the climate system primarily by altering the quantity of greenhouse gases (GHGs) in the atmosphere. GHGs are radiatively important trace gases (RITGs) that trap solar heat in the Earth's atmosphere. Figure 2 below illustrates the historical atmospheric concentration of GHGs from 0 to 2005 CE.

Figure 2: Atmospheric concentrations of GHGs from 0 to 2005 CE (13).

Figure 1 and Figure 2 provide a basic illustration of the correlation between the rise in atmospheric concentrations of GHGs and the rise in global mean surface temperatures (global warming). There are many diverse factors affecting global warming, and there are many impacts resulting from global warming. Nevertheless, atmospheric emissions and concentrations of anthropogenic GHGs have been identified by the climate science community as a critical factor affecting climate change.

The United Nations Framework Convention on Climate Change and the Kyoto Protocol define six major types of GHG emissions: carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) (14). Carbon dioxide constitutes the largest proportion of GHG emissions, yet the other five Kyoto Protocol GHGs have a higher global warming potential (GWP). The GWP measures the warming effect relative to CO₂ over a 100 year period. The weighted emissions of various types of GHGs may be expressed by multiplying the total mass of each emission type by the respective GWP. The result is the GHG emissions expressed in carbon dioxide equivalents (CO₂e).

Climate science has introduced to the world a new paradigm for interpreting, evaluating, and improving modern industrial activities. Increasingly, existing and planned activities are assessed in terms of their impact on the climate system. The process of reducing human impact on the climate system is referred to as "climate change mitigation". Mitigation primarily involves the reduction of GHG emissions and the preservation of carbon sinks, such as forests. Alternatively, the process of managing the negative impacts of the changing climate system on society is referred to as "climate change adaptation". Adaptation primarily involves making necessary infrastructure and development changes in response to more hostile environmental conditions. The mitigation/adaptation dichotomy provides a simplified categorization of society's responses to the challenges of climate change. It should be noted that this dichotomy obscures mitigation and adaptation synergies that may exist for particular development activities. For example, the development of advanced biofuel feedstocks aimed at mitigating GHG emissions from the transportation sector may (or *should*) be especially adaptable to a changing climate, thereby addressing both mitigation and adaptation concerns. Nevertheless, the mitigation/adaptation dichotomy is a well-established framework used in climate change

literature. In terms of this established dichotomy, this thesis is focused on activities pertaining to climate change mitigation.

There is a general understanding in the climate science community, as well as in many political circles, that major reductions in anthropogenic GHG emissions will be necessary to forestall devastating changes in the Earth's climate system. A comprehensive, legally binding international agreement has yet to emerge, yet many local, state, and even national governments are enacting climate change mitigation requirements. These requirements are typically structured on an overall mitigation goal of reducing annual GHG emissions 80 percent below 1990 levels by the year 2050 (commonly referred to as "80 in 50" reductions). Achievement of such goals invariably involves significant changes to existing behavior and technologies within and across multiple economic sectors. The transportation sector in particular presents unique challenges for achieving climate change mitigation goals.

1.2.2. Climate Change Mitigation and Transportation

The transportation sector is a major part of the climate change mitigation challenge. First and foremost, the transportation sector as a whole is a major source of GHG emissions, accounting for approximately 28% of all annual GHG emissions in the U.S. (*15*). Figure 3 below shows the 2007 U.S. GHG emissions (CO₂e) allocated to economic sectors.

Figure 3: 2007 U.S. GHG Emissions (CO₂e) Allocated to Economic Sectors. Based on (16).

Due in large part to its large proportion of GHG emissions in modern industrial economies, the transportation sector is being called upon to achieve major reductions in GHG emissions. A national climate change mitigation framework has yet to emerge from the federal legislative or executive branches, but it is reasonable to expect that major reductions on the order of "80 in 50" will be required from the U.S. transportation sector (*17*).

The majority of GHG emissions from the transportation sector are produced from the combustion of petroleum fuels. This fact helps to explain not only why the transportation sector is a major emitter of GHGs, but also why mitigating GHG emissions from the transportation sector is so challenging. The transportation sector, an enormous element and enabler of modern industrial economies, is almost completely dependent upon petroleum fuels as an energy source

- approximately 95 percent of transportation sector energy consumption in the U.S. is supplied by petroleum fuels (*18*).

The transportation sector's heavy consumption of petroleum fuels directly influences the types and proportions of GHG emissions. Figure 4 shows the 2007 U.S. transportation sector's direct GHG emissions.

Figure 4: 2007 U.S. transportation sector direct GHG emissions, CO₂e. Based on (16).

The proportions of GHG emissions shown in Figure 4 are expressed in terms of CO_2e ; thus the higher GWPs of non-CO₂ GHGs are accounted for in the percentages shown. Given that CO_2 is a primary product of complete combustion of hydrocarbons, Figure 4 underscores the role of the combustion of hydrocarbons, notably petroleum fuels, in the production of GHG emissions from the transportation sector.

Given that the transportation sector is a major source of GHG emissions, and that much of these emissions are produced from the combustion of petroleum fuels, it is clear that aggressive reductions in GHG emissions will necessitate substantial reductions in petroleum combustion. Yet the path toward realization of a low-carbon (or low petroleum) future is not entirely clear. No single technological development has yet emerged that can achieve "80 in 50" GHG emission reductions from the transportation sector. In fact, reductions in GHG emissions from the transportation sector are widely regarded as a multi-pronged effort. Figure 5 below shows the "4-legged stool" – a popular metaphor for the categories of GHG emission reduction strategies in the transportation sector.

Figure 5: The 4-legged stool of GHG reductions from transportation (19).

The "4-legged stool" is derived from the "3-legged stool", which consisted of the vehicle, fuel, and VMT legs. Figure 5 shows the introduction of vehicle/system operations as a category of GHG emission reductions (reducing emissions by reducing fuel wasted in congested or otherwise slow-moving traffic). The philosophy behind the original "3-legged stool" is that vehicles, fuels, and VMT represent the primary opportunities for reducing GHG emissions and that GHG emission reductions in only one or two area(s) (or legs) are insufficient for supporting major GHG emission reductions from transportation (analogous to the stability of a circular

platform supported by three equally-spaced, equally-long circumferential columns). The strength of the analogy is weakened by the reality that GHG emission reductions in each of the three main categories will likely be unequal in degree. For example, state departments of transportation (DOTs) in the U.S. expect (or favor) GHG emission reductions primarily from improved vehicle and fuel technologies (20). For each of the legs of "the stool," behavior change, not just technological change, is necessary for the successful implementation of GHG emission reduction strategies. Specifically, the use of improved vehicles and fuels will require both advanced technological development and a shift in consumer behavior; reductions in VMT and system inefficiency will require both behavior that is less consumption and technology that supports the selection of more efficient modes or means of accessing goods, services, and activities.

The feasibility of a panacea (or more informally, a "silver bullet") for major GHG emission reductions in the transportation sector is hindered not only by the limited degree of reductions possible within each of the legs of the stool, but also by the diversity of transportation modes. Different types of modes in the transportation sector are each comprised of unique types of vehicle, fuel, and infrastructure systems that are not amenable to a one-size-fits-all approach to transportation GHG emission reductions. A picture of this modal diversity is illustrated by Figure 6 below, which shows the proportion of U.S. transportation GHG emissions by various mode sources.

Figure 6: 2003 U.S. transportation GHG emissions, by source (21).

The emission sources included in Figure 6 encompass the full spectrum of transportation modes: on-road, rail, aviation, maritime, and pipeline. The above figure shows that on-road vehicles are the dominant source of GHG emissions from the transportation sector. This dominance in the proportion of GHG emissions is mostly explained by the large proportion of vehicle miles of travel (VMT) associated with on-road vehicles. Thus, there is little doubt that major reductions in GHG emissions from transportation must include a significant proportion of reductions from on-road vehicles. This is not to say that modes with lesser levels of VMT do not (or will not) play in important role in climate change mitigation. The public transportation sector, which includes several of the source types in Figure 6, provides unique and arguably essential opportunities for successful climate change mitigation.

1.2.3. Public Transportation's Role in Climate Change Mitigation

Public transportation plays a particularly unique role in mitigating climate change. Public transportation can help to mitigate climate change by reducing GHG emissions in one of two very different ways: 1) reducing the emissions produced by public transit agency (and supporting) operations and infrastructures; and 2) displacing the emissions produced by private automobile trips. Figure 7 below provides a visual representation of this typology, as advocated by the American Public Transportation Association (APTA).

Figure 7: Typology of GHG impacts of public transportation (9).

1.2.3.1. Emissions Displaced by Transit

Public transit agencies can play a role in climate change mitigation by displacing GHG emissions produced by private automobile trips. GHG emissions displacement is essentially the estimated quantity of private automobile GHG emissions avoided by the provision of public transportation services. Several studies have explored how public transportation may reduce energy consumption and GHG emissions by reducing private vehicle activity (*10, 22, 23*). Referring back to Figure 7, APTA estimates displaced GHG emissions under three main categories: 1) Mode shift to transit; 2) Congestion relief; and 3) Land use multiplier effect. Mode shift to transit accounts for the trips taken by transit that would have otherwise been taken by private automobile. Congestion relief accounts for the benefit that public transit may provide by reducing on-road congestion levels and the associated wasteful emissions produced by congested traffic conditions. The land use multiplier effect is a quantification of how public transit supports more efficient land use in terms of shorter and fewer private automobile trips.

Quantification of the emissions displaced by transit has become a major focus for public transportation advocates, but the quantification methods are still in their infancy and subject to considerable uncertainty. Due in part to the methodological challenges facing the quantification of GHG emissions displaced by public transit, this thesis focuses on the emissions produced by public transit.

1.2.3.2. Emissions Produced by Transit

The GHG emissions produced by transit arise from a considerably wide spectrum of activities supporting the provision of mobility services. The majority of agency GHG emissions are produced from the combustion of fuels for vehicle propulsion. These fuels include both on-

board liquid and gaseous fuels typically used to power buses, vans, commuter locomotives, ferry boats, and non-revenue vehicles, as well as electrical power generation fuels typically used for heavy rail and light rail vehicles. In addition to operating extensive fleets of various types of vehicles, public transit agencies also typically manage extensive infrastructures that support agency operations, such as stations, maintenance facilities, administrative offices, and so on. The operation of agency infrastructures involves the consumption of considerable amounts of energy for heating, ventilating, air conditioning, lighting, and other processes, which in most cases produce (directly or indirectly) GHG emissions. Altogether, the opportunities for transit agencies to reduce GHG emissions from their operations are quite numerous if the diverse array of transit agency activities is considered.

The array of opportunities for reducing GHG emissions produced by transit grows larger with consideration of the upstream and downstream GHG emissions associated with transit agency activities. In other words, a life cycle perspective on the vehicle, fuel, and infrastructure systems that support agency activities captures a broader set of opportunities for managing GHG emissions from public transportation. A life cycle perspective accounts for the cradle-to-grave supply chain activities related to a particular product or service. For example, the provision of mobility services by bus involves many upstream and downstream processes with GHG emission implications, including but not limited to: the extraction, refining, distribution, storage, and dispensing of the fuel; the material extraction, parts manufacture, assembly, and delivery of the vehicle; the maintenance of the vehicle; the disposal of the vehicle and vehicle parts; and even the construction and maintenance of the roadway. The life cycle perspective offers an integrative analysis of GHG emission reduction strategies, and life cycle analysis has become an established framework for evaluating GHG emission performance and reductions in transportation (24).
Understanding the potential for reducing GHG emissions produced by public transportation requires consideration of the potential efficiencies of public transportation. Public transit modes are capable of higher levels of vehicle occupancy than are most other competing surface modes. Higher vehicle occupancies enable more efficient energy use on a per passenger mile basis. Thus, when considering the productive output of public transit (passenger miles of mobility) public transit can provide improved GHG emissions performance. Figure 8 below shows a general comparison of estimated CO_2 emissions per passenger mile for transit and private automobiles.

Figure 8: Estimated CO₂ emissions per passenger mile for transit and private autos (23).

The above figure is based on average transit vehicle occupancies, and it should be emphasized that the actual GHG emissions performance of a given transit vehicle or operation is sensitive to ridership and vehicle occupancy.

In addition to the inherent vehicle capacity efficiencies of public transit modes, public transit agencies have helped to play a leading role in field testing alternative fuel vehicles

(AFVs). Since the 1970 Clean Air Act, U.S. transit agencies have served as test beds for emissions reducing vehicle technologies. Several of these technologies tested in public transit applications, such as diesel hybrid-electric and hydrogen fuel cell propulsion (*3*), show that public transit agencies can play a leading role in the development and application of technologies that help to mitigate climate change in the transportation sector. This role has recently been expanded by public transit energy efficiency and GHG reduction grants awarded through the American Recovery and Reinvestment Act (*5*).

CHAPTER 2

LITERATURE REVIEW

This chapter presents a literature review of previous reports, frameworks, guides, and calculation tools relevant to the development of a transit GHG emissions estimation and management tool. This literature review is organized into key categories of GHG emissions estimation and management literature: 1) the author's work on a transit GHG emissions management compendium; 2) environmental management systems; 3) life cycle analysis of GHG emissions; 4) studies of transit GHG emissions and costs; 5) and GHG emissions calculators.

2.1. Transit GHG Emissions Management Compendium

Considerable attention and support exists for reducing GHG emissions from public transportation, yet managing GHG emission reductions is nonetheless a challenge for public transit agencies. Public transit agency managers have many responsibilities and tasks, and incorporating GHG emissions management into agency activities inevitably brings new responsibility and complexity to agency management. The Federal Transit Administration (FTA) recognizes this fact and has thus contracted the development of a *Transit Greenhouse Gas Emissions Management Compendium* – an informational guidebook designed to assist transit agencies with managing their GHG emissions reduction strategies, case studies of successful GHG emission reduction practices, and information on emissions quantification methods (26).

2.1.1. Decision-Making Contexts for Managing Public Transit GHG Emissions

The Compendium's approach to GHG emissions management is structured on four main

decision making contexts:

- 1. Planning for System Expansions and Major Construction Projects;
- 2. Fleet Procurement Practices;
- 3. Fleet Operations and Maintenance Practices; and
- 4. Other Activities (including green building retrofit practices for support facilities and employee commuting programs)

Figure 9 below details the decision-making contexts for managing GHG emission reductions from public transit agencies.

Figure 9: Decision-making contexts for managing GHG emission reductions from public transit agencies (26).

2.1.1.1. Planning for System Expansions and Major Construction Projects

Transit agencies are responsible for the planning and construction of major capital projects. Example projects include fixed-guideway infrastructure expansion, park-and-ride lots, bus or rail terminals, maintenance garages, vehicle or fuel storage facilities, and administrative offices. Many capital project infrastructures involve considerable life cycle GHG emissions over multi-decadal service lives. Therefore, accounting for GHG emissions in the planning of system expansions and major construction projects can help an agency manage its GHG emissions over the long term. An example scenario is the evaluation of a light rail transit (LRT) expansion vs. an alternative bus rapid transit (LRT) expansion. Taking into account the unique infrastructures, fuels, vehicles, and planned operation of each of the mode technologies, these system expansion projects would most likely have different GHG emissions performance. GHG emissions reduction is certainly not an overriding consideration in the planning of major capital projects, but unique and significant opportunities for GHG emission reductions may be realized by targeting reduction opportunities during system planning.

2.1.1.2. <u>Fleet Procurement Practices</u>

In general, the combustion of fuels for the propulsion of transit vehicles constitutes the greatest source of GHG emissions from transit agencies. Improvements in the GHG emissions performance of transit vehicle fleets may be realized through the procurement of more carbon efficient vehicles and fuels. For example, many agencies have recognized the improved fuel efficiency of diesel hybrid-electric buses vs. conventional diesel buses, which equates to improved carbon efficiency. The fleet procurement process represents a critical opportunity for reducing much of the day-to-day energy consumption and GHG emissions of transit agencies.

23

2.1.1.3. <u>Fleet Operations and Maintenance Practices</u>

Agency fleet operations and maintenance practices affecting GHG emissions encompass a variety of activities, including but not limited to vehicle capacity/demand matching, route restructuring, "eco-driving", tire inflation programs, engine/drivetrain tuning, and vehicle idling reduction (through transit signal priority, passenger boarding/alighting efficiency improvements, auxiliary power systems for hotel loads, and vehicle operator shutdown policies). Operation and maintenance practices can help to improve GHG emission performance by either: 1) Maximizing the productive service output per unit of energy; or 2) Minimizing energy losses. Fleet operation and maintenance practices can offer opportunities to reduce GHG emissions without major financial investments in new vehicle or infrastructure systems.

2.1.1.4. <u>Other Activities</u>

The "Other Activities" in the decision-making context framework include some of the most promising strategies for reducing agency GHG emissions, most notably the retrofit of buildings in accordance with "green" or LEED® (Leadership in Energy and Environmental Design) building practices. In the U.S., buildings account for approximately 38 percent of direct domestic CO_2 emissions (27). Agencies that manage extensive built infrastructures may substantially reduce their carbon footprint through retrofits that improve building energy efficiency. The "Other" category also includes employee commute programs, such as flex scheduling, ridesharing, and transit pass subsidies that can help to reduce the carbon footprint of employee commuting.

2.2. Environmental Management Systems

Anthropogenic GHGs are essentially environmental pollutants, not in the sense that they are toxic, but in the sense that they engender changes in the climate that are harmful to human-Earth systems. The human-controlled and –induced processes that produce GHG emissions, such as the combustion of fossil fuels, are very often the same processes that produce toxic emissions, such as criteria air pollutants (CAPs). The close relationship between the production of GHG emissions and other regulated emissions suggests a common management framework. Frameworks addressing the management of emissions or pollutants from organizational activities are referred to in the literature and in industry as Environmental Management Systems (EMSs).

The International Organization for Standardization (ISO) offers a robust EMS framework for the management of environmental emissions from commercial or industrial organizations – the ISO 14000 management standard. ISO 14000 is a "management tool enabling an organization of any size or type to:

- Identify and control the environmental impact of its activities, products or services, and to
- Improve its environmental performance continually, and to
- Implement a systematic approach to setting environmental objectives and targets, to achieving these and to demonstrating that they have been achieved" (28).

APTA has incorporated the use of ISO 14000 EMS in its recently developed "Sustainability Commitment" for transit agencies (29). The APTA Sustainability Commitment is a framework available for transit agencies to define and track progress toward sustainability initiatives such as reducing water usage, CAPs, GHGs, energy use, and material waste (29).

25

The ISO 14000 management standard by itself does not provide specific guidance on managing GHG emissions, but it does provide "a framework for a holistic, strategic approach to the organization's environmental policy, plans and actions" (28). Specific guidance on how to estimate and report GHG emissions from an organization is provided by the ISO 14064 Greenhouse Gases series of standards – a GHG emissions inventory protocol similar to those covered in Section 2.5 "GHG Emissions Calculators."

2.3. Life Cycle Analysis of GHG Emissions

The environmental management of GHG emissions is meaningful for organizations like transit agencies; however, the GHG emissions implications of organizational activities oftentimes extend beyond the control boundary (financial or managerial) of a given organization. Expressed another way, transit agencies may do well to manage emission produced directly from their consumptive activities, but these activities likely result in upstream or downstream emissions in material and energy supply chains. Thus, the identification of an appropriate system boundary for agency GHG emission impacts is essential for emissions management. Since GHG emissions have a global-scale impact, management of only local emissions may neglect potentially relevant system effects.

A life cycle analysis perspective is becoming the viewpoint of choice among researchers interested in comprehensive quantifications of GHG emissions from products and services (*24, 30, 31*). The term "life cycle analysis", as it is used in this thesis, is inclusive of both life cycle inventory (LCI) and life cycle assessment (LCA). Life cycle inventory is the quantification of a metric of concern (e.g. GHG emissions) over a product or service lifetime. Life cycle assessment is the characterization of the impact(s) of the inventoried metric, and involves the incorporation

of value judgments in assessing the impact(s). The calculator developed in this thesis is focused on the LCI aspects of life cycle analysis.

Despite considerable popularity and technical complexity in the life cycle analysis of products and services, there exists no standard methodology for quantifying life cycle GHG emissions. However, the literature does include a schematic framework for developing a life cycle analysis for a product or service: ANSI/ISO 14040 Environmental management - Life Cycle Assessment – Principles and framework (32). This standard provides a methodological framework that directs users to define the goal and scope of their assessment. The scope includes the product system to be studied, the product system boundaries, and the functional unit (32). "A functional unit is a measure of the performance of the functional outputs of the product system. The primary purpose of a functional unit is to provide a reference to which the inputs and outputs are related" (32). For assessment of GHG emissions produced by transit APTA has established the following functional units (referred to as "performance metrics"): GHGs per vehicle mile, GHGs per revenue vehicle hour, and GHGs per passenger mile (9). With respect to analysis boundaries, APTA recommends that transit agencies focus their GHG emissions analysis within the organizational boundaries of the agency (9). This focus is consistent with GHG emissions reporting protocols, which are discussed in the section "GHG Emissions Calculators."

In the research literature, life cycle assessments follow one of three main calculation approaches (*33*):

- 1. Process-based life cycle assessment;
- 2. Economic Input Output life cycle assessment (EIO-LCA); or
- 3. Hybrid life cycle assessment.

27

A process-based LCA is a method of modeling each of the "smallest portion[s] of a product system for which data are collected" (33). For some product systems that contain a plethora of parts and components, (e.g. a transit bus), calculation data on the GHG emissions of each portion of the product system may not be available. In such a case, an EIO-LCA approach may be used. EIO-LCA uses economic input tables to link the money spent on a given product system with the industrial sectors that played a role in creating or delivering the product system. Average reported GHG emissions of the supporting sectors are used to allocate and aggregate the GHG emissions for the given product system. This approach offers a convenient alternative for products or services that lack adequate data for a process-based LCA; however, the use of industrial sector average emissions limits the utility of comparing materially different products classified under the same sector. For example, the manufacture of a diesel bus and a diesel electric hybrid bus would reasonably result in different levels of GHG emissions, since the hybrid bus has a much larger large mass of batteries (typically lead-acid or Li-ion). Yet, the EIO-LCA-estimated difference in GHG emissions between the manufacture of a hybrid bus and the manufacture of a conventional diesel bus is a function of only the difference in purchase cost, not the difference in material types or quantities.

Complex life cycle assessments, such as a GHG footprint of a transit agency, may have data available for process-based calculations for some but not all portions of the system. In such cases, a hybrid life cycle assessment approach may be used – an approach utilizing process-based life cycle assessments that are augmented by EIO-LCA calculations

2.4. Studies of Transit GHG Emissions and Costs

An example in the literature of a complex life cycle assessment using a hybrid LCA approach, and one of the most extensive studies of transportation life cycle emissions (but not costs), is the Environmental Life-cycle Assessment of Passenger Transportation by Chester and Horvath (24). This study used a hybrid approach for a cross-modal GHG emissions performance life cycle assessment, which included bus, heavy rail, and light rail transit modes. The analysis boundary of the study was quite large, encompassing vehicle operation, manufacturing, maintenance, and insurance, as well as the construction, operation and maintenance of right-ofway infrastructure. The study used national-level and agency-level data to calculate direct and indirect emissions and utilized many calculation assumptions regarding various GHG emission producing processes, from vehicle idling to the vacuum cleaning of vehicle interiors. The results indicate that the relative GHG emissions performance of public transit is dependent upon mode, fuel/energy supply chain, and ridership. The study contributes a holistic perspective and framework to the literature on estimating GHG emissions from passenger transportation, but the applicability of the study's findings for managing GHG emissions is limited. The study's assumptions and data are not representative of the diversity of operational contexts among all transit agencies, and thus the study's estimated GHGs per mile for transit modes are very likely not applicable to agencies with vehicle and fuel systems that differ from those included in the study. The calculation methodology/data for "operation" emissions (GHGs produced from the combustion of fuels for vehicle propulsion) does not follow APTA Recommended Practices (9) For example, the study's calculation of the electrical energy supply chain emissions associated with heavy and light rail transit propulsion does not account for emissions generated for nonuseful heat energy (electrical generation plant efficiencies are not accounted for).

Both emissions and costs are a concern for transit agency managers, and the Federal Transit Administration (FTA) has conducted a detailed study of the life cycle costs and emissions of public transit bus technologies (*34*). This report evaluates compressed natural gas (CNG), ultra low sulfur diesel (ULSD), biodiesel (B20), and diesel hybrid bus life cycle cost and emissions using 2007 national-level data (and predictions) on costs and efficiency. The costs considered include: "capital costs (bus procurement, infrastructure, and emissions equipment) and operation costs (fuel, propulsion-related system maintenance, facility maintenance, and battery replacement)" (*34*). Fuel-cycle GHG emissions are evaluated on both a well-to-tank and tank-to-wheels basis. The report indicates that for a 12-year life cycle, hybrid diesel buses produce the least GHG emissions, but are most expensive. The national-level analysis does not account for local variations in cost and efficiency, i.e. the results are specific to the contexts for the cost data sources. Thus, the inputs and results may not be applicable to the unique operational context of a given agency seeking to identify the most cost-effective bus (or non-bus) alternative.

More recently, the Transit Cooperative Research Program (TCRP) of the Transportation Research Board (TRB) has provided an assessment of hybrid-electric transit bus technology (*35*), one of the more popular bus technologies for reducing fuel costs and emissions. This report evaluates CNG, diesel, diesel hybrid, and gasoline hybrid life cycle costs, using national-level data and agency case study data, and provides estimated defaults for both historical and projected costs. With federal funding and low-speed duty cycles, hybrid buses are found to have the lowest life-cycle cost to the agency. The report provides a robust LCCA calculation methodology for transit buses and a spreadsheet-based calculation tool is provided in the appendix. The calculation tool includes many cost, activity, and efficiency inputs and allows users to modify the default inputs. The model provides only an LCCA, and thus emissions performance is neglected.

Table 1 below provides a summary of the main studies of transit GHG emissions and costs. Overall, these findings in the literature indicate that generalized studies of the GHG emissions performance of various modes of public transit provide limited utility for the management of specific public transit agency activities.

Study	Purpose / Methods	Findings / Synthesis		
FTA 2006 (<i>36</i>)	Compiles quantitative and qualitative data on costs, emissions, and implementation barriers of AFVs for transit.	Recognizes importance of lifecycle analysis of costs (LCCA) and total fuel cycle emissions (WTW), but no such analysis is provided.		
U.S. DOT 2005 (<i>37</i>)	Assesses GHG emissions benefits of heavy duty NG vehicles in the U.S. using test data from WVU	Emissions benefits vary depending upon vehicle wt., model year, and drive cycle. Data support only highly aggregated emission factors. Universal conclusions on relative benefits of NG vs. diesel are limited.		
FTA 2007 (<i>34</i>)	Evaluates CNG, ULSD, B20, and diesel hybrid bus life cycle cost and emissions using 2007 national-level data (and predictions) on costs and efficiency.	For a 12-year life cycle, hybrid diesel buses produce the least GHG emissions, but are most expensive. The national-level analysis does not account for local variations in cost and efficiency.		
Hodges 2009 (23), Chester & Horvath 2008 (24)	Evaluates GHG emissions performance of transit relative to other commuter modes. Uses national and agency-level data.	Relative GHG emissions performance is dependent upon mode, fuel/energy supply chain, and ridership. Cost of alternatives not assessed.		

Table 1: Studies of Transit GHG Emissions and Costs

2.5. GHG Emissions Calculators

The literature contains a variety of publicly available GHG emissions calculators that may be utilized for the estimation of transit agency emissions. The literature search presented here recognizes a "calculator" as a calculation guidance report, spreadsheet, online application, or downloadable software tool. The guidance reports typically provide instructions on how to perform GHG emission calculations for various combinations of input data. These instructions normally include guidance on the preferred hierarchy of calculation methods; calculation formulae; default emissions factors by vehicle and fuel technology; and example calculations. Spreadsheet resources, such as the U.S. EPA's Simplified GHG Emissions Calculators (*38*), generally enable calculations through built-in formulae and default or user-entered emission factors. Online calculators, for example The Climate Registry Information System (*39*), provide similar functionality through an internet web browser, while downloadable software programs typically provide a calculation capability based on a significantly larger number of user inputs, selections, or reference data sets.

Publicly available GHG emissions calculators fall under two main categories, each one reflecting different emerging needs of transit agencies for GHG reporting:

- 1. Registry/inventory based calculators, most suitable for standardized voluntary reporting, carbon trading, and regulatory compliance.
- 2. Life cycle analysis (LCA) calculators, most suitable for holistic comparisons of the advantages of one transit mode, vehicle type, or fuel type over another.

Inventory calculators are designed for a broad user-base of corporations and municipalities and support the quantification of total agency end-use GHG emissions, which may be reported to a voluntary data registry (U.S. EPA's Climate Leaders program) or a registry for carbon credit trading (such as the Chicago Climate Exchange). The inventory calculators that are based on a reporting protocol are designed to be consistent in their approach to GHG emissions estimation (*6*, *38*, *40*, *41*, *42*).

The inventory calculators that are based on a reporting protocol follow what has become a standard "three-scope" division of emissions:

- 1. Scope 1: Direct emissions controlled by the agency;
- 2. Scope 2: Indirect combustion emissions that occur outside of the agency (primarily the emissions produced from the generation of purchased electricity);
- Scope 3: Indirect "optional" emissions produced upstream or downstream of an organization's activities or control.

With respect to revenue transit vehicle emissions, vehicle fuel combustion and refrigerant leaks fall under Scope 1, purchased electrical energy falls under Scope 2, and upstream and downstream vehicle and fuel life cycle emissions fall under Scope 3. The assumption of Scope 3 is that these emissions would be accounted for as Scope 1 emissions by the organizations or entities that directly control them. An illustration of how these three scopes relate to life cycle GHG emissions of transit agency vehicle fleet operations is provided by Figure 24 in Appendix A.

The standard approach for calculating public transit agency GHG emissions is defined by the Recommended Practice published by the American Public Transportation Association (9). This industry standard follows inventory protocols (6, 40, 41) for defining the recommended calculation and reporting methods for public transit agencies. The inventory protocols provide a comprehensive accounting framework for estimating GHG emissions from both mobile and stationary sources, however very little technical guidance is provided for estimating upstream fuel-cycle, vehicle-cycle, or infrastructure-cycle emissions (Scope 3). The APTA standard defines the preferred data and required performance metrics (functional units) for transit GHG emissions estimation and comparison. The specified performance metrics include emissions per vehicle mile, emissions per revenue vehicle hour, and emissions per passenger mile. According to the executive summary of the APTA recommended practices, APTA is currently developing an online or spreadsheet-based calculation tool, but there is no indication that the tool will account for costs or total life cycle GHG emissions.

Table 2 below shows a summary of the main GHG emissions estimation frameworks and protocols applicable to public transit agencies.

Framework	Purpose / Methods	Findings / Synthesis
ANSI 1997 (<i>32</i>)	Outlines a methodological framework for performing life cycle assessment studies.	The definition of the goal and scope of an LCA is an iterative process. Key elements include the adoption of a functional unit, system boundaries, and the requirements and limitations of data.
TCR 2009 (39), WRI 2009 (40), CCAR 2009 (41), ICLEI 2009 (42), ISO 2006 (43)	Defines standardized methodologies for calculating organization/corporate-level GHG emission inventories.	A comprehensive framework of calculation methods, default data quality tiers and sources, and accounted categories are defined. Although life cycle upstream emissions are acknowledged, guidance is lacking.
APTA 2009 (9)	Follows inventory protocols for defining the recommended calculation and reporting methods for public transit agencies	Preferred data and required performance metrics (functional units) for transit are defined.

Table 2: GHG Emissions Estimation Frameworks and Protocols

For a more detailed listing of inventory GHG emission estimation protocols and calculators, see Table 21 in the appendix. Table 21 outlines the format and outputs of the inventory calculators. For a similar outline of life cycle GHG emission estimation calculators, see Table 22 in the appendix.

For the most part, the calculation methodology and formulae of the inventory protocols adequately account for direct combustion emissions, but supplemental calculations are necessary to estimate GHG emissions in supply chains. For example, although inventory calculators account for plant efficiency losses in the production of purchased electricity, considerable upstream GHG emissions are neglected. For purchased electricity emissions, inventory calculators utilize data from the U.S. EPA's eGRID database of electrical power generation emission factors (44). The eGRID emission factors include neither upstream fuel extraction, refining, and transportation-related GHG emissions, nor GHG emissions associated with electrical energy transmission and distribution (T&D) losses. GHG emission registry protocols stipulate that that energy transmission and distribution losses are to be reported only if the reporting organization controls the transmission and distribution network (6, 40, 42). Electrical T&D networks experience line losses on the order of 10 percent of plant generated power (45) and the effect is a net increase in GHG emissions per MWh of electrical energy delivered to the agency. Transit agencies have little control over T&D losses on power grids. However, the emissions associated with such losses must be understood in order to evaluate properly mode and vehicle technology alternatives during the planning of fixed guideway services or to evaluate the development of onsite power generation alternatives.

Life cycle analysis calculators account for a larger array of upstream and downstream processes and emission, and are thus considerably more complex in their calculation methodology. The pre-eminent, publicly available resources for calculating life cycle GHG emissions from U.S. on-road transportation modes are the GREET models from the Argonne National Laboratory of the U.S. Department of Energy (46, 47, 48) and GHGenius from Natural Resources Canada (49). These process-based, spreadsheet calculators enable estimation of fuel-cycle and vehicle cycle energy consumption and GHG emissions for primarily passenger cars and light duty vehicles. The models utilize national and regional data for default emission factors and consider GHG emission credits of displaced emissions. The GREET model inputs, outputs, (and fuel-cycle model user interface) provide limited functionality for emissions estimation from public transportation modes. Uniquely, the GHGenius model includes heavy duty vehicles and buses, and it provides \$/tonne cost-effectiveness of GHG reductions of fuel/energy alternatives.

The cost-effectiveness of GHG reductions are calculated by dividing the capitalized additional cost per vehicle km by the GHG reductions per vehicle km. For buses, the additional costs and emissions reductions are relative to a petrol diesel baseline. The cost-effectiveness is calculated separately for the "upstream fuel cycle," the "vehicle use," and the "vehicle material/assembly/transport." Costs are categorized as vehicle purchase cost, operation & maintenance costs, fuel costs, and other/additional costs. The GHGenius model is licensed for limited personal use, and it is derived from the larger Lifecycle Emissions Model (LEM) developed by Mark Delucchi (*50*). The LEM model includes a broader range of transit modes and GHG emission processes, but the model is not publicly available.

A spreadsheet-based calculation tool for estimating both the life cycle costs and emissions of various types of transit bus propulsion technologies has recently been developed at the Chicago Transit Authority (CTA), but it is not publicly available (*51*). The costs considered in the tool include vehicle purchase costs, refueling station costs, depot modification costs, emissions equipment cost, driver cost, vehicle maintenance cost, facility maintenance cost, and fuel cost. The cost framework does not account for subsidies, and similar to FTA and TCRP research, it does not account for any equipment salvage value (*34, 35, 51*). Costs are reported on a per passenger mile basis and total fuel-cycle GHG emissions (WTW, WTT, and TTW) are reported, but it is unknown what emission calculation methodology is used.

Table 3 shows a sample summary of main calculation tools for GHG emissions/cost estimation that are applicable to public transit agencies.

Tool	Methods	Findings / Synthesis		
Climate Leaders 2009 (<i>38</i>)	Process-based, spreadsheet calculation of direct GHG emissions, with separate accounting for biogenic emissions	Direct emissions estimation capability for both road and non- road transit modes, however life cycle emissions and transit performance metrics are neglected.		
GREET V1.0 Fleet 2009 (48), GREET V1.8c Fuel- Cycle (46), GREET V2.7 Vehicle Cycle (47)	Process-based, spreadsheet calculation of fuel-cycle and vehicle cycle energy consumption and GHG emissions per vehicle mile. Utilizes national and regional data for default emission factors. Considers GHG emission credits of displaced emissions.	User interface, inputs, and outputs provide limited functionality for emissions estimation from public transportation modes.		
GHGenius 2009 (49), LEM (50)	Similar to GREET. GHGenius is based primarily on data from/for Canada. LEM includes a broader range of GHG emission processes and transit modes.	Similar to GREET, yet provides \$/tonne cost-effectiveness of GHG reductions of fuel/energy alternatives.		
Green Design Institute 2009 (52)	Economic Input Output-based calculation of average industrial sector GHG emissions associated with product values.	Provides results for vehicle-cycle emissions of any transit vehicle type, although data resolution is limited to industrial sector averages.		
Clark et. al 2009 (<i>35</i>)	Evaluates CNG, diesel, diesel hybrid, and gasoline hybrid life cycle costs, using national-level data and agency case study data.	With federal funding and low-speed duty cycles, hybrid buses are most cost-effective. Provides a LCCA calculation methodology, but emissions performance is neglected.		

Table 3: Example Calculation Tools for GHG Emissions and/or Cost Estimation

Many other calculation tools, in addition to those presented in Table 3: Example Calculation Tools for GHG Emissions and/or Cost Estimation, are available for estimating GHG emissions. As part of this research, the author has conducted an extensive review of calculators for estimating GHG emissions from public transit vehicle fleet operations. Table 23 and Table 24 in the appendix provide a detailed listing of the vehicle types and fuel types covered by available GHG emissions calculators. Although a large number of vehicle and fuel types are included in these calculators, most calculators are not designed specifically for quantifying emissions from transit modes.

2.6. Synthesis of Existing Calculation Capabilities and Needs

Many calculation data sources, frameworks, and tools exist. However, no one resource provides integrative life cycle GHG emissions estimation capability that is appropriate to the context of transit agency emissions management. A number of tools are available to transit agencies for either developing a carbon emissions inventory that is consistent with the accounting standards of several carbon emissions registries, or for analyzing relevant vehicle and fuel life cycle GHG emissions. Quantifying GHG emissions that occur upstream or outside of the operations controlled by the agency is generally much more complex, and much more data intensive, than doing the same for direct emissions based only upon in-service vehicle energy consumption. To estimate upstream/downstream emissions transit agencies would need to obtain additional data on fleet vehicle technologies/components and fuel/energy feedstocks, or use national and regional defaults, which may not be representative of a particular agency's operation. Nevertheless, estimating GHG emissions from external processes like electrical power generation is vital for characterizing the emissions implications of transit agency decisions. The emissions produced by these external processes are often referred to as "indirect" emissions, but it should be understood that these emissions are in fact the direct result of transit agency activities - the boundaries of responsibility should not be confused with the boundaries of consequence.

Though many existing calculators may be drawn upon to develop vehicle and fuel GHG emissions, a fully specified transit LCA calculator that can be adapted easily to handle the wide range of transit vehicles and modes does not currently exist. An improved calculator should model and compile manufacturing, maintenance, and disposal emissions for each of the types of vehicles reported to the National Transit Database (NTD). Existing LCA calculators have made some progress, but much more capability is needed, especially for maintenance emissions and for the life cycle of non-road vehicles. A similar compilation or simplification of upstream fuel/energy feedstock data would help to distill existing process-based upstream fuel emissions calculators down to a level of complexity that is more compatible with the level of detail of fuel/energy feedstock data available to fuel procurement personnel. Compilation of life cycle emissions would reduce the data gathering burden on transit fleet managers and would develop consistency in vehicle LCA GHG emissions estimates.

Existing calculators are generally consistent in their approach to estimating emissions from purchased electricity, but the accuracy of the calculators would be much improved if they accounted for T&D losses and accounted for temporal variations in peak and off-peak emission rates. Improvements in the geographic and temporal accuracy of electrical power emissions calculations would benefit the GHG emissions estimation efforts of many organizations beyond the public transportation sector. Unfortunately, such improvements are currently limited by the aggregation of reported power generation emissions data.

One of the important considerations to transit officials is the cost of achieving GHG emissions reductions, which are often measured by cost effectiveness in units of 's/tonne of CO₂e reduced. Only one of the calculators identified in this review contained an analysis or estimation of emission reduction cost effectiveness (49). To be more useful to agency decision

makers, an improved calculator should support such considerations of cost effectiveness by either estimating cost or allowing users to input estimates of the component costs of alternative fleet management decisions.

The calculator framework developed and presented in this thesis is not (and cannot be) comprehensive for all decision alternatives and aspects. A robust management framework must account for considerations beyond the management of costs associated with GHG emission reductions, such as the realization of other system benefits that meet organizational objectives. The life cycle cost LCCA method, the method used in the recent TCRP evaluation report for hybrid buses (*35*), does not account for benefits, such as the benefits of GHG emissions reductions or the benefits of quieter bus operation. A cost-effectiveness metric merely allows agencies to identify strategies that present the lowest incremental cost for an incremental decrease in GHG emissions.

Incremental analysis requires the determination of meaningful baselines, and meaningful comparison requires normalization of emissions by a performance metric. Appropriate baselines will vary substantially between various transit agency activities. For example, in the case of cross-modal GHG emissions reduction comparison, a single occupant private automobile emission rate may serve as a meaningful baseline. For comparison of alternative bus vehicle-fuel systems, a 40 ft diesel bus emission rate may serve as a meaningful baseline. For comparison of alternative bus vehicle-fuel systems, a 40 ft diesel bus emission rate may serve as a meaningful baseline. In each of these vehicle comparison contexts, the appropriate normalizing performance metric is pax-miles or vehicle miles. Normalization by pax-miles provides the most direct characterization of the emissions and cost efficiency of a given vehicle-based strategy; however, this metric makes strategy performance dependent upon ridership, which may vary between strategies that offer equivalent capacities and quality of service. In other words, strategy comparisons normalized by

pax-miles are sensitive to confounding factors that cause disparate levels of ridership between the alternatives being considered. Furthermore ridership data for specific vehicles or specific vehicle types may be limited do to agency data collection or accounting methods. Alternatively, normalization by vehicle miles eliminates the confounding effect of disparities in ridership, but a vehicle-miles metric may unfairly bias evaluations in the favor of smaller lighter vehicles that provide inadequate capacity to serve ridership demand. Thus, comparisons based on vehiclemiles must represent fair comparisons of supplied capacity. For example, a comparison of 40 ft buses to 60 ft. buses should account for the higher frequency of 40 ft bus trips needed to supply the capacity of (or the demand served by) 60 ft buses.

In the context of facility-based strategies, a different performance metric and baseline is required. The architecture/engineering industry typically normalizes energy and emissions performance by facility square footage (53). This normalizing metric may be applied to the many fixed infrastructures that transit agencies manage: bus garages, bus maintenance facilities, railcar maintenance facilities, stations, terminals, park and ride lots and garages, administrative office buildings, etc. A per SF normalizing metric allows comparison of costs and emissions/energy across different facility types and sizes, but is does not account for the unique service benefits garnered by investments in different facility types. For example, a facility efficiency investment for a transit station may uniquely result in a positive gain in passenger satisfaction or ridership. Nevertheless, in consideration of the fact that facilities can constitute a considerable proportion of agency GHG emissions (and considerable potential for GHG emission reductions), effective management of agency GHG emissions requires an integrative GHG emissions reduction evaluation framework that accounts for per SF facility investment costs and savings.

Fair comparison of the cost-effectiveness of vehicle-based and facility-based emission reduction strategies is possible once a \$/tonne cost-effectiveness for vehicle-based and facility-based strategies and their respective baselines has been established. This research aims to develop a calculation tool that allows users to enter several unique cost and activity profiles/inventories and to select their preferred baselines for vehicle-based and facility-based emission reduction strategies.

The existing literature does not offer an integrative framework or tool for managing costeffective GHG emissions reductions from public transit; however, the literature does provide a point of departure for defining the relevant calculation capabilities needed.

CHAPTER 3

CALCULATOR DESIGN AND SYNTHESIS

3.1. Purpose and Capabilities

The general purpose of the calculator developed in this thesis is to enable quantification and management of GHG emissions from public transit activities. Toward this end, the developed calculator provides several distinct capabilities for the user:

- I. Estimation and inventory of agency GHG emissions (carbon footprint) that is consistent with standard GHG inventory protocols;
 - Use of input data tiers and output scopes;
- II. Estimation of upstream supply-chain GHG emissions;
- III. Estimation of the cost-effectiveness of agency GHG emission reduction strategies (relative to baseline activities);
 - Accounting of costs associated with different types of vehicles and facilities.

The calculator incorporates the methodologies and data of several calculation resources identified in the literature review and thus provides an integrative calculation resource for transit agency managers. This chapter details the architecture of, and the methodologies and data used by, the developed calculator.

3.2. Calculator Architecture

The architecture of the calculator is a product of both established GHG accounting frameworks and the software platform. With respect to GHG accounting frameworks, the calculator is partitioned between the main types of GHG emission sources:

- Mobile sources;
- Stationary sources;
 - Onsite combustion;
 - Purchased electricity;

The mobile source / stationary source distinction is founded in part on the methodological differences in calculating GHG emissions from these two main types of GHG emission sources. This distinction roughly corresponds with the organizational separation between facilities management and fleet management within public transit agencies, with one notable exception – electrically powered fleets produce propulsion-related GHG emissions at stationary sources. Vehicle fleet emissions are thus associated with both mobile and stationary sources. For vehicle fleet emissions, the calculator is divided into different mode types, each of which require a slightly or substantially different calculation methodology for estimating GHG emissions. The modes currently built into calculator include:

- Bus and paratransit;
- Light rail (LR) and heavy rail (HR) transit;
- Non-revenue vehicles

Measured in terms of passenger miles of travel (PMT), bus, paratransit, LR, and HR represent over three-quarters of all public transit activity in the U.S. (23). Due to research time constraints, commuter rail was not included in the developed calculator – however, commuter rail GHG emissions estimation will be included in a post-thesis version of the calculator.

The calculator organizes GHG emissions into the accounting scopes (1, 2, and 3) utilized by GHG emission inventory protocols. These scopes identify the relationship between a particular GHG emission producing activity and the organizational control boundary of the agency. Table 4 below indicates the inventory scopes for each type of modal or facility activity accounted for in the calculator.

GHG Emission	Modal or Facility Activity
Inventory Scope	
Scope 1	Mobile combustion (direct): Bus, paratransit, non-revenue vehicles,
	commuter rail etc.;
	Stationary combustion (direct): Facility boilers and heaters;
	Fugitive leaks (direct): Refrigerants from air conditioning equipment,
	methane from refueling facilities (leaks to be included in a later version of
	the calculator);
Scope 2	Purchased electricity: HR and LR transit, as well as facility energy
	consumption
Scope 3	Upstream life cycle processes: material/energy extraction, refining,
	manufacturing, transportation, distribution, and storage.

 Table 4: GHG Emission Inventory Scopes and Associated Modal and Facility Activity

The calculator is built upon a spreadsheet platform and consists of several calculation and data worksheets. Each modal or facility element of an agency inventory (bus, paratransit, facility electricity, etc.) is calculated on a separate worksheet within the calculator. Figure 10 illustrates the organization and scopes of the GHG emissions inventory worksheets.

Figure 10: Organization and scopes of GHG emissions inventory worksheets.

The horizontal bands in Figure 10 indicate what type/scope of GHG emissions are calculated by the underlying worksheets. The division of inventory elements into separate worksheets accommodates a useful disaggregation of inventory record types and facilitates consistency in the columns (input, calculation, and output) in each of the worksheets. Figure 11 shows the general functional layout of an inventory worksheet.

Figure 11: General functional layout of an inventory worksheet

The inventory worksheets contain rows of inventory records and columns of various input, calculation, and output data. In general, the worksheets contain most of the user input cells on the left-hand side and most of the calculation output cells on the right-hand side. Occupying many of the in-between columns are various, essential intermediate calculations. These intermediate calculations include estimations of activity (e.g. estimation of VMT from fuel consumption and fuel efficiency inputs) and queries of default emission factor data. Default emission factor data stored on other worksheets within the spreadsheet calculator are linked to the inventory calculations in response to selected user inputs. Similarly, "cost profile data" (entered by the user and explained later in this chapter) are linked to the inventory calculations and user inputs to generate cost-effectiveness outputs. The GHG emission outputs from each of the inventory worksheets are compiled on a single output worksheet containing summary tables and graphs of the GHG emissions inventory.

Appendix B contains figures of the inventory worksheets for transit buses, and shows the calculation formulae contained within the cells. Cells with a dashed or single solid outline are

user inputs, hatched cells are unused inputs or outputs, as determined by initial user inputs, grey cells are intermediate outputs, and cells with a double outline are main outputs. The figures in Appendix B show the details of the calculation formulae, but some important features and functions of the inventory worksheets are not self-evident in the figures. The inventory worksheets utilize data validation for many of the user inputs, such as "fuel type" in column D, whereby the user may select the input from a drop-down list (see fuel type options listed at the bottom of column D in Figure 25). Parts of the inventory worksheets provide data validations lists that are conditional on other user inputs (see columns W, X, Y and Z in Figure 27). Also, the inventory worksheets employ conditional formatting (cell hatching) to reveal to the user which cells require input and which cells provide an optional output based on user selections. For example, if the user selects data tier A1 for a bus CO₂ emission factor (see column F in Figure 25), then the hatching on user input cells for fuel heat content and carbon content are removed (see columns AA, AB, AF, and AG in Figure 28). Default calculation data such as fuel and vehicle emission factors are stored in named ranges on other worksheets and are referenced in the formulae of the inventory worksheets. Most, but not all of the calculation input cells are located at the far left of the worksheets. The optional Scope 3 fuel-cycle and vehicle-cycle inputs are located (for convenience) near the outputs toward the right-hand side of the worksheets. Each row in an inventory worksheet may be used to record the activity and calculate the emissions associated with a particular vehicle-based or facility-based GHG emissions inventory, reduction strategy, or baseline.

3.3. Calculation Methodologies

The calculator incorporates a variety of calculation methodologies to estimate GHG emissions from direct and life cycle GHG emissions from the various categories of transit agency activities. Direct GHG emissions are estimated in accordance with APTA recommended practices (9) and upstream GHG missions are estimated through incorporation of the pre-eminent life cycle calculation methods and assumptions of the U.S. DOE's GREET fuel-cycle model (46) and the Green Design Institute's EIO-LCA model (52). The incorporated life cycle analysis calculations provide an increased level of sophistication and robustness to transit agency GHG emissions estimation, but interpretation of the meaning of these life cycle calculations requires a clear understanding of the methods and assumptions used.

3.3.1. Life Cycle Analysis Approach

The calculator presented in this thesis utilizes a life cycle analysis approach that attempts to capture all of the relevant and quantifiable GHG emission activities. These activities include various upstream and downstream processes in the supply chain. Figure 24 in the appendix provides a simplified diagram of life cycle GHG emissions producing activities related to transit agency vehicle fleet operations. Figure 24 depicts the many elements and processes comprising life cycle GHG emissions, and it highlights the limited focus of standard protocol GHG emission inventory calculators. The calculator presented in this thesis goes well beyond this limited focus for both transit fleet and facility GHG emissions. However, due to limitations in available research time and data, the boundary and scope of the developed calculator does not include every (all) life cycle GHG emission process(es).

3.3.1.1. Boundary and Scope

Identification of the boundary and scope is an essential step in conducting a life cycle assessment, in that it defines the processes included in the life cycle inventory (*31, 32*). The calculator is designed to estimate the six major types of GHG emissions defined by the Kyoto Protocol: carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆) (*14*). The majority of GHG emissions from transit agencies arises from fossil fuel combustion and thus is comprised mainly of CO₂, CH₄, and N₂O. For this reason, only these three types of GHGs are explicitly inventoried and totaled.

The LCA process boundary of the developed calculator is designed to capture GHG emissions directly or indirectly controlled by agency activities. Figure 12 below shows the processes included within the life cycle analysis boundary of the developed calculator.

Figure 12: Processes included within the life cycle analysis boundary of the developed calculator.

The dashed line in Figure 12 encloses the activities that are directly controlled by the agency – the direct emissions arising from these activities are all counted as Scope 1 emissions. Estimation of fugitive leaks from refrigerants has not yet been included in the calculator, but will be added later. The calculation method for fugitive refrigerant leaks is rather straightforward, and in many (if not most) cases refrigerant leaks will comprise less than 5% of agency GHG emissions, in which case "simplified methods" may be used for estimation (9). Due to the relatively low level of fugitive leaks and more importantly the limited availability of refrigerant inventory data for applying the calculator (see Chapter 4), Scope 1 fugitive leaks have not yet been included in the calculator (although fugitive leaks are included in the Scope 3 fuel-cycle and vehicle-cycle calculations).

The availability of data plays a key role in the calculation methods used for estimating life cycle GHG emissions. For most of the direct and indirect activities, data is available to support a process-based estimation of GHG emissions. However, for the manufacturing and maintenance activities associated with the vehicle life cycle, process-level data was unavailable. This data is particularly scarce for heavy duty on-road and rail vehicles – the types of vehicles typically used by public transit agencies. These data limitations resulted in the use of a hybrid LCA approach – an approach consisting of both process-based and EIO-LCA-based calculations. EIO-LCA-based calculations were applied exclusively to vehicle-cycle manufacturing and maintenance activities.

It should be noted from Figure 12 that GHG emissions from the construction and maintenance of fixed infrastructures such as rights-of-way, stations, and other support facilities are not included in the LCA. This omission is due to a paucity of data (both emission factor data and infrastructure material inventory data) for estimating GHG emissions from capital projects.

Some basic default GHG emission factor data is available for building materials (9, 24) and for construction sectors (52), but it is very unlikely that this data is representative of the diversity of construction methods used in transit agency infrastructures. The limited availability of material inventory data (or material "take-off" data, as it is commonly referred to in the architecture/engineering industries) would have forestalled the application of an "infrastructurecycle" calculation module within the developed calculator. These data limitation issues are not unique to the development of this transit GHG emissions calculator. The LCA and GHG emissions estimation literature does not effectively account for the emissions associated with fixed-infrastructures. For example, several calculation resources are available to estimate upstream GHG emissions in the fuel or energy supply chain (46, 49, 50), but these resources do not estimate the GHG emissions associated with the construction and maintenance of the supply chain infrastructure (e.g. refineries, pipelines, power plants, transmission lines, etc.). This is not to say that the literature, or the calculator developed by this research, is deficient in its GHG emissions estimation methods. Rather, the LCA boundary of this and other calculators is simply constrained by available data, and what is perhaps more important than attempting to account for all GHG emission impacts is to delineate the scope and boundary of the accounting.

3.3.1.2. <u>Functional Units</u>

Meaningful life cycle analysis of GHG emissions from activities requires consideration of the productive output of those activities. In the LCA literature, the productive outputs are related to emission inventories through the use of "functional units" (*32*). This calculator employs APTA's recommended functional units, or "performance metrics," outlined in Table 5 below.

53

Mode	Emissions (E)	Vehicle miles (VM)		Revenue Vehicle Hours (RH)		Passenger miles (PM)	
		Total	E/VM	Total	E/RH	Total	E/PM
Bus	Е _b	VM _b	E _b /VM _b	RHb	E _b /RH _b	PM _b	E _b /PM _b
Light rail	E _{LR}	VM _{LR}	E _{LR} /VM _{LR}	RH _{LR}	E _{LR} /RH _{LR}	PM _{LR}	E _{LR} /PM _{LR}
[repeat for other NT	D modes]						
Nonrevenue	E _{NR}						
Stationary sources	Estationary						
Total ¹	Etot	VM _{tot}	Etot/VMtot	RH _{tot}	Etot/RHtot	PM _{tot}	Etot/Ptot

 Table 5: APTA Required Performance Metrics (9)

1. Including emissions from stationary sources.

The required performance metrics listed in Table 5 include emissions per vehicle mile (E/VM), emissions per revenue vehicle hour (E/RH), and emissions per passenger mile (E/PM). An emissions per passenger mile performance metric allows comparison of the GHG emissions performance not only between different public transit modes, but also between public transit and non-public transit modes. Although APTA does not endorse the use of any performance metrics for stationary sources, the calculator presented in this thesis employs an emissions per square foot (E/SF) performance metric. As mentioned previously in Chapter 3, this performance metric is necessary for calculating the cost-effectiveness of facility-based GHG emission reduction strategies.

The GHG emission calculations described in this chapter estimate a particular GHG (CO₂, CH₄, or N₂O). For each vehicle and facility inventory, the calculator aggregates these emissions into carbon dioxide equivalents (CO₂e) based on the global warming potentials (GWPs) published in the IPCC's 2007 4th Assessment Report: 1 for CO₂, 25 for CH₄, and 298 for N₂O.
3.3.2. Mobile Source Emissions

One of the major categories of GHG emissions from public transit agency activities is mobile source emissions. The calculation methodology for mobile source GHG emissions is generally divided between direct combustion emissions, fuel-cycle emissions, and vehicle-cycle emissions. The following sub-sections describe the calculation methodologies used to estimate mobile source GHG emissions.

3.3.2.1. Direct Combustion Emissions

The calculations for direct (Scope 1) GHG emissions from mobile source combustion of liquid or gaseous fuel are based on the methodologies prescribed by the GHG emission inventory protocol standards. The specific calculations for direct GHG emissions depend upon the available data inputs, which are structured on the data quality tiers of the GHG emissions registry protocols. The data quality tiers effectively sort preferable types of data inputs and help to categorize the tradeoff between data quality tiers for CO_2 emissions and CH_4/N_2O emissions respectively.

Tier	Activity Data	Emission Factor Data
A1	Actual fuel use (user input)	Actual carbon content of fuel (user input) and
		either actual heat content of fuel (user input)
		or actual density of fuel (user input)
A2	Actual fuel use (user input)	Actual carbon content of fuel (user input) and
		default heat content of fuel (TCR value); or
		Default carbon content of fuel (TCR value)
		and actual heat content of fuel (user input)
В	Actual fuel use (user input)	Default emission factor of fuel (TCR value)
С	Fuel use estimated from vehicle miles	Default emission factor of fuel (TCR value)
	traveled (user input) and vehicle fuel	
	economy (user input)	

Table 6: Data Quality Tiers for Mobile Source CO₂ Emissions. Based on (6, 9).

Table 7: Data Quality Tiers for Mobile Source CH₄ and N₂O Emissions. Based on (6, 9).

Tier	Activity Data	Emission Factor Data
Α	Actual vehicle miles traveled (user input)	Default emission factor by vehicle type and
		emissions control technology (TCR value)
В	Actual vehicle miles traveled (user input)	Default emission factor by vehicle type and
		model year (TCR value)
С	Vehicle miles traveled estimated from	Default emission factor by vehicle type (TCR
	actual fuel use (user input) and vehicle	value)
	fuel economy (user input)	

The tables are based mainly on APTA's recommended practices (9) which are in turn based on The Climate Registry General Reporting Protocol (6). Table 6 contains one notable deviation from the source data in the protocols. For emission factor data tier A2, the option of using actual carbon content data with default fuel density data is not included. The reason for this omission is that the GHG emissions protocols do not include data on fuel densities, thus the option of "default" fuel density has no real meaning.

For the higher data tiers for mobile source CO_2 emission, the CO_2 emission factors are calculated from user input data, or a combination of user input data and default data. The

following equation is used to calculate CO_2 emission factors from data on the fuel density and carbon content (Tier A1 CO_2 emission factor data) (6, 9):

Equation 1

$\mathcal{F}_{(CO2)fuel} = \rho_{fuel} \times \mathcal{C}_{(m)fuel} \times \theta \times K$			
where	$F_{(CO2)fuel}$	= CO ₂ emission factor [kg CO ₂ /gallon]	
	$ ho_{fuel}$	= fuel density [kg/gallon]	
	$C_{(m)fuel}$	= carbon content [kg C/kg fuel]	
	θ	= % oxidized (assumed to be 100%)	
	K	= 44/12 [mol. wt. of CO ₂ /mol. wt. of C]	

In accordance with GHG emissions registry protocols, actual carbon content and fuel density data are to be used (6).

To calculate CO_2 emission factors from data on the fuel heat content and carbon content, the following equation is used (Tier A1/A2 CO_2 emission factor data) (6, 9):

Equation 2

 $F_{(CO2)fuel} = H_{(v)fuel} \times C_{(H)fuel} \times \theta \times K$

where	$F_{(CO2)fuel}$	= CO ₂ emission factor [kg CO ₂ /gallon]
$H_{(v)fuel}$		= heat content [Btu/gallon]
	$C_{(H)fuel}$	= carbon content [kg C/Btu]
	θ	= % oxidized (assumed to be 100%)
	K	= 44/12 [mol. wt. of CO ₂ /mol. wt. of C]

In accordance with GHG emission registry protocols, actual carbon content and actual heat content data are to be used (Tier A1 CO₂ emission factor data), otherwise actual carbon content and default heat content data are to be used (Tier A2 CO₂ emission factor data) (6). Although either Equation 1 or Equation 2 above may be used to produce a Tier A1 CO₂ emission factor calculation, Equation 2 generally provides a more accurate result than does Equation 1. According to the U.S. EPA, "carbon content factors based on energy units are less variable than carbon content factors per mass or volume units because the heat content or energy value of a fuel is more closely related to the amount of carbon in the fuel than to the total physical quantity of fuel" (38). In the calculator, the first CO_2 emission factor data entry input available to the user is the cell for actual heat content. If a value is entered into this cell, the data entry inputs for actual carbon content per unit mass of fuel and actual fuel density are locked. By this mechanism, fuel heat content data is given priority over fuel density data for tier A1 CO_2 emission factor calculations. Similarly, for tier A2 CO₂ emission factor calculations, priority is given to the input of fuel heat content data. For whichever variable is not provided an input (heat content or carbon content) the default value is queried based on the type of fuel selected by the user. Table 25 in the appendix shows the default transport fuel CO_2 data used by the calculator.

In the calculator, user supplied heat content data and carbon content data must be provided in terms of "gross" energy content, which is sometimes referred to as the "higher heating value" (HHV). The HHV accounts for the combustion energy absorbed in the vaporization of exhaust water vapor. Alternative values that do not report the vaporization energy are referred to as "lower heating values" (LLV), or "net" energy content. GHG emissions may be estimated from either HHV or LHV data, but the calculator is designed for HHV data, which is the most common form of fuel energy data in the U.S.

Once the emission factors are calculated (or specified as defaults in the case of tier B/C CO_2 emission factor data), the emission factors may be applied to a calculation of GHG emissions. The following equation is used to calculate CO_2 emissions from actual fuel use data (Tier A/B CO_2 emissions activity data) and either an emission factor calculated from one of the aforementioned formulae (Tier A1/A2 CO_2 emission factor data) or a default emission factor (Tier B/C CO_2 emission factor data) (6, 9):

Equation 3

$$E_{(CO2)fuel} = Q_{(v)fuel} \times F_{(CO2)fuel}$$
where $E_{(CO2)fuel} = CO_2$ emissions [kg CO₂]
 $Q_{(v)fuel} =$ fuel combusted [gal]
 $F_{(CO2)fuel} = CO_2$ emission factor [kg CO₂/gallon]

The fuel units and the corresponding fuel emission factor units will vary according to the type of fuel used. For example, since CNG is a compressible/compressed gas, CNG fuel use is not reported in gallons, but is instead reported in diesel gallon equivalents (DGE), standard cubic feet (SCF), or therms. A diesel gallon equivalent represents the equivalent volume of diesel fuel in terms of fuel energy, and it is the unit of energy used by transit agencies for reporting energy consumption to the National Transit Database (NTD) (54). On average, a gallon of diesel fuel contains 138,691 British Thermal Units (BTUs) of combustion energy, and one SCF of natural gas contains on average 1,027 BTUs of combustion energy, so one DGE of CNG is equal to (1 gal) x (138,691 BTU/gal) / (1,027 BTU/SCF) = 135 SCF. The calculator provides unit

conversion from DGE to native liquid and gaseous fuel units (gallons and SCF respectively) and bases the conversion on GHG emission inventory protocol defaults.

If data on the actual quantity of fuel use is unavailable (Tier A/B activity data), then the fuel use may be estimated by the following formula (Tier C CO₂ emission activity data) (6):

Equation 4

$Q_{(v)fuel} = \frac{D_{veh}}{mpg_{veh}}$	
where $Q_{(v)fuel}$	= fuel combusted [gal]
D_{veh}	= vehicle driving distance [miles]
mpg_{veh}	= vehicle fuel economy [miles/gallon]

This equation is then used in conjunction with Equation 3 above to calculate mobile direct CO_2 emissions. In the calculator, the miles per gallon fuel economy of each record is included both as an input (for Equation 4) and as an output, based on user entered fuel consumption and vehicle miles of travel (VMT).

Unlike CO₂ emissions, which are simply the result of the degree of combustion and the carbon content of fuels, CH₄ and N₂O emissions are a complex function of combustion dynamics that vary between vehicle and fuel-types. CH₄ and N₂O emissions may be estimated by multiplying VMT by vehicle/fuel technology-specific, distance-based emission factors. The following equations are used to calculate CH₄ and N₂O emissions from driving distance vehicle activity data (Tier A/B CH₄ and N₂O emissions activity data) and default emission factors (Tier A/B/C CH₄ and N₂O emission factor data) (*6*, *9*):

Equation 5

$E_{(CH4)veh} = D_{veh} \times F_{(CH4)veh}$			
where $E_{(CH4)veh}$		= CH ₄ emissions [g CH ₄]	
D_{veh}		= vehicle driving distance [miles]	
	$F_{(CH4)veh}$	= CH ₄ emission factor [g CH ₄ /mile]	

Equation 6

 $E_{(N2O)veh} = D_{veh} \times F_{(N2O)veh}$ where $E_{(N2O)veh} = N_2O$ emissions [g N₂O]

D _{veh}	= vehicle driving distance [miles]
$F_{(N2O)veh}$	= N ₂ O emission factor [g N ₂ O/mile]

The tier of the CH_4 and N_2O emission factors depends upon the precision of the emission factor data. Tier A data is based on a U.S. EPA vehicle technology category (see Table 26 in the Appendix), Tier B data is based on vehicle type and model year (see Table 27 in the Appendix), and Tier C data is based on vehicle type (see Table 28 in the Appendix) (6).

If VMT data is unavailable, then the VMT may be estimated by the equation below (Tier C CH₄ and N₂O emissions activity data) (6):

Equation 7

 $D_{veh} = Q_{(v)fuel} \times mpg_{veh}$

where	D _{veh}	= vehicle driving distance [miles		
	$Q_{(v)fuel}$	= fuel combusted [gal]		

 mpg_{veh} = vehicle fuel economy [miles/gallon]

The vehicle driving distance estimated from Equation 7 above is then coupled with Equations 5 and 6 to calculate the CH_4 and N_2O emissions. It is important to note that vehicle driving distance is not always the best activity variable for estimating CH_4 and N_2O emissions, particularly for non-highway vehicles such as locomotives or construction equipment. For non-highway vehicles, the CH_4 and N_2O emissions are estimated from fuel consumption, following the method used in Equation 3. For non-highway vehicles, this is considered to be a Tier A CH_4 and N_2O calculation (6). The default CH_4 and N_2O emission factor data is shown in Table 29 in the Appendix.

3.3.2.2. <u>Fuel-Cycle Emissions</u>

The upstream well-to-pump (WTP) or well-to-tank (WTT) GHG emissions in the fuelcycle of mobile combustion vehicle fuels are calculated from default results from Argonne National Laboratory's GREET fuel-cycle model (46). The GREET model is a process-based spreadsheet calculator of energy, GHG emissions, and CAP emissions in the transportation fuel supply-chain. The spreadsheet is designed to support a graphical user interface (GUI) and Microsoft Visual Basic macros that handle user inputs and calculation outputs. Unlike the GUI, the spreadsheet provides direct access to the data and calculation formulae of the model. After running the model with default inputs and assumptions, WTP emission factors were extracted from the spreadsheet for the fuels used in the calculator presented in this thesis. Table 8 shows the WTP CO_2 , CH_4 , and N_2O emission factors extracted from the GREET model. These emission factors are the product of a multitude of process calculations and assumptions which are far too complex to adequately describe here. Generally speaking, the GHG emission factors are calculated and accounted in terms of the amount of fuel combustion energy. The combustion energy is dependent upon the assumed heat content of the fuel. For the purpose of checking consistency between the GHG inventory protocol data and the GREET data, Table 8 includes a comparison of the fuel heat content data (both reported as HHV). Some variation exists between the datasets, but no major discrepancy is evident. What is perhaps more notable is that upstream emission factors are not available for all of the fuels included in the GHG inventory protocols. Consequently, upstream fuel-cycle GHG emission calculations are not feasible for all of the fuel types included in the developed calculator.

	Heat Content (1)	Heat Content (2)	CO2 (3)	CH4 (3)	N2O (3)
Fuel	Btu / gal	Btu / gal	g / MMBtu	g / MMBtu	g / MMBtu
gasoline	124,238	124,340	16,812	108.74	1.14
diesel	138,690	137,380	15,488	104.53	0.25
biodiesel	138,690	137,380	1,272	93.06	2.22
kerosene	135,000	N/A	N/A	N/A	N/A
CNG	1,027 Btu/SCF	1,089 Btu/SCF	11,468	246.60	0.17
LNG	N/A	84,820	12,693	199.10	0.26
propane	91,048	91,420	N/A	N/A	N/A
LPG	91,643	91,410	9,195	115.28	0.16
ethane	69,429	N/A	N/A	N/A	N/A
isobutane	99,095	98,560	N/A	N/A	N/A
n-butane	103,048	103,220	N/A	N/A	N/A
ethanol (E100)	84,262	84,530	-10,464	108.73	30.64
methanol	N/A	65,200	24,549	168.53	0.58
hydrogen	N/A	36,020	196,244	477.35	1.63

Table 8: GREET Fuel-Cycle Model 1.8c.0 Well-to-Pump Upstream GHG Emissions. Based on (6, 46).

Source:

(1) Table 25 of this thesis

(2) GREET Fuel-Cycle Model 1.8c.0, "Fuel_Specs" Worksheet, Table 1, HHV

(3) GREET Fuel-Cycle Model 1.8c.0, "Results" Worksheet, Table 1 "Well-to-Pump Energy

Consumption and Emissions: Btu or Grams per mmBtu of Fuel Available at Fuel Station Pumps"

The GREET model is not the only public resource for calculating fuel-cycle GHG emissions, but it is one of the most widely used (if not *the* most widely used) life cycle transportation emissions models that is free to the public and not constrained by user licensing. One alternative life cycle transportation emissions model is Natural Resources Canada's GHGenius model (49). GHGenius is similarly a publicly funded process-based spreadsheet calculator of upstream fuel-cycle GHG emissions, but its use is considerably more limited. The GHGenius Sub-License Agreement states that "Canada provides limited personal permission for

the Licensee to use the Material. The use of the Material is limited in that you may not: Modify, incorporate, translate, adapt, improve, further develop, manufacture in whole or in part the Material" (49). Emission factors from the GHGenius model were incorporated into the developed calculator, but this work stopped due to the Sub-License Agreement.

For the purpose of academic comparison, Table 9 below provides upstream fuel-cycle GHG emissions factors from both GREET and GHGenius. Large differences are noticeable in the data, particularly for alternative fuels. For instance, in GREET the upstream processes for ethanol act as a carbon sink (negative CO_2 emission factor), whereas in GHGenius ethanol upstream processes result in net emissions of CO_2 . Discrepancies such as these cast serious doubt on the accuracy of emission factors from life cycle emissions models. At the very least, differences in inputs and assumptions can result in significant variations in results. To address this reality, the calculator presented in this thesis allows the user to update upstream emission factors by running the GREET model according to his/her preferred assumptions and inputs, and then copying and pasting the results table into the developed calculator.

	CO2 (1)	CO2 (2)	CH4 (1)	CH4 (2)	N2O (1)	N2O (2)
Fuel	g / MMBtu					
gasoline	16,812	18,216	108.74	131.88	1.14	0.97
diesel	15,488	15,940	104.53	127.25	0.25	0.78
biodiesel	1,272	17,298	93.06	123.88	2.22	10.75
kerosene	N/A	N/A	N/A	N/A	N/A	N/A
CNG	11,468	8,974	246.60	314.94	0.17	0.26
LNG	12,693	N/A	199.10	N/A	0.26	N/A
propane	N/A	N/A	N/A	N/A	N/A	N/A
LPG	9,195	12,971	115.28	120.32	0.16	0.53
ethane	N/A	N/A	N/A	N/A	N/A	N/A
isobutane	N/A	N/A	N/A	N/A	N/A	N/A
n-butane	N/A	N/A	N/A	N/A	N/A	N/A
ethanol (E100)	-10,464	55,092	108.73	69.79	30.64	48.13
methanol	24,549	17,239	168.53	144.87	0.58	1.34
hydrogen	196,244	118,020	477.35	527.53	1.63	1.61
Source: (1) CREET Evel Cycle Model 1 80.0. "Results" Workshoot. Table 1 "Well to Pump Energy.					Energy	

Table 9: Comparison of Upstream Well-to-Tank GHG Emissions Results from GREET and GHGenius (46, 49)

(1) GREET Fuel-Cycle Model 1.8c.0, "Results" Worksheet, Table 1 "Well-to-Pump Energy Consumption and Emissions: Btu or Grams per mmBtu of Fuel Available at Fuel Station Pumps"

(2) GHGenius 3.15, "Upstream Results HHV" Worksheet, Tables 55a, 55b, and 55c

To calculate the upstream fuel-cycle GHG emissions, the emission factors from GREET

are multiplied by the heat content and the quantity of fuel combusted:

Equation 8

$$E_{fuel} = Q_{(v)fuel} \times H_{(v)fuel} \times F_{(H)fuel} \times \frac{\text{MMBtu}}{10^{6}\text{Btu}}$$

where $E_{fuel} = \text{CO}_2 \text{ (or CH}_4, \text{ or N}_2\text{O})$ emissions [g CO₂ (or g CH₄, or g N₂O)]
 $Q_{(v)fuel} = \text{fuel combusted [gal (or SCF)]}$

 $H_{(v)fuel}$ = heat content [Btu/gallon] $F_{(H)fuel}$ = emission factor [g $CO_2/MMBtu$ (or CH_4 , or N_2O)]

This calculation procedure is used for all three of the primary GHGs: CO₂, CH₄, and N_2O .

3.3.2.3. Vehicle-Cycle Emissions

The vehicle-cycle processes accounted for in the calculator include all of the upstream extraction, harvesting, refining, manufacture, assembly, transportation, storage, and downstream disposal associated with the manufacture of new vehicles and for vehicle maintenance parts. Due to a lack of available emission factor data for these vehicle-cycle processes, an EIO-LCA calculation approach is used (30). The calculator makes use of the EIO-LCA model from The Green Design Institute at Carnegie Mellon University (52) to model the GHG emissions from vehicle manufacturing sectors. This helps to simplify the calculations done within the calculator by making use of emission factors representing the amount of GHG emissions per dollar spent on a particular vehicle product sector. Thus, the calculation of vehicle-cycle emissions is as follows:

Equation 9

$$E_{veh} = (Cap_Cost_{veh} \times Mfg_EF_{sector}) + (Maint_Cost_{veh} \times Maint_EF_{sector})$$
where E_{veh} = vehicle-cycle GHG emissions [kg]
$$Cap_Cost_{veh}$$
 = capital cost of manufacturing (vehicle purchase cost) [\$]
$$Mfg_EF_{sector}$$
 = manufacturing sector GHG emissions factor [kg GHG / \$]
$$Maint_Cost_{veh}$$
 = maintenance costs (parts purchase cost) [\$]

.

Maint_EF_{sector} = parts sector GHG emissions factor [kg GHG / \$]

Only parts costs are included in the maintenance cost input, because most transit agency maintenance activities occur in-house. If facility costs were included, the result would be a double-counting of GHG emissions that are already accounted for in transit facility energy consumption calculations (stationary combustion and purchased electricity).

The emission factors from the EIO-LCA model are reported in metric tonnes / \$1M, but the emission factors used in the calculator are converted to kg / \$. Table 10 below shows the emission factors used for the vehicle-cycle GHG emissions calculations. The data are produced from the U.S. National Producer Price 2002 tables. The $CO_2(e)$ emission factors represent a GWP-weighted combination of "CO₂ Fossil," "CO₂ Process," and "HFC/PFCs" emission factors from the EIO-LCA model.

Table 10:	venicle-Cycle GHG	Emission Factors.	Based on (52)	

			CO2(e)	CH4	N2O
Vehicles	5	Detailed Sector	(kg/\$)	(kg/\$)	(kg/\$)
		Heavy duty truck			
	Bus and heavy duty veh.	manufacturing	0.6277	0.0455	0.00909
		Railroad rolling stock			
Mfg.	Heavy rail and light rail	manufacturing	0.46885	0.0307	0.0049
		Light truck and utility			
	Light duty veh.	vehicle manufacturing	0.5487	0.0424	0.0121
	Automobile	Automobile manufacturing	0.5487 0.0424 0 g 0.5079 0.0419 0 0.6916 0.0514 0 0	0.013	
	Bus, heavy duty, light	Motor vehicle parts			
Maint	duty, and auto	manufacturing	0.6916	0.0514	0.0133
Mann.		All other transportation			
	Heavy rail and light rail	equipment manufacturing	0.5914	0.0401	0.0083
Source:					
Carnegie	e Mellon University Green	Design Institute. (2010) Econo	mic Input-C	Dutput Life	e Cycle
Assessment (EIO-LCA) US 2002 (428) model [Internet], Available from:			-		
<a>http://www.eiolca.net/> [Accessed 17 Jun, 2010]					
Broad Sector Group: Vehicles and Other Transportation Equipment					

Vehicle-cycle GHG emissions are unique among other inventory emissions in that the vehicle manufacturing emissions occur once at the beginning of the life cycle, whereas most all other emissions will occur during the inventory year. A method is needed to reasonably allocate the upfront GHG emissions over the vehicle lifecycle so that the emissions are captured in subsequent annual inventories. The method used by the calculator is to divide the total upfront GHG emissions by the estimated service life (in years) of the vehicle. An alternative method used in studies of life cycle GHG emissions from transportation is to divide the total upfront GHG emissions by the estimated total lifetime VMT and then multiply by the VMT for the inventory period (24). There are notable advantages and disadvantages of each method. The VMT-based method has the advantage of producing consistent per-mile vehicle emissions for each inventory year. This means the proportion of vehicle GHG emissions attributed to the vehicle cycle does not change from year to year. However, one odd result of this accounting method is that the total vehicle-cycle manufacturing emissions will vary between years with different VMT, even though increases or decreases in VMT do not cause differences in vehiclecycle manufacturing emissions. Furthermore, vehicles assigned to short distance duty cycles with more stops, starts, and congested traffic conditions may reach the end of useful life at a lower total accumulated mileage than may be estimated for other similar vehicles. From the perspective of managing GHG emissions from vehicle fleets, the time-based method may offer a better measurement of vehicle-cycle emissions from underutilized vehicle; vehicles with low mileage will report undiminished vehicle-cycle emissions, thereby highlighting within an annual inventory the relatively high vehicle-cycle GHG emissions cost of underutilization. The calculator utilizes the time-based method of estimating annual vehicle-cycle GHG emissions, and calculator users may enter and adjust the estimated vehicle service lives. Default bus and van

service lives are based on minimum requirements of FTA grant programs (e.g. 12 years for a 40' heavy duty bus) (55).

In the EIO-LCA method of estimating vehicle-cycle GHG emissions, cost is the single independent variable for estimating emissions. The calculator provides a robust accounting framework for estimating and aggregating the capital and maintenance costs impacting vehiclecycle GHG emissions. Included in the calculator is a worksheet for entering "cost profiles" for particular vehicles or types of vehicles. The cost profiles contain a multitude of cost data fields, most of which are used for calculating cost-effectiveness (see Section 3.3.5 for details on the cost-effectiveness calculations and the use of cost profiles). For the purpose of calculating vehicle-cycle GHG emissions, the cost profiles account for the following cost data: vehicle purchase cost, estimated vehicle service life (years), amortized vehicle purchase cost (\$/year), and vehicle parts cost (\$/year and \$/mile). Each cost profile is assigned a unique "Vehicle Cost ID" (or name) by the user. For each vehicle record on the vehicle GHG emissions inventory worksheets, the "Vehicle Cost ID" may be queried from a dropdown list. Once selected, the cost profile data is coupled with the vehicle inventory data to calculate manufacturing and maintenance costs. The manufacturing costs are the product of the amortized vehicle purchase cost and the vehicle quantity field (user input on each vehicle inventory row). The maintenance costs are the sum of the annual parts cost times the quantity of vehicles, and the per mile parts cost times the inventory mileage. These costs are then applied to the EIO-LCA emission factors, as described earlier in this section, to calculate vehicle-cycle GHG emissions.

3.3.3. Stationary Source Emissions

This section describes the calculation methodology for agency stationary source emissions, which are the GHG emissions produced from on-site stationary combustion and from the associated upstream fuel supply-chain. GHG emissions produced from purchased electricity are described in a later section (Section 3.3.4).

3.3.3.1. Direct Combustion Emissions

Similar to the mobile source emissions, the stationary source direct combustion GHG emissions are calculated in accordance with the methodology prescribed by the GHG emission inventory protocols. Table 11 and Table 12 show the data tiers for stationary source CO_2 and stationary source CH_4 and N_2O emissions respectively.

Tier	Activity Data	Emission Factor Data			
A1	Continuous emissions monitoring (user	Continuous emissions monitoring (user			
	input)	input)			
A2	Actual fuel use (user input) Actual carbon content of fuel (user input)				
		actual heat content of fuel (user input)			
В	Actual fuel use (user input)	Actual carbon content of fuel (user input) and			
		default heat content of fuel (TCR value); or			
		Default carbon content of fuel (TCR value)			
		and actual heat content of fuel (user input)			
С	Actual fuel use (user input)	Default emission factor of fuel (TCR value)			

Table 11: Data Quality Tiers for Stationary Source CO₂ Emissions. Based on (6).

Table 12: Data Quality Tiers for Stationary Source CH₄ and N₂O Emissions. Based on (6).

Tier	Activity Data	Emission Factor Data		
Α	Continuous emissions monitoring (user	Continuous emissions monitoring (user		
	input)	input)		
В	Actual fuel use (user input)	Default emission factor by sector and		
		technology type (TCR value)		
С	Actual fuel use (user input)	Default emission factor by sector and fuel		
		type (TCR value)		

The calculator is designed for data tiers A2 and lower (Tier A1 and A correspond with direct emissions monitoring, an emissions measurement process that requires no emissions estimation calculations). The stationary combustion GHG emissions estimation procedure follows approximately the same procedure used for estimating mobile combustion GHG emissions. First, a CO₂ emission factor is calculated from the available Tier A2 or Tier B heat content and carbon content data (see Equation 2). Then, using either this calculated CO₂ emission factor or a default CO₂ emission factor (Tier B or Tier C CO₂ emission factor), the CO₂ emissions are calculated from the amount of fuel consumed (see Equation 3).

Once the CO_2 emissions are calculated, the next step is to calculate the CH_4 and N_2O emissions. Much like the procedure used for mobile combustion, the CH_4 and N_2O emissions from stationary combustion utilize technology specific default emission factors. These default emission factors are given on per unit of energy basis (g/MMBtu). Thus, fuel consumption data (mass or volume) must be converted to energy consumption (MMBtu). The following equation is used to calculate CH_4 and N_2O emissions (Tier B/C CH_4 and N_2O emission factor data):

Equation 10

 $E_{fuel} = Q_{(h)fuel} \times F_{fuel}$

where
$$E_{fuel} = CH_4$$
 (or N₂O) emissions [g CH₄ (or g N₂O)]
 $Q_{(h)fuel}$ = fuel combusted [MMBtu]

 $F_{fuel} = CH_4 \text{ (or } N_2O) \text{ emission factor } [g CH_4/MMBtu \text{ (or } g N_2O /MMBtu)]$

The developed calculator accommodates fuel consumption data in the following units: gallons, barrels, SCF, therms, and short tons. The calculator performs the necessary unit

conversions to calculate GHG emissions using Equation 3 and Equation 10. Table 30 and Table 31 in the Appendix show the default factors for stationary combustion CO_2 emissions.

3.3.3.2. <u>Fuel-Cycle Emissions</u>

The methodology employed for calculating fuel-cycle GHG emissions from stationary source combustion fuels is primarily the same as that employed for mobile source combustion fuels. The amount of fuel consumed is multiplied by the heat content and energy-based emission factor (see Equation 8). The main difference for calculating upstream emissions for stationary combustion is the source of the emission factors. The emission factors are derived from the GREET fuel-cycle model (46), but from different process values within the model. Table 33 and Table 34 in the Appendix show the GREET emission factors used for each of the stationary combustion fuel types used (see Table 30). Unfortunately, appropriate upstream GHG emission factors are not currently available for all of the stationary combustion fuel types included in the calculator.

3.3.4. Purchased Electricity Emissions

The GHG emissions from purchased electricity are classified as "indirect" (Scope 2) emissions by the GHG inventory protocols. The term "indirect" refers to the fact that organizations purchasing electricity do not have direct control over the power production (and GHG emissions production) process. This section describes the calculation methodology used for estimating GHG emissions from purchased electricity, both for the propulsion of electric transit vehicles and for the operation of transit facilities.

3.3.4.1. Indirect Combustion Emissions

The electric power grid supplies electrical energy generated from a variety of production facilities and feedstocks. At the national scale, much of the electric power is produced from the combustion of fossil fuels. The proportion of various types of fossil fuels used to supply electric power to electric power consumers affects the GHG emissions intensity of the electric grid, thus, the GHG emissions intensity of the electric grid varies regionally across the U.S. To estimate the GHG emissions associated with the consumption of purchased electricity, the calculator follows the methodology of the GHG emission inventory protocols, which use generator-specific or regionally-based power generation emission factors to estimate the GHGs produced per unit of electrical energy consumed. Table 13 below shows the emission factor and activity data tiers for estimating CO₂, CH₄, and N₂O emissions from purchased electricity.

Table 13: Data Quality Tiers for Scope 2 CO₂, CH₄, and N₂O Emissions. Based on (6).

Tier	Activity Data	Emission Factor Data		
Α	Actual electricity use (user input)	Generator-specific emission factor (user		
		input)		
В	Actual electricity use (user input)	Default emission factor of eGRID power		
		pool (TCR value)		
С	Proportional electricity use estimated	Generator-specific emission factor (user		
	from building area (user input), building	input) or Default emission factor of eGRID		
	actual electricity use (user input) and	power pool (TCR value)		
	building sub-area (user input)			

The indirect combustion GHG emissions from purchased electricity are calculated with Equation 11 and Equation 12 below.

Equation 11

 $E_{(CO2)fac} = q_{fac} \times F_{(CO2)grid}$

where	$E_{(CO2)fac}$	= CO ₂ emissions [lbs CO ₂]
	<i>q_{fac}</i>	= electricity consumed [MWh]
	$F_{(CO2)grid}$	= CO ₂ emission factor [lbs CO ₂ /MWh]

Equation 12

$E_{fac} =$	$q_{fac} \times F_{grid}$	
where	E _{fac}	= CH_4 (or N_2O) emissions [lbs CH_4 (or N_2O)]
	<i>q_{fac}</i>	= electricity consumed [GWh]
	F _{grid}	= CH_4 (or N_2O) emission factor [lbs CO_2/GWh]

The emission factors for CH_4 and N_2O used in Equation 12 are expressed in larger units of energy (GWh vs. MWh) than are the emission factors for CO_2 used in Equation 11 since electrical power generation generally produces much less CH_4 and N_2O per unit of energy generated. Users of the calculator must have data on the total quantity of electricity consumed, and the calculator can be used to estimate the electricity consumed within a part of a metered facility, based on proportional floor area (Tier C activity data).

Table 13 shows that according to the protocols, generator-specific emission factors are considered to be more accurate than power pool defaults. The power pool defaults are sourced from the U.S. EPA's eGRID database of electric power production and emissions (44). The eGRID defaults are available at multiple levels of aggregation (ordered from lower to higher aggregation): state-level, eGRID subregion-level, and eGRID NERC region-level. For each level of aggregation, both annual and non-baseload GHG emission factors are available. The annual emission factors represent the annual average GHG emission rates and are used for annual

inventories of GHG emission from purchased electricity (44). The non-baseload emission rates represent the output of GHG emissions during peak periods of electric power consumption from the grid and are used for determining GHG emission savings from energy consumption reductions (44). The developed calculator allows the user to select either annual or non-baseload GHG emission rates. The eGRID emission rates used are shown in Table 35 through Table 38 in the Appendix.

The eGRID database offers a concise record of electric power GHG emission rates, but there are several limitations of the data. Firstly, the emission rates are derived from annual averages and thus do not allow users to account for seasonal variations in the electric power generation mix. Secondly, the spatial aggregation of GHG emission rates may not be representative of the actual supply of electric power to a given location at a given hour. In other words, the spatial and temporal aggregation of the GHG emission rates do not enable estimation of GHG emission reductions by shifting consumption to different hours of the day. The "annual" and "non-baseload" emission rates provide some capability on this front, but do not support hour-by-hour consumption management decisions. Thirdly, the eGRID emission rates are compiled only once every few years and possibly do not represent the actual GHG emission rates for each/every inventory year. The latest version of the eGRID database, eGRID2007, is composed of emission rates from the year 2005. Alternatively, the U.S. Energy Information Administration (EIA) provides more up to date CO2 emission factors (year 2008 currently available) in its state electricity profiles (56). The calculator accommodates user entry of higher tiers of data, such as power plant-specific emission factors. Plant-specific emission factors are considered by the GHG emissions inventory protocols to be more precise than power poolspecific emission factors, but users of plant-specific data should verify the source of power from

the electric grid since the difference in emission factors can be substantial. For example, in a recent unpublished study of emissions from the Metropolitan Atlanta Rapid Transit Authority's (MARTA) heavy rail operations, emission factors for each of the nine local power plants supplying electricity to MARTA heavy rail operations were weighted in proportion to the amount of power produced from each. The emission factor data was collected from the Georgia Environmental Facilities Authority and the U.S. EPA. The averaged CO_2 emissions factor from the local power plants was 2,040 lbs CO_2/MWh , whereas the eGRID annual subregion emission factor for SERC South, which includes Atlanta, GA, is 1,490 lbs $CO_2/MWH - a$ relative difference of over 30 percent.

Finally, the eGRID emission rates do not account for the energy and emissions associated with electric power transmission and distribution (T&D) losses (44). The developed calculator is designed to account for not only T&D losses, but also the many significant upstream GHG emissions in the electric power generation supply-chain.

3.3.4.2. <u>Fuel-Cycle Emissions</u>

The fuel-cycle of purchased electricity consists of processes that are both upstream and downstream from a power generation facility. The upstream processes consist of the extraction/harvesting, refining, and transportation of the fuels, and the downstream processes consist of the transmission and distribution (T&D) of the electric power.

To calculate the GHG emissions from processes upstream of the generation of electric power, emission factor data is needed for each of the fuel types included in the eGRID database: coal, fuel oil, natural gas, nuclear, biomass, hydro, wind, other carbon, and other (44). Table 14 shows the emission factors derived from the GREET fuel-cycle model, using default model inputs and assumptions.

	CO2 Em. Fact. (g / MMBtu	CH4 Em. Fact. (g / MMBtu	N2O Em. Fact. (g / MMBtu	
Fuel	of Fuel)	of Fuel)	of Fuel)	Source
Coal	1,620.18	119.203	0.03125	Worksheet Coal, Table 3, Coal to Power Plants
Oil	1,0616.2	99.1796	0.17588	Worksheet Petroleum, Table 5.1, Crude for Use in U.S. Refineries, and Residual Oil
NG	5,162.64	175.272	0.08395	Worksheet NG, Table 4.1, Natural Gas for Electricity Generation
Nuclear	0.00412	6.8E-06	5 9E-08	Worksheet Electric, Table 1, and Worksheet Uranium, Table 4, Total: LWR electricity generation
	0.00112		0.02.00	Worksheet EtOH, Table 3, Farmed Trees to Ethanol, and Worksheet Fuel_Specs, Table 1,
Biomass	-0.0043	2.8E-06	9.9E-07	Farmed Trees
Hydro	0	0	0	
Wind	0	0	0	
Other	0	0	0	
Other Carbon	3479.81	78.731	0.05822	Average of above

 Table 14: Purchased Electricity Upstream Fuel-Cycle Emission Factors. Based on (46)

Each of the emission factors are given in terms of the fuel energy supplied to the power generation facility. Emission factors were unavailable for "hydro," "wind," "other," and "other carbon" fuel-types. Considering that the calculator presented in this thesis does not estimate GHG emissions from the construction and maintenance of fuel/energy supply-chain infrastructure, it is reasonable to assume that the GHG emissions from "hydro," "wind," and "other" (non-combustion energy sources) are negligible. The GHG emission factors for "other carbon" are assumed to be the average of the non-zero emission factors derived from the GREET model.

Since the upstream emission factors are provided in terms of the fuel energy supplied to the power generation facility, a calculation step is needed to determine the amount of fuel energy required to supply the amount of electrical energy that is purchased. To do so, the energy losses associated with the inefficiency of the generation facility and T&D must be accounted for. The calculator uses Equation 13 to determine how much more fuel energy is needed to supply the amount of delivered electrical energy.

Equation 13

$$\frac{Energy \, Input_{fuel}}{Energy \, Output_{fuel}} = \left(\frac{1}{Eff_{fuel}}\right) \times \left(\frac{1}{1 - TD_{fuel}}\right)$$

where $Energy Input_{fuel}$ = fuel energy supplied to generation facility [KWh] $Energy Output_{fuel}$ = energy delivered for consumption [KWh delivered] Eff_{fuel} = power plant efficiency [%] TD_{fuel} = transmission & distribution (T&D) losses [%]

The power plant efficiency is specific to the type of fuel and power plant technology. The calculator uses default values found in the GHGenius model (49), but the user may override these defaults with alternative efficiency values. Similarly, the T&D losses are assumed to be 8%, but the user may adjust this value as he or she sees fit. The fuel input vs. energy output scaling factors calculated from the power plant efficiencies and T&D losses are applied to the fuel emission factors from GREET:

Equation 14

$$UpstreamEF_{fuel} = \frac{Energy \ Input_{fuel}}{Energy \ Output_{fuel}} \times \ GREET_EF_{fuel} \times \left(\frac{1 \ MMBtu}{293.071 \ KWh}\right)$$
where $UpstreamEF_{fuel}$ = upstream fuel emission factor [g GHG / KWh delivered]
$$\frac{Energy \ Input_{fuel}}{Energy \ Output_{fuel}}$$
 = fuel consumption ratio [KWh fuel / KWh delivered]
$$GREET_EF_{fuel}$$
 = GREET fuel emission factor [g / MMBtu of fuel]

The resulting emission factors for each fuel type are expressed in terms of the amount of delivered (purchased) energy. The final calculation step for estimating Scope 3 fuel-cycle GHG emissions from purchased electricity contains two parts: 1) the upstream fuel emissions for each of the fuel/plant types; and 2) the scaling up of plant combustion emissions to account for T&D losses. Equation 15 below shows each of these calculation steps summed together:

Equation 15

$$\begin{aligned} Scope3_E &= \left(\begin{bmatrix} UpstreamEF_{fuel\ 1} & \cdots & UpstreamEF_{fuel\ n} \end{bmatrix} \cdot \begin{bmatrix} PowerMix_{fuel\ 1} \\ \vdots \\ PowerMix_{fuel\ n} \end{bmatrix} \times q_{fac} \right) \\ &+ \left(Scope2_E \times \left(\frac{1}{1 - TD} - 1 \right) \right) \end{aligned}$$

where <i>Scope</i> 3_ <i>E</i>	= fuel-cycle emissions [g GHG]	
PowerMix _{fuel}	= eGRID fuel power mix [%]	
q_{fac}	= electricity consumed [KWh]	
Scope2_E	= combustion emissions [g GHG]	

The power mix percentages are referenced from the eGRID database and are shown in Tables 39 to 42 in the Appendix. Unfortunately, the eGRID database provides power mix percentages for only annual emission rates. Thus, calculations of fuel-cycle GHG emissions for non-baseload power will not reflect the non-baseload power mix.

It is important to note why the second half of Equation 15 is included in the calculator. This calculation does not result in a double-counting of the T&D losses – the Scope 2 emissions calculated from the eGRID emission factors account for power generation efficiencies, but do not include T&D losses. Therefore, to fully account for the fuel-cycle emissions associated with purchased electricity, the additional Scope 2 combustion emissions associated with T&D losses must be accounted for.

3.3.5. Cost Calculations

The calculator includes the capability for estimating the cost-effectiveness of vehiclebased or facility-based GHG emission reductions. Emission reductions are modeled by comparing the normalized emissions (GHGs/mile or GHGs/SF) between inventory records in the calculator worksheets. To calculate the normalized cost differences between alternatives, the user must enter the costs associated with an alternative and a baseline. Figure 13 shows the cost profile worksheet for transit facility costs. The "Facility Cost ID" names at the top are entered by the user to save unique cost profiles. The available cost categories include both capital and operation/maintenance costs. For operation and maintenance costs, the user may select the units that correspond with the data available for input (e.g. per gal, per year, per SF, per kWh, etc.) and annual growth factors may be applied as either a total increment (arithmetic gradient) or a percentage increment (geometric gradient). In the existing literature for transit LCCA calculators, the effect of inflation on the time value of money is sometimes considered, but the effect of capital interest rates is not (35, 51). The growth factors in the cost profile calculator may be used to model inflationary costs, and the salvage discount rate may be used to discount the future return from any future salvage values. It is important to note that for the purposes of calculating incremental cost-effectiveness, not all costs need to be entered – only the estimated differences in costs between an alternative and its baseline need to be entered. For example, if two facility inventory records have different amounts of fuel consumption, but have the same facility construction cost, only the fuel cost needs to be entered to calculate the cost-effectiveness of a relative reduction in GHG emissions.

Facility Cost ID	Base Facility	acility LED Lights		
Facility Strategy Lifetime	50	years	50	years
Beginning Year Salvage discount rate	2008 10	% per year	2008 10	% per year
Capital Costs				
Facility construction/renovation	\$300,000.00		\$330,000.00	
Facility credit/grant	20	%	20	%
credit/grant	60000		66000	
Total facility const./renov.	\$240,000.00		\$264,000.00	
Facility salvage value	\$25,000.00		\$25,000.00	
Equipment purchase				
Equipment credit/grant		*select*		*select*
credit/grant	0		0	
Total equipment purchase	\$0.00		\$0.00	
Equipment salvage value				1
Total Capital Costs	\$232,034.23		\$256,034.23	
Annualized Capital Costs	\$19,336.19		\$21,336.19	
Operating and Maintenace Costs (annual)				
Facility Energy	\$2.000	per gal	\$2.000	per gal
Fuel cost growth factor		*select*		*select*
Facility operation		*select*		*select*
Operation cost growth factor		*select*		*select*
Facility maintenance		*select*		*select*
Maintenance cost growth factor		*select*		*select*
Equipment maintenance (labor)	\$500.00	per year	\$500.00	per year
Labor cost growth factor		*select*		*select*
Equipment maintenance (parts)		*select*		*select*
Parts cost growth factor	<u> </u>	*select*	ćo 40	*select*
Equipment Fuel/energy	ŞU.12	per kwn	\$0.12	per kwn
Fuel/energy cost growth factor		*select*		- select*

Figure 13: Calculator facility cost profile worksheet.

A similar cost profile form is available for vehicle costs, which include more inputs related to vehicle operation and maintenance costs. It is recognized that transit agencies have available to them fleet management software for managing operations, maintenance, and procurement costs. This calculator is not designed as a standalone operation, maintenance, and procurement cost management tool. Rather, it is designed as a tool that utilizes existing fleet management data to assist with the management of cost-effective GHG emissions.

The cost-effectiveness of a strategy that reduces GHG emissions may be calculated by dividing the incremental cost increase of a strategy by the incremental decrease in GHG emissions (49). Cost-effectiveness may thus be defined by Equation 16:

Equation 16

$$CE = \frac{Cost_A - Cost_B}{GHG_B - GHG_A}$$

where CE = cost-effectiveness [\$/kg] $Cost_A$ = cost of alternative [\$/mile or \$/SF] $Cost_B$ = cost of baseline [\$/mile or \$/SF] GHG_A = GHGs of alternative [kg/mile or kg/SF] GHG_B = GHGs of baseline [kg/mile or kg/SF]

The above formula may be used for evaluating either vehicle-based or facility-based strategies, and the units may be converted to \$/tonne for the purpose of comparing the cost-effectiveness against carbon credits trading on the carbon market. Historically, carbon credits on the European Climate Exchange have been trading around \$20 to \$30 per tonne (*57*). Therefore,

for a transit GHG emission reduction strategy to be competitive on the global carbon marketplace, the cost per tonne should be comparable to historical averages.

Calculation of the cost-effectiveness of GHG emission reduction alternatives requires both cost profile and activity profile data (quantity of vehicles, VMT, fuel consumption, and GHGs). At the right hand side of the calculator's inventory worksheets (see Appendix B), the user selects a "Cost ID" from a dropdown list of cost profiles saved by the user. For each vehicle record with a selected "Cost ID", the volume of fuel consumed is multiplied by the cost profile's fuel cost per unit volume, the quantity of vehicles is multiplied by the cost profile's annual operation & maintenance costs and annualized capital costs. This result, divided by the VMT plus any given per mile costs in the cost profile, is the record's cost per mile, which is used in Equation 16 to calculate the record's cost-effectiveness.

Figure 14 shows sample cost-effectiveness calculations for transit bus alternatives. Each row corresponds with a bus inventory record from the bus inventory worksheet. The cost-effectiveness is relative to a cost baseline selected by the user (see 2nd column in Figure 14). A negative cost-effectiveness indicates that the alternative reduces both GHG emissions and costs on a per mile basis. No cost-effectiveness value is calculated for the baseline or for any alternative with per mile GHG emissions that are higher than the baseline.

Scope	
	1

	Cost-Eff.	Cost	CO2e Emiss.	Cost-Eff.
Cost ID	Baseline?	(\$/mile)	Rate (g/mile)	(\$/tonne)
Diesel Bus Base	yes	\$1.62	3,404	
Biodiesel Bus		\$1.60	0	-\$5.53
CNG Bus		\$1.92	2,546	\$348.00
Diesel Bus Base		\$1.91	4,055	GHG Increase

Figure 14: Sample Cost-Effectiveness Calculations for Transit Bus Alternatives

For alternatives that are estimated to have relatively higher capital costs and lower annual costs, a payback period may be calculated. The payback period of a strategy that reduces GHG emissions may be calculated by dividing the incremental increase in capital cost by the incremental annual cost savings. The payback period may thus be defined by Equation 17 below:

Equation 17

$$PP = \frac{CC_A - CC_B}{AC_B - AC_A}$$

where *PP* = payback period [yr]

- CC_A = capital cost of alternative [\$]
- CC_B = capital cost of baseline [\$]
- AC_A = annual cost of alternative [\$/yr]
- AC_B = annual cost of baseline [\$/yr]

Figure 15 shows a sample payback period calculation for a transit bus alternative. A cost profile ("Cost ID") and activity profile ("Inventory ID") are based on user inputs and are used for both the baseline and the alternative. The "Cost ID" is a dropdown list query of the cost profile, and the "Inventory ID" is a dropdown list query of GHG emission inventory records. The activity data of the emission inventory records (quantity of vehicles, VMT, and fuel consumption) are multiplied by the respective per year, per mile, and per unit of fuel costs entered for the "Cost ID" cost profile. The result is the average annual costs shown in the figure.

Figure 15: Sample payback period calculation for a transit bus alternative.

The life cycle cost is the average annual cost multiplied by the service life, plus the capital cost. The capital cost reflects the discounted salvage value calculated in the cost profile. The benefit/cost ("B/C") ratio is calculated by dividing the annual cost savings (the benefit) by the extra capital cost of the alternative. The payback is calculated in accordance with Equation 17 and is the inverse of the B/C ratio for the annual cost savings. The sample hypothetical calculation in Figure 15 indicates that the biodiesel bus investment(s) would be recouped through operation & maintenance savings in 4.82 years.

CHAPTER 4

APPLICATION AND ASSESSMENT

To synthesize and assess its capabilities, the developed calculator has been utilized for a GHG inventory (carbon footprint) of a typical mid- to large-sized transit agency, and for an evaluation of the cost-effectiveness of transit GHG emission reduction strategies. The GHG inventory was based on the Metropolitan Atlanta Rapid Transit Authority (MARTA) for the year 2008. The cost-effectiveness evaluations are based on two case studies: 1) King County Metro Transit articulated diesel hybrid bus evaluation; and 2) New York Metropolitan Transit Authority (MTA) Grand Central Terminal lighting replacement evaluation.

4.1. GHG Inventory of MARTA (2008)

One of the main functions for which the calculator is designed is the creation of an annual GHG emissions inventory for a public transit agency. As a partner in the development of the forthcoming *Transit Greenhouse Gas Emissions Management Compendium*, MARTA and MARTA's consultant S.L. King Technologies Inc. have provided data for a 2008 GHG emissions inventory. These data, along with supplemental data from the NTD and APTA, were used by the authors of the compendium to calculate MARTA's 2008 carbon footprint. The calculator presented in this thesis uses the same accounting framework as in the compendium footprint, but several calculation differences exist. Unlike the compendium footprint calculations, the calculator is designed to accommodate a GHG emissions inventory for agencies of any size, type, or level of calculation expertise. As such, some of the calculation formulae and methodologies in the developed calculator differ from those used in the compendium carbon footprint. Furthermore, the GHG inventory presented here makes more use of agency supplied activity data (fuel consumption, VMT, etc.) than does the compendium carbon footprint, which

relied more on NTD activity data. The results of the application of the calculator to a MARTA GHG emissions inventory are discussed in terms of the opportunities and limitations for managing GHG emission reductions.

A variety of data types and sources are required to conduct an agency GHG emissions inventory. Table 15 and Table 16 show the aggregated data input values and sources used for the 2008 MARTA GHG emissions inventory. The capital costs shown are per vehicle costs, whereas all other values are aggregated for a particular mode. For heavy rail, the manufacturing cost (purchase cost) was derived from a national average, rather than the MARTA purchase costs reported to the APTA Vehicle Database (58). The MARTA purchase costs underreport the vehicle costs by listing prices from 25 years ago, which do not reflect inflationary effects. Added to these purchase costs are the costs for the recent heavy rail vehicle rebuild program, which is estimated to extend vehicle service lives by 15 years. Due to a lack of disaggregate vehicle maintenance cost data, the mode-specific maintenance costs extracted from the NTD are assumed to be distributed evenly within the quantity of vehicles.
Mode	Data	Value	Source
		189 diesel	
	Qty	441 CNG	MARTA / S.L. King
	Est. Service	Varies by model,	
	Life	generally 12 years	http://www.fta.dot.gov/grants_financing.html.
	Cap. Cost	Varies by model	APTA 2009 Public Transportation Vehicle Database
			2008 NTD: Table Operating_Expense: Tire_Tube_Amt and
	Maint. Cost	\$13,085,012.00	Other_Mat_Sup_Amt
Bus		2,416,653 gal diesel	
		6,798,270 DGE	
	Fuel	CNG	MARTA / S.L. King
	VMT	30,551,811	MARTA / S.L. King
	Rev. Veh.		2008 NTD: Table 19 Transit Operating Statistics: Service
	Hrs	2,191,400	Supplied and Consumed
			2008 NTD: Table 19 Transit Operating Statistics: Service
	PMT	213,459,600	Supplied and Consumed
	Qty	225	MARTA / S.L. King
	Est. Service		
	Life	4 years	http://www.fta.dot.gov/grants_financing.html.
	Cap. Cost	\$80,000.00	APTA 2009 Public Transportation Vehicle Database
			2008 NTD Table: Operating_Expense: Tire_Tube_Amt and
Para-	Maint. Cost	\$840,698.00	Other_Mat_Sup_Amt
transit	Fuel	773,593 gal diesel	MARTA / S.L. King
	VMT	6,665,571	MARTA / S.L. King
	Rev. Veh.		2008 NTD: Table 19 Transit Operating Statistics: Service
	Hrs	283,800	Supplied and Consumed
			2008 NTD: Table 19 Transit Operating Statistics: Service
	PMT	5,423,300	Supplied and Consumed

 Table 15: 2008 MARTA GHG Inventory Aggregated Data Input Values and Sources.

Mode	Data	Value	Source
			2008 NTD Table: Revenue_Vehicle_Inventory:
	Qty	338	Total_Fleet
	Est.		2008 NTD Table: Revenue_Vehicle_Inventory:
	Service	25 years (mfg)	Total_Fleet
	Life	15 years (rebld)	http://www.itsmarta.com/railcar-rehabilitation.aspx
			APTA 2009 Public Transportation Vehicle Database:
	Cap.	\$1,500,000 (mfg): 120 veh.	Table 22
	Cost	\$1,128,440 (rbld): 218 veh.	http://www.itsmarta.com/railcar-rehabilitation.aspx
Heavy Rail	Maint.		2008 NTD Table: Operating_Expense: Tire_Tube_Amt
	Cost	\$7,674,749.00	and Other_Mat_Sup_Amt
	Energy	97,411,500 KWh	MARTA / S.L. King
			2008 NTD: Table 19 Transit Operating Statistics:
	VMT	24,063,100	Service Supplied and Consumed
	Rev.		2008 NTD: Table 19 Transit Operating Statistics:
	Veh. Hrs	873,400	Service Supplied and Consumed
			2008 NTD: Table 19 Transit Operating Statistics:
	PMT	593,419,400	Service Supplied and Consumed
		389 gasoline	
		16 CNG	
	_	41 diesel (road)	
	Qty	9 diesel (non-road)	MARTA / S.L. King
	Est.		
	Service	10	NT/1
	Life	12 years	N/A
Non-Rev.	Cap.	X7	
Veh.	Cost	varies by model	N/A
	Maint.	NI/A	NT/A
	Cost	IN/A	N/A
		403,720 gal diesel	
		633 368 SCE (est 13	
	Fuel	mpGE)	MARTA / S.L. King
	VAAT	5.02(.004	MADTA / CL Wine
	V IVI I	5,926,994	MARIA / S.L. King
Stationary			
(combustion)	Fuel	510,604.86 therms	MARTA / S.L. King
Stationary			
(electricity)	Energy	11,139,2734.06 KWh	MARTA / S.L. King

 Table 16:
 2008 MARTA GHG Inventory Aggregated Data Input Values and Sources (cont.).

The input and output worksheets for the MARTA 2008 GHG Emissions Inventory are shown in Appendix D. The inventory records (rows) preserve the resolution of vehicle and facility activity data provided by MARTA. For both the bus and paratransit inventory worksheets, each record represents a unique vehicle model type. Heavy rail vehicle activity data was only available for the heavy rail vehicle fleet as a whole. Stationary combustion activity data (natural gas consumption) is combined into a single record, but purchased electricity activity data for facilities is disaggregated by each metered facility. No specific fuel emission factor data was available from MARTA, so all GHG emissions calculations are performed using calculator defaults (bottom tier emission factor data).

The calculator produces bar graphs of the major categories of agency GHG emissions. These graphs are intended to help agencies identify the major sources of GHG emissions from agency activities. Figure 16 shows a graph of MARTA's Scope 1 GHG emissions for 2008. Far and away the largest source of GHG emissions is the bus fleet, with CNG buses producing the greatest proportion of bus fleet emissions. This result is to be expected, since the CNG fleet outnumbers the diesel bus and paratransit fleets. As should be expected, the non-revenue vehicle GHG emissions are the lowest among all other vehicle fleet GHGs. Figure 16 helps to highlight that stationary combustion GHGs from agency facilities comprise the smallest source of Scope 1 GHG emissions. This is not to say that agency facilities contribute very little to the agency carbon footprint. To understand the degree of facility emissions, the Scope 2 emissions from purchased electricity must be considered.

Figure 16: MARTA Scope 1 GHG emissions for 2008.

Figure 17 shows the Scope 2 MARTA GHG emissions from 2008. Figure 17 indicates that facility related GHGs are a major portion of the agency carbon footprint. Most facility GHGs arise from the production of electricity for rail stations and yards, and the combined emissions from rail stations and yards, main offices, and other facilities are equal to 70,867 MT of CO₂e, which is more than the emissions generated for heavy rail vehicle propulsion. It is apparent that agency facilities present significant opportunities for reducing agency GHG emissions. It should be noted that the electrical energy for heavy rail propulsion and rail station and yard power are delivered through the same connections to the grid and are not metered separately. Thus the proportions of electrical energy consumption for propulsion and facility power are estimated by agency engineers. Considering the total magnitude of emissions from

purchased electricity, MARTA efforts to target GHG emission reduction opportunities would likely benefit from direct metering of either facility or heavy rail propulsion energy consumption.

Figure 17: MARTA Scope 2 GHG emissions for 2008.

The Scope 2 emission presented in Figure 17 are estimated from default emission factors from the eGRID2007 database, which contains state-level (in this case Georgia) emission factors from 2005. The results in Figure 17 are likely lower than the actual 2008 GHG emissions from purchased electricity, since the 2008 Georgia CO_2 emission factor data from the U.S. EIA is higher than the 2005 Georgia CO_2 emission factor data from eGRID (1,449 lbs/MWh vs. 1,403 lbs/MWh) (44, 56). The older eGRID data was used since 2008 CH₄ and N₂O emission factor data is currently unavailable from the U.S. EIA. The lack of 2008 emission factor data likely impacts the accuracy of the inventory, but does not thwart the assessment of the calculator, which is in part an effort to test the use of the built-in default data. It is anticipated that 2007 emission factor data will be available from eGRID toward the end of the year 2010 (44).

The total Scope 1 and Scope 2 emissions, along with the agency performance metrics, are reported below in Table 17. The performance metrics indicate that even though heavy rail transit is the most carbon-intensive vehicle (highest emissions per vehicle-mile) it is MARTA's most carbon efficient mode of public transportation (lowest emissions per passenger-mile). This comparison neglects the GHG emissions produced from rail yards and stations; emissions that could conceivably be tacked onto the heavy rail mode. APTA does not recommend that such infrastructure emissions be added to transit modes since it creates an unfair comparison with highway modes, which are said to typically neglect infrastructure emissions (9). Had data been available, the performance metrics results would have benefited from an analysis of the facility GHG emissions per square foot. A calculation of GHG emissions per square foot would enable comparison of facility GHG emissions to the GHG emissions of other commercial buildings in the Atlanta metropolitan region.

Mode	Emissions (E)	Vehicle Miles (VM)		Revenue Vehicle Hours (RH)		Passenger Miles (PM)	
	Metric Tons	Total (000s)	E/VM (kg/mi)	Total (000s)	E/RH (kg/hr)	Total (000s)	E/PM (kg/pax- mi)
Bus (MB)	76,265	30,552	2.50	2,191	34.80	213,460	0.36
Paratransit (DR)	7,862	6,666	1.18	284	27.70	5,423	1.45
Heavy Rail (HR)	61,973	24,063	2.58	873	70.96	593,419	0.10
Non-Revenue Vehicles	4,319	5,927	0.73				
Stationary (combustion)	2,717						
Stationary (electricity)	70,868						
Total	224,004	67,207	3.33	3,349	66.89	812,302	0.28

Table 17:MARTA GHG Performance Metrics, Annual CO2e Scope 1 and Scope 2Emissions for 2008

In addition to direct and indirect fuel combustion emissions, the calculator estimates the indirect Scope 3 emissions. Figure 18 below shows the 2008 MARTA Scope 3 fuel-cycle and vehicle-cycle GHG emissions.

Figure 18: MARTA Scope 3 GHG emissions for 2008.

It should be noted that the fuel-cycle GHG emissions in Figure 17 are proportional to the VMT and/or the amount of fuel combusted for each of the modes/fuels, whereas the vehicle-cycle GHG emissions are based on annualized costs and are thus not directly proportional to VMT. It was mentioned previously that mode-specific annual maintenance costs are assumed to be distributed evenly between the vehicles of a particular mode. At the level of individual vehicle records, this assumption results in higher than average per mile maintenance costs for vehicles with lower than average VMT. Thus, the EIO-LCA-estimated vehicle-cycle GHG emissions for each of the vehicle inventory records are expected to be either too high or too low (depending

upon VMT data for the vehicle class), but for each mode the total sum of vehicle-cycle GHG emissions will be consistent with the mode's average maintenance GHGs/mile. The calculator accommodates the input of maintenance cost data on a per mile basis, and such data for each of the vehicle classes would have provided a more precise estimate of vehicle-cycle maintenance emissions. This is especially true for the MARTA diesel and CNG buses, for which only a combined annual total of maintenance costs was available. The calculator's approach to estimating vehicle-cycle GHG emissions attempts to effectively leverage data for both vehicle manufacture and vehicle maintenance. In consideration of the fact that the industrial sectors in the EIO-LCA do not capture material differences in products within a sector (see Section 3.3.2.3), and considering that separate sector emissions for tires and other vehicle accessories should be applied separately from the selected vehicle maintenance sectors, it is questionable whether the calculation results are worth the level of sophistication used in the calculator. In terms of minimizing data requirements for the generation of meaningful calculation outputs, users of the calculator may benefit from a simplification of the vehicle-cycle GHG emissions estimation.

During the development of the calculator, it was discovered that the EIO-LCA model and model results are restricted to non-commercial use (otherwise a commercial-use license must be obtained, for a substantial fee). Considering that the calculator is intended to be available for free use by transit agencies, an alternative (free and unrestricted) calculation method is desired. One promising option is the use of average upstream emission factors, expressed as a percentage of vehicle operation emissions. Such factors are available in Appendix B of the U.S. EPA's report of transportation GHGs from 1990-2003 (21). Due to the age and the lack of supporting detail on these emission factors, it is unclear whether these emission factors in particular are appropriate

for incorporation into the calculator. Further research is needed to derive emission factors that are consistent with current research literature findings of life cycle transportation GHG emissions.

The direct, fuel-cycle, and vehicle-cycle GHG emissions of MARTA are summarized in Figure 19. The upstream GHG emissions comprise a considerable proportion of agency emissions, but most of the emissions arise from the combustion of fossil fuels for vehicle propulsion and facility energy demands.

Figure 19: MARTA direct and life cycle GHG emissions for 2008.

The life cycle GHG emissions performance of MARTA is evinced by the total Scope 1, 2, and 3 emissions and performance metrics in Table 18. The relative GHG emissions performance of MARTA's transit modes are approximately the same when considering or

ignoring life cycle emissions (see Table 17 and Figure 19). The main message to be gleaned from the results of the life cycle calculations is that agency activities produce significant, quantifiable impacts on GHG emissions in the vehicle and fuel supply chains.

Mode	Emissions (E)	Vehicle Miles (VM)		Revenue Vehicle Hours (RH)		Passenger Miles (PM)	
	Metric Tons	Total (000s)	E/VM (kg/mi)	Total (000s)	E/RH (kg/hr)	Total (000s)	E/PM (kg/pax- mi)
Bus (MB)	118,181	30,552	3.87	2,191	53.93	213,460	0.55
Paratransit (DR)	13,506	6,666	2.03	284	47.59	5,423	2.49
Heavy Rail (HR)	88,324	24,063	3.67	873	101.13	593,419	0.15
Non-Revenue Vehicles	8,509	5,927	1.44				
Stationary (combustion)	3,238						
Stationary (electricity)	81,419						
Total	313,177	67,207	4.66	3,349	93.52	812,302	0.39

 Table 18: MARTA GHG Performance Metrics, Annual CO2e Scope 1, 2, and 3 Emissions for 2008

4.2. Cost-Effectiveness of GHG Emission Reduction Strategies

The following cost-effectiveness evaluations test the application of the developed calculator to the evaluation of the effectiveness of vehicle-based and facility-based strategies for reducing transit agency GHG emissions.

4.2.1. King County Metro Transit Articulated Diesel Hybrid Bus Evaluation

Diesel hybrid-electric propulsion has become a popular vehicle propulsion technology among transit agencies. Diesel hybrid buses typically achieve higher fuel efficiencies than conventional diesel buses, thereby reducing operational GHG emissions. According to a recent study from the National Academy of Sciences, hybridization is one of the most effective fuel consumption reduction technologies for heavy duty vehicles (*59*). King County Metro Transit in Seattle, WA has 235 hybrid buses (nearly one-quarter of its bus fleet), 213 of which are 60 ft articulated hybrid buses (*60*). The articulated hybrid buses serve as replacements for the retired/rebuilt Breda dual-mode (diesel and overhead catenary electric) buses that operated in the Seattle downtown transit tunnel. The National Renewable Energy Laboratory (NREL) of the U.S. Department of Energy (DOE) has helped Metro Transit evaluate and compare the cost and emissions of the articulated hybrid buses relative to conventional diesel articulated buses (*61*).

For the evaluation, 10 model year 2004 New Flyer DE60LF diesel hybrid buses were compared against 10 model year 2004 New Flyer D60LF diesel buses. The hybrid and conventional diesel buses operated from different maintenance garages and each bus was randomly dispatched for service on the transit routes. During the 12 month evaluation period (between April 1, 2005 and March 31, 2006) the hybrid and diesel buses logged similar average monthly miles of service. Table 19 summarizes the specifications, costs, and performance data relevant to an evaluation of the bus GHG emissions.

	Diesel	Hybrid
Number of Buses	10	10
Manufacturer and Model	New Flyer D60LF	New Flyer DE60LF
Model Year	2004	2004
Seats	58	58
Purchase Cost (per bus)	\$445,000	\$645,000
Maintenance Cost (\$/mile)	0.462	0.444
Total Mileage (maint. cost est.)	353,785	371,458
Total Mileage (fuel est.)	350,567	362,049
Fuel Cost (\$/mile)	0.791	0.624
Fuel Consumption (gallons)	139,996	114,054
Fuel Type	B5	ULSD
Fuel Economy (avg.)	2.5	3.17

 Table 19: King County Metro Hybrid Bus Cost and Emissions Evaluation Data (61)

The diesel and hybrid buses are based on the same vehicle platform and provide the same service capacity. The maintenance costs accounts for all maintenance activities during the evaluation period. It is important to note that the maintenance costs do not account for major repair and overhaul activities that are known to occur during the bus life cycles, such as engine rebuilds, transmission rebuilds, and battery replacement (hybrid). It should also be noted that different mileage totals were used to estimate the maintenance costs per mile and the fuel cost per mile. Different types of fuels were used at the respective garages; however, from a GHG emissions perspective, the difference is negligible. The bus evaluation did not include a calculation of the GHG emissions produced during the evaluation period. However, using the fuel consumption and mileage data in Table 19 the calculator was used to estimate GHG emissions.

The calculator inputs and outputs of the bus GHG emissions are shown in Appendix E. The calculation results indicate that on a per mile basis, the hybrid buses achieved a 21.1 percent reduction in Scope 1 GHG emissions relative to the diesel buses. The bus worksheet figures in Appendix E show the diesel bus and hybrid bus calculations twice (four inventory rows). The GHG inventory rows are repeated to accommodate two variations of the cost-effectiveness calculations (see Figure 64). The first two rows present a cost-effectiveness based directly on the costs given in Table 19, whereas the last two rows present a cost-effectiveness based on an 80 percent vehicle purchase subsidy, which is typical of FTA support (*59*). The costs shown in columns DC and DE are used for Scope 3 vehicle-cycle GHG emissions estimation, not the cost-effectiveness calculations. The cost profiles of the subsidized and unsubsidized buses are shown in Figure 65 in the Appendix. The inventory data and cost profile data are combined in the following calculations of the cost effectiveness:

Without subsidy:

$$\frac{\left(\frac{\$645,000 \times 10 \text{ veh.}}{12 \text{ yrs.}} - \frac{\$445,000 \times 10 \text{ veh.}}{12 \text{ yrs.}}\right)}{350,567 \text{ mi.}} + \left(\frac{\$1.068}{\text{mi.}} - \frac{\$1.253}{\text{mi.}}\right)}{\left(\frac{1,421.51 \text{ tonnes CO2e}}{\text{ yr.}} - \frac{1,158.21 \text{ tonnes CO2e}}{362,049 \text{ mi.}}\right)}{350,567 \text{ mi.}} - \frac{\$282.53}{\text{ tonne CO2e}}\right)$$

With subsidy:

Without a vehicle purchase subsidy, the cost-effectiveness of the GHG emissions reduction from the hybrid buses is \$282.53 per tonne of CO₂e. This value is considerably higher than the cost of carbon credits trading in international markets, but this is not to say that the GHG emission reductions are not worth the investment. When interpreting the cost-effectiveness results, it is important to keep in mind that hybrid buses offer several co-benefits beyond GHG emissions reductions, such as reduced CAP idling emissions, reduced fuel consumption, reduced noise, etc. With a vehicle purchase subsidy, the cost-effectiveness of the GHG emissions reduction from the hybrid buses (from the perspective of the transit agency) is -\$116.43 per tonne of CO₂e (see calculation results shown in Figure 20 below).

	Cost-Eff.		CO2e Emiss. Rate	
Cost ID	Baseline?	Cost (\$/mile)	(g/mile)	Cost-Eff. (\$/tonne)
KCM diesel sub	yes	\$1.46	4,055	
KCM hybrid sub		\$1.36	3,199	-\$116.43

Figure 20: Cost-effectiveness results for KC Metro hybrid bus evaluation.

105

This negative cost-effectiveness value indicates that relative to diesel buses, the hybrid buses reduce both agency GHG emissions and agency costs. It should be noted that the costeffectiveness of the hybrid buses could be improved further if the agency were to partially finance the hybrid buses with carbon reduction credits sold on the carbon market.

The cost data from the one year bus evaluation enables an approximate calculation of the payback period for offsetting the higher vehicle purchase cost with the fuel cost savings. First the following assumptions must be made: 12 year lifetime for both bus types; bus mileage and fuel consumption remain constant each year; per mile maintenance costs remain constant (or major repair costs in future years are similar between bus types); fuel costs remain constant, and no interest is charged/earned on bus procurement, operation, and maintenance cash flows. With these assumptions the fuel cost savings of the hybrid bus would not offset the higher purchase cost until after the bus lifetime (payback period of 38 years). The payback period calculation follows Equation 17:

$$\frac{(\$645,000 \times 10 \text{ veh.}) - (\$445,000 \times 10 \text{ veh.})}{\left(\frac{\$1.253}{mi.} \times \frac{350,567 \text{ mi.}}{yr.}\right) - \left(\frac{\$1.068}{mi.} \times \frac{362,049 \text{ mi.}}{yr.}\right)} = 38.03 \text{ yrs.}$$

Figure 21 shows the calculator's payback period calculation for the unsubsidized KC Metro hybrid buses.

Figure 21: Payback period calculation for KC Metro hybrid buses (unsubsidized).

The calculations in Figure 21 indicate a higher life cycle agency cost for hybrid buses relative to diesel buses when no purchase subsidy is applied. This result is consistent with the TCRB's study of hybrid bus lifecycle cost (*35*). If an 80 percent subsidy is applied to the purchase of both hybrid and diesel buses, the hybrid bus fuel cost savings would recover the higher purchase cost in 7.6 years (see Figure 22).

	Baseline	Alternative	Difference
			l
Option	Option #1	Option #2	
Cost ID	KCM diesel sub	KCM hybrid sub	
Inventory ID	2880-2889	2780-2789	1
# of Vehicles	10	10	
			_
Service Life (years)	12	12	
			-
Capital Cost (w/ salvage)	\$890,000.00	\$1,290,000.00	\$400,000.00
Average Annual Cost	\$439,260.45	\$386,668.33	\$52,592.12
			1
Life Cycle Cost	\$6,161,125.41	\$5,930,019.98	
B/C Ratio			0.131
Payback (years)			7.61
		L. L	

Figure 22: Payback period calculation for KC Metro hybrid buses (subsidized).

The 7.6 year payback period is well within the estimated 12 year service life of the buses. Therefore, from the perspective of the transit agency, hybrid buses can not only deliver costeffective reductions in agency GHG emissions, but can also lower vehicle life cycle costs.

4.2.2. New York Metropolitan Transit Authority Grand Central Terminal Lighting Replacement Evaluation

Transit agencies often manage extensive infrastructures that consume energy and produce GHG emissions. Therefore, facility-based strategies for reducing GHG emissions should not go overlooked. To reduce energy consumption, GHG emissions, and costs, the New York Metropolitan Transit Authority (NY MTA) has pursued a lighting replacement project for one of the nation's most well-known infrastructures – Grand Central Terminal. The NY MTA replaced 1,700 incandescent light bulbs with compact fluorescent lamps (CFLs). Table 20 shows the hardware, cost, and energy consumption data for the lighting replacement.

	Incandescent	CFL
Number of Lamps	1,700	1,700
Wattage	60 W (700), 100W (1,000)	15 W (700), 20W (1,000)
Replacement cost (\$/yr)	\$10,200/yr	\$11,050/yr
Electricity Cost Savings (\$/yr)		\$147,000/yr
Electricity Savings (kWh)		980,000

 Table 20:
 NY MTA Grand Central Terminal Lighting Replacement Data (62)

Although total energy consumption and cost data were unavailable for this case study, the GHG emissions reduced, the cost-effectiveness, and the payback period may be calculated from the differences in costs and energy consumption. Local emission factor data was unavailable, so default emission factors in the calculator were used to estimate the GHG emissions saved. For estimating the GHG emissions saved from reductions in electrical energy consumption, the eGRID database documentation recommends use of non-baseload emission rates (44). Based on eGRID non-baseload emission rates for the NYCW subregion (1,525.05 lbs CO_2/MWh , 56.80 lbs CH_4/GWh , and 9.08 lbs N_2O/GWh) (44), the yearly savings in annual energy consumption equates to annual Scope 2 GHG emissions savings of approximately 677.9 tonnes of CO_2e . If annual emission rates are used, the Scope 2 GHG emission savings are approximately 362.5 tonnes of CO_2e . With a percent difference of 60.6 percent, these estimates of GHG emission

savings underscore the need for more precise time-of-day emission factor data and activity data. The calculator worksheet inputs and outputs for this case study are shown in Appendix E.

The lighting replacement data in Table 20 indicate that both costs and energy consumption (and by extension GHG emissions) were reduced. Thus, the \$/tonne cost-effectiveness of the lighting replacement for Grand Central Terminal is a negative figure. Specifically, the calculator estimates a cost-effectiveness of -\$215.58 per tonne of CO₂e. This result invites a calculation of the payback period for the lighting replacement. Using Equation 17, the yearly lamp replacement costs may be taken as the capital costs and the electricity cost savings may be taken as the annual costs (see cost profiles in Figure 68 in Appendix E). The annual lamp replacement costs are treated as capital costs since these are the only initial project costs and because the data on cost savings indicate that all initial costs are recovered before the end of the year (a one year capital project that is repeated annually). The calculated payback period is shown in Figure 23.

Figure 23: Payback period calculation for NY MTA Grand Central Terminal lighting replacement.

The payback for the lighting replacement occurs in approximately 0.006 years (or about two days). The calculated life cycle costs in Figure 23 do not include all associated costs (energy costs for the baseline and alternative were not available), but the estimated life cycle costs summarize the relative savings of the CFL lighting replacement.

The hardware used in this lighting replacement case study are typical of those used for many transit agency facilities. Thus, this case study highlights the significant cost and GHG emissions savings that are possible through lighting replacements. Transit agencies that manage extensive, lighted passenger facilities would do well to pursue lighting efficiency strategies to cost-effectively reduce their carbon footprint.

CHAPTER 5

CONCLUSION

The calculation tool presented in this thesis effectively integrates life cycle GHG emissions estimation and cost accounting for the management of strategies aimed at reducing GHG emissions from public transit agency operations. The tool enables quantification of an agency's GHG emission inventory, and identification of the most cost-effective GHG emission reduction strategies, for both vehicle-based and facility-based strategies.

With respect to estimation of life cycle costs, cost-effectiveness, and payback periods, further research is needed to account for finance costs and uncertainty in future energy costs. In its current form, the calculator incorporates the time value of money only for discounting the salvage value of assets. The calculation tool currently allows the user to model both arithmetic and geometric increases in annual costs; however, the cost-effectiveness and payback period calculations currently treat annual costs as average values over the lifecycle.

The calculation tool considers only one cost (cost to agency) and one benefit (GHG emission reductions). In light of this fact, the tool does not provide an automatic determination of the best strategy for investment. Such a determination should account for co-benefits of the investment. For example, the \$/tonne cost-effectiveness of an HVAC retrofit at a maintenance facility may be superior to the \$/tonne cost-effectiveness of a hybrid bus procurement, but the hybrid bus may offer superior co-benefits such as reduced criteria air pollutant emissions in urban areas, reduced roadway noise, improved passenger comfort, etc. In such a case, the best GHG emission reduction strategy (for investment of transit agency resources) may not be the alternative with the lowest \$/tonne cost-effectiveness. Ultimately, the "best" investment

alternative for an agency is the one that most cost-effectively serves an agency's mission and/or goals. Although the developed calculation tool does not determine the "best" investment alternative for an agency, it can help to quantify the GHG emissions performance of transit agency investment alternatives.

Despite its limitations, the developed calculator provides an improved framework and evaluation capability for managing strategies for reducing public transit agency GHG emissions. At the very least, the developed calculator compiles GHG emission estimation protocol methods and data into a single spreadsheet model. This compilation includes the distillation and incorporation of life cycle GHG emission estimation methods, which are generally undefined by GHG emission estimation protocols. The fuel-cycle and vehicle-cycle methodologies included in the calculator leverage established methods and data sources, but given the many assumptions behind the methods and data sources (particularly for process-based life cycle GHG emission calculations) the overall accuracy of these estimation methods are questionable. In the field of life cycle analysis of GHG emissions from transportation, further research is needed to reconcile variations in assumptions and results from different life cycle calculation methods. Some progress had been made for developing baseline data and methods of fuel-cycle GHG emissions from petroleum-based fuels (63), but considering the diversity of fuels, modes, and facilities used by public transportation agencies, the task of establishing consistency in life cycle calculation methods is a formidable one. Although the uncertainties of life cycle emissions estimation warrant future research, such uncertainties do not negate the value of the developed calculator. Considering the basic motivations for quantifying GHG emissions from public transit agency operations (voluntary reporting, federal funding applications, and carbon trading) users of the

developed calculator are likely most interested in quantifying GHG emissions arising directly from agency operations (Scope 1 and Scope 2 emissions).

This thesis has achieved its primary research objective: to develop an integrative calculation tool for the estimation and management of public transit agency-level life cycle GHG emissions. The application and assessment presented in this thesis (see Chapter 4) demonstrates the capabilities and limitations of the calculator, but the intended application of the developed calculator is its direct use by transit agency personnel. The architecture and user interface of the calculator is designed to facilitate ease of use by persons who are not experts in GHG emissions estimation. To determine how well the calculator meets user needs, and to reap practical benefits from the academic work presented in this thesis, the calculator will be provided for public use by transit agency personnel. Based on feedback from users of the calculator, and based on advancements in the literature on life cycle GHG emissions estimation methods and data, the calculator will continue to evolve as a GHG emissions estimation and management tool.

APPENDIX A: EXISTING GHG EMISSION CALCULATORS

 Table 21: Inventory GHG Emissions Calculators for Transit Vehicles and Fuels (1)

Calculator	Format	Output
World Resources Institute (WRI): The Greenhouse Gas	guidance report	Total metric tonnes of CO2e.
Protocol (40),	and spreadsheets	For each mode: metric tonnes of
Calculating CO2 Emissions from Mobile Sources		CO2, kg of CH4, kg of N2O,
GHG Protocol Tool for Mobile Combustion, V2.0		metric tonnes of biofuel CO2e.
Indirect CO2 Emissions from Purchased Electricity		
GHG Protocol Tool for Purchased Electricity, V4.0		
The Climate Registry (TCR): General Reporting Protocol	guidance report	Total metric tonnes of CO2, CH4,
V1.1 (6)	and online	N2O, CO2e, and biomass CO2e.
The Climate Registry Information System (CRIS) (39),	forms	For each refrigerant, total metric
Mobile Combustion		tonnes of CO2e.
Emissions from Electricity Use		
Fugitive Emissions from the Use of Refrigeration and Air		
Conditioning Equipment		
California Climate Action Registry (CCAR): General	guidance report	Total metric tonnes of CO2, CH4,
Reporting Protocol V3.1 (41),		N2O, CO2e, and biomass CO2e.
Direct Emissions from Mobile Combustion		For each refrigerant, total metric
Indirect Emissions from Electricity Use		tonnes of CO2e.
Direct Fugitive Emissions from Refrigeration Systems		
International Council for Local Environmental Initiatives	guidance report	Total metric tonnes of CO2, CH4,
(ICLEI): Local Government Operation (LGO) Protocol		N2O, CO2e, and biomass CO2e.
(42),		For each refrigerant, total lbs or
Vehicle Fleet (Mobile Combustion)		kg of CO2e.
Vehicle Fleet (Fugitive Emissions from Motor Vehicle Air		
Conditioning)		
Electricity Use		
Environmental Defense Fund (EDF) / NAFA Fleet	guidance report	Total metric tonnes of CO2, CH4,
Management Association Fleet Greenhouse Gas Emissions	and online	N2O, and HFCs.
Calculator (64)	forms	
U.S. EPA Climate Leaders: Cross Sector Guidance (38)	guidance reports	For each fuel, total kg of CO2.
Simplified GHG Emissions Calculator:	and spreadsheets	For each fuel and vehicle, g of
Direct Emissions from Mobile Combustion Sources		CH4, g of N2O.
Indirect Emissions from Purchase of Electricity		Total metric tonnes of CO2e,
Direct Emissions from Refrigeration and Air Conditioning		biomass CO2e.
Equipment		For electricity, total lb of CO2, lb
		of CH4, lb of N2O, total metric
		tonnes of CO2e.
		For each retrigerant, total lbs or
		kg of CO2e.

Calculator	Format	Output
Transport Canada (TC) Urban Transportation Emissions	online forms	For each vehicle type: Kg CO2e
Calculator (65)*	onnie tornis	(upstream operation and total)
		Kg CAC's veh-km of annual
		travel (road vehicles) pass-km of
		annual travel (non-road vehicles)
Travel Matters Center for Neighborhood Technology	online forms	Total annual lbs CO2 by mode
(CNT): Transit Planning Calculator (66)*	and spreadsheets	lbs CO2/mile by vehicle type
Greenhouse Geses Regulated Emissions and Energy Use	and spreadshoot with	Total short tons of CO2s and
in Transportation (GPEET) Elect Ecotorint Calculator 1.0	spreadsheet with	harrals of patroloum used
(48)*	user guide	barrens of perforeunit used
(40) ¹ Greenhouse Cases, Degulated Emissions, and Energy Use	software and	For each fuel type: well to pump
in Transportation (CREET) Fuel Cycle Model 1.8c 0 (46)*	software and	Btu/mmBtu of operate
In Transportation (OKEET) Puet-Cycle Model 1.80.0 (40)	spreadsheets	consumption g/mmBtu of CO2e
	spicausneets	CO2 CH4 and N2O well to
		wheel Btu/mile of energy
		consumption and g/mile of
		CO_2e CO ₂ CH ₄ and N ₂ O
Greenhouse Gases Regulated Emissions and Energy Use	spreadsheets	For each vehicle type: well-to-
in Transportation (GREET) Vehicle-Cycle Model 2.7 (47)	spreudsneets	pump vehicle cycle vehicle
		operation, and total Btu/mile of
		energy consumption, and g/mile
		of CO2e, CO2, CH4, and N2O
Lifecycle Emissions Model (LEM) (50)	software	For each combination of vehicle
		type and fuel type process: well-
		to-pump g/GJ of CO2e, CO2,
		CH4, N2O, and HFC-134a,
		lifecycle g/mi of CO2e, CO2,
		CH4, and N2O, and HFC-134a
GHGenius 3.15 (49)	spreadsheets	For each combination of vehicle
		type and fuel type process: well-
		to-pump g/GJ of CO2e, CO2,
		CH4, N2O, HFC-134a, lifecycle
		g/km of CO2e, CO2, CH4, N2O,
		and HFC-134a
Economic Input-Output Life Cycle Analysis (EIO-LCA)	online forms	Per \$1M of economic activity and
(52)		for each sector: total metric
		tonnes of CO2e and total CO2e
		of CO2, CH4, N20, and CFCs
U.S. EPA: Motor Vehicle Emission Simulator (MOVES)	software	CO2e and total energy
(07)*,**		consumption

* Partial life cycle: upstream fuel emissions
** MOVES is currently available in a draft version, but a complete version is scheduled to officially replace MOBILE 6.2 as the U.S. EPA's on-road, mobile source, emission factor software.

Calculator	Vehicle Types	Fuel Types
WRI: The	local bus coach freight truck light rail tram	gasoline diesel residual fuel oil LPG
Greenhouse Gas	subway (gasoline, diesel, CNG, ethanol) bus.	CNG, LNG, ethanol, B100, jet fuel.
Protocol (40)	(gasoline, diesel) passenger car, light goods	aviation gasoline. E85 (both with
Calculating CO2	vehicle. (diesel) locomotive. (gasoline, diesel.	biofuel or fossil fuel). B20 (both with
Emissions from	CNG, LNG, LPG, ethanol) heavy duty vehicle.	biofuel or fossil fuel).
Mobile Sources		
TCR: General	(gasoline, diesel) passenger cars, light trucks.	motor gasoline, diesel fuel No. 1 and 2.
Reporting Protocol	heavy-duty vehicles, ships, boats. (diesel)	aviation gasoline, jet fuel (Jet A or A-
Version 1.1, CRIS,	locomotives. (methanol, CNG, ethanol) buses,	1), kerosene, residual fuel oil (#5 and
(6, 39) Mobile	light duty vehicles, heavy duty vehicles. (LPG)	6), crude oil, B100, E100, methanol,
Combustion *	light duty vehicles heavy duty vehicles. (LNG)	LNG, LPG, propane, ethane, isobutane,
	heavy duty vehicles.	n-butane, CNG.
CCAR: General	(gasoline, diesel) passenger cars, light trucks,	motor gasoline, diesel fuel No. 1 and 2,
Reporting Protocol	ships, boats. (diesel) locomotives, heavy-duty	aviation gasoline, jet fuel (Jet A or A-
V3.1 (41),	vehicles. (biodiesel) heavy duty vehicles.	1), kerosene, residual fuel oil (#5 and
Direct Emissions	(methanol, CNG, ethanol) buses, light duty	6), crude oil, B100, E100, methanol,
from Mobile	vehicles, heavy duty vehicles. (LPG) light duty	LNG, LPG, propane, ethane, isobutane,
Combustion*	vehicles, heavy duty vehicles. (LNG) heavy duty	n-butane, CNG.
	vehicles.	
ICLEI LGO	(gasoline, diesel) passenger cars, light trucks,	motor gasoline, diesel fuel No. 1 and 2,
Protocol (42):	heavy-duty vehicles, ships, boats. (diesel)	aviation gasoline, jet fuel (Jet A or A-
Vehicle Fleet	locomotives. (methanol, CNG, ethanol) buses,	1), kerosene, residual fuel oil (#5 and
(Mobile	light duty vehicles, heavy duty vehicles. (LPG)	6), crude oil, B100, E100, methanol,
Combustion)*	light duty vehicles, heavy duty vehicles. (LNG)	LNG, LPG, propane, ethane, isobutane,
	heavy duty vehicles.	n-butane, CNG.
EDF Fleet	(gasoline, diesel, LPG, ethanol, biodiesel, LNG,	gasoline, diesel, LPG, ethanol,
Greenhouse Gas	CNG, electricity) passenger cars, light duty	biodiesel, LNG, CNG, electricity.
Emissions	trucks, vans, SUVs, medium and heavy duty	
Calculator (64)**	vehicles, (gasoline, diesel) ships, boats, other.	
	(diesel) locomotives.	
EPA Climate	(gasoline, diesel) passenger cars, light trucks,	motor gasoline, diesel fuel No. 1 and 2,
Leaders: Simplified	heavy-duty vehicles, ships, boats. (diesel)	aviation gasoline, jet fuel, residual fuel
GHG Emissions	locomotives. (<i>methanol</i> , CNG, ethanol) buses,	oil (#5 and 6), crude oil, <i>B100</i> , ethanol,
Calculator (38):	light duty vehicles, heavy duty vehicles. (LPG)	E100, methanol, LNG, LPG, propane,
Direct Emissions	light duty vehicles, heavy duty vehicles. (LNG)	ethane, isobutane, n-butane, CNG.
trom Mobile	heavy duty vehicles. (residual fuel oil) ships,	
Combustion	boats.	
Sources*,***		

Table 23: Vehicle and Fuel Types Covered by GHG Emissions Calculators (1)

*CH4 and N2O calculations are limited to combinations of vehicles and fuels shown in vehicle type field, where fuels are shown in parentheses, followed by the vehicles available for the fuel type. CO2 calculations are performed for any vehicle shown

** Calculations are limited to combinations of vehicles and fuels shown in vehicle type field, where fuels are shown in parentheses, followed by the vehicles available for the fuel type.

***Fuels shown in italics are not available in the spreadsheet calculator, but are available in calculation guide.

Calculator	Vehicle Types	Fuel Types
TC Urban Transportation Emissions Calculator (65)	light-duty passenger vehicles, light-duty commercial vehicles, medium-duty commercial vehicles, heavy- duty commercial vehicles, public transit buses, public transit trolley buses, light rail, subway/metro, heavy rail (diesel-fuelled) commuter rail.	gasoline, diesel, propane, CNG, LNG, E10, E85, M85, ED10, B100, hybrid, plug-in hybrid, electric vehicle, fuel cell.
LEM (50)	light-duty passenger cars, battery-powered electric vehicles, fuel-cell vehicles, full-size buses, mini- buses, mini-cars, heavy-rail transit, light-rail transit, medium and heavy-duty trucks, diesel trains.	gasoline, methanol, ethanol, diesel, biodiesels, CNG, LNG. Electricity: coal, petroleum, NG, nuclear, solar, biomass, hydro.
GHGenius 3.15 (49)	light duty vehicles, passenger cars, light trucks, heavy duty vehicles, buses, trucks.	gasoline, methanol, ethanol, butanol, petrol diesel, FT diesel, biodiesels, H2, CNG, LNG. Electricity: coal, fuel oil, NG, nuclear, wind, biomass, hydro, other.
EIO-LCA (52)	automobile, light truck, heavy duty truck, railroad rolling stock, ships, boats.	petroleum (oil and gas), electricity.
GREET Fuel- Cycle Model 1.8c.0 (46)	passenger cars, light duty vehicles 1, light duty vehicles 2.	gasoline, diesel, CARFG, LPG, Crude Naptha, CNG, LNG, Methanol, DME, FTD, Naptha, E5-10, E50-90, E100, gaseous hydrogen, liquid hydrogen, biodiesel. Electricity: residual oil, natural gas, coal, nuclear power, biomass, other. Ethanol: corn, woody biomass, herbaceous biomass, corn stover, forest residue, sugar cane.
GREET Fleet Footprint Calculator 1.0 (48)	school bus, transit bus, shuttle/paratransit bus, transport/freight truck, medium/heavy duty pickup truck, other.	gasoline, diesel, biodiesel (B100), corn ethanol (E100), cellulosic ethanol (E100), CNG, LNG, LPG, liquid hydrogen, gaseous hydrogen. Electricity: residual oil, natural gas, coal, nuclear power, biomass, wind/solar/hydro.
GREET Vehicle-Cycle Model 2.7 (47)	For both passenger car and SUV (conventional or lightweight materials): internal combustion engine vehicle, hybrid electric vehicle, fuel-cell vehicle.	Process fuels: residual oil, diesel, natural gas, coal, electricity.
Travel Matters, Center for Neighborhood Technology: Transit Planning Calculator (66)	Online form: Vehicles reported by transit agency on Form 408 (Revenue Vehicle Inventory Form) for NTD 2002 data report. Spreadsheet: Bus, commuter rail, heavy rail, light rail/trolleybus.	Online form: (bus and van): diesel, B20, biodiesel, CNG, Electro-diesel, ethanol, fuel-cell/natural gas, fuel-cell/electrolysis. (rail electricity): biomass, coal, gas, geothermal, hydro, nuclear, oil, solar, wind, other. Spreadsheet: (bus) diesel, B20, CNG/LNG, Electricity, fuel-cell/electrolysis. (rail) electricity.
U.S. EPA: MOVES (67)	intercity bus, light commercial truck, motor home, passenger car, passenger truck, school bus, transit bus. Alternative Vehicle and Fuel Technologies: conventional internal combustion (IC), advanced IC, moderate hybrid - conventional IC, full hybrid - conventional IC, hybrid - advanced IC, moderate hybrid - advanced IC, full hybrid - advanced IC, electric, fuel cell, hybrid - fuel cell.	CNG, diesel fuel, electricity, E85, gasoline, LPG.

 Table 24: Vehicle and Fuel Types Covered by GHG Emissions Calculators (continued) (1)

APPENDIX B: CALCULATOR WORKSHEETS

1 Data Tiers 2 CO2 N2O, CH4 User 3 Bus Number(s) Model Buses Fuel Type Activity Em. Fact. Activity Em. Fact. Biofuel (%) Fuel Combustion (actual) Un 4	nits
2 CO2 N2O, CH4 User 3 Bus Number(s) Model Buses Fuel Type Activity Em. Fact. Activity Em. Fact. Biofuel (%) Fuel Combustion (actual) Un 4	nits
Qty. of Qty. of Bus Number(s) Model Buses Fuel Type Activity Em. Fact. Activity Em. Fact. Biofuel (%) Fuel Combustion (actual) Un 4	nits
Activity Em. Fact. Activity Em. Fact. Biofuel (%) Fuel Combustion (actual) Un 4	nits
4	
	voor
	~~~~~~~~
	xxxxxxx
7	
10	
10	
12	
13 gasoline A1/A2/B A1 A/B A gal	al
14 diesel C A2 C B bar	arrel
15 biodiesel B/C C DG	GE
16 kerosene SCF	CF
17 natural gas the	ierms
18 CNG	
19 LNG	
20 propane	
22 enane	
23 ISOULAITE 74 n-hutane	
Ze methanol	
27 butanol	

Figure 25: Calculator worksheet: Bus

	Q	R	S	Т	U	V
1	C (CH4, N2O)					
2	Calc	User	Calc			
		Fuel Econ.			Avg.	
3	Vehicle Miles (estimated)	(mpg)	Fuel Econ. (mpg)	Rev. Veh-Hr	Occ.	PMT
4	=IF(D4=\$D\$18,(L4/VLOOKUP (\$D\$18,DGE_Conv,4,FALSE)) *R4,L4*R4)		=IFERROR(IF(D4=\$D\$18,P4/(L4 /VLOOKUP(\$D\$18,DGE_Conv,4 ,FALSE)),P4/L4),"")			=U4*MAX(P4,Q4)
5	=IF(D5=\$D\$18,(L5/VLOOKUP (\$D\$18,DGE_Conv,4,FALSE)) *R5,L5*R5)		=IFERROR(IF(D5=\$D\$18,P5/(L5 /VLOOKUP(\$D\$18,DGE_Conv,4 ,FALSE)),P5/L5),"")			=U5*MAX(P5,Q5)
6	=IF(D6=\$D\$18,(L6/VLOOKUP (\$D\$18,DGE_Conv,4,FALSE)) *R6,L6*R6)		=IFERROR(IF(D6=\$D\$18,P6/(L6 /VLOOKUP(\$D\$18,DGE_Conv,4 ,FALSE)),P6/L6),"")			=U6*MAX(P6,Q6)
7	=SUM(P4:Q6)	VM		=SUM(T4:T6)	RH	=SUM(V4:V6)
8			_			
9						
10						=IF(W10=W7,V7,IF( W10=W8,V8,'''))

М

Fuel Combustion (estimated)

J4*100000/AA4,IF(NOT(ISBLANK(AD4)),J4*100000/A ,P4/(R4/VLOOKUP(D4,DGE_Conv,4, \$D\$18,\$N\$14,\$N\$1 =IF(E4=\$E\$14,

J5*100000/AA5,IF(NOT(ISBLANK(AD5)),J5*100000/A ,P5/(R5/VLOOKUP(D5,DGE_Conv,4, \$D\$18,\$N\$14,\$N\$1 =IF(E5=\$E\$14,

J6*100000/AA6,IF(NOT(ISBLANK(AD6)),J6*100000/A ,P6/(R6/VLOOKUP(D6,DGE_Conv,4, \$D\$18,\$N\$14,\$N\$1 =IF(E6=\$E\$14,

FALSE)),P6/R6))

FALSE)),P5/R5))

FALSE)),P4/R4))

C (CO2) Calc

(K4=\$K\$14,J4/42,IF(K4=\$K\$17,IF(NOT(ISBLANK(AA4)), =IF(OR(R4="",R4=0),"",IF(D4=\$D\$18 =IF(M4="","",IF(D4=

(K5=\$K\$14,J5/42,IF(K5=\$K\$17,IF(NOT(ISBLANK(AA5)), =IF(OR(R5="",R5=0),"",IF(D5=\$D\$18 =IF(M5="","",IF(D5=

(K6=\$K\$14,J6/42,IF(K6=\$K\$17,IF(NOT(ISBLANK(AA6)), =IF(OR(R6="",R6=0),"",IF(D6=\$D\$18 =IF(M6="","",IF(D6=

Ν

Units

3))

3))

3))

0

fuel quantity

M4,L4)

M5,L5)

M6,L6)

Std2

Ρ

User Vehicle Miles

(actual)

Figure 26: Calculator worksheet: Bus (cont.).

I.

=IF(K4=\$K\$15,J4*VLOOKUP(D4,DGE_Conv,4,FALSE),IF

=IF(K5=\$K\$15,J5*VLOOKUP(D5,DGE_Conv,4,FALSE),IF

=IF(K6=\$K\$15,J6*VLOOKUP(D6,DGE_Conv,4,FALSE),IF

1 2 Std1

6

3 fuel quantity

4 D4,J4*100000/1027)),J4)))

5 D5,J5*100000/1027)),J5)))

D6,J6*100000/1027)),J6)))



Figure 27: Calculator worksheet: Bus (cont.).

	AC	AD	AE	AF	AG	AH
1		A2		A1, A2		
2	Std	Default		User		Std
				Carbon		
				Content		
3		Heat Content (default)	Units	(actual)	Units	
	=IF(AB4=\$AB\$14,AA4/42,I	=IF(AND(F4=\$F\$14,ISBLANK(				
	F(D4=\$D\$18,AA4/100000	AA4)),VLOOKUP(D4,CO2_A2	=IF(AD4="","",IF(D4=\$D\$			=IF(AG4=\$AG\$14,AF
4	0,AA4))	_Bus,5,FALSE),"")	18,\$AE\$14,\$AE\$13))			4*0.4536,AF4)
	=IF(AB5=\$AB\$14,AA5/42,I	=IF(AND(F5=\$F\$14,ISBLANK(				
	F(D5=\$D\$18,AA5/100000	AA5)),VLOOKUP(D5,CO2_A2	=IF(AD5="","",IF(D5=\$D\$	*******		=IF(AG5=\$AG\$14,AF
5	0,AA5))	_Bus,5,FALSE),"")	18,\$AE\$14,\$AE\$13))			5*0.4536,AF5)
	=IF(AB6=\$AB\$14,AA6/42,I	=IF(AND(F6=\$F\$14,ISBLANK(				
	F(D6=\$D\$18,AA6/100000	AA6)),VLOOKUP(D6,CO2_A2	=IF(AD6="","",IF(D6=\$D\$			=IF(AG6=\$AG\$14,AF
6	0,AA6))	_Bus,5,FALSE),"")	18,\$AE\$14,\$AE\$13))			6*0.4536,AF6)
7						
8						
9						
10						
11						
12						
13			MMBtu/barrel		kg C/MMBtu	
14			Btu/SCF		lb C/MMBtu	

	AI	AJ	AK	AL	AM	AN	AO
1	A2		A1			A1	
2	Default		User		Std	User	
			Carbon				
			Content			Density	
3	Carbon Content (default)	Units	(actual)	Units		(actual)	Units
	=IF(AND(F4=\$F\$14,ISBLAN						
	K(AF4)),VLOOKUP(D4,CO2_		3333333		=IF(AL4=\$AL\$14,AK4*0	88888	******
4	A2_Bus,4,FALSE),"")	=IF(AI4="","",\$AJ\$13)	888888		.45359237,AK4)	88888	
	=IF(AND(F5=\$F\$14,ISBLAN		*****			*****	
	K(AF5)),VLOOKUP(D5,CO2_				=IF(AL5=\$AL\$14,AK5*0		
5	A2_Bus,4,FALSE),"")	=IF(AI5="","",\$AJ\$13)	3333333		.45359237,AK5)	88888	******
	=IF(AND(F6=\$F\$14,ISBLAN					88888	
	K(AF6)),VLOOKUP(D6,CO2_		*****		=IF(AL6=\$AL\$14,AK6*0	*****	*****
6	A2_Bus,4,FALSE),"")	=IF(AI6="","",\$AJ\$13)			.45359237,AK6)		
7							
8							
9							
10							
11							
12							
13		kg C/MMBtu		kg C/kg fuel			kg/gal
14				lb C/lb fuel			lb/gal
15							kg/barrel
16	1						lb/barrel
17	1						kg/SCF
18							lb/SCF

Figure 28: Calculator worksheet: Bus (cont.).

	AP	AQ	AR	AS	AT
1		A1		A2	
2	Std	CO2		CO2	
3		CO2 Emission Factor	Units	CO2 Emission Factor	Units
	AO\$14,AN4*0.4536,IF(AO4=\$AO\$16	=IF(ISBLANK(AA4),AM		=\$AE\$13,AD4/42*AH4,A	
	,AN4*0.4536/42,IF(AO4=\$AO\$18,AN	4*AP4,AC4*AH4)*1*(	=IF(D4=\$D\$18,\$AR\$1	D4*AH4),AC4*Al4)*1*(4	=IF(D4=\$D\$18,\$AT\$1
4	4*0.4536,AN4))))	44/12)	4,\$AR\$13)	4/12)	4,\$AT\$13)
	AO\$14,AN5*0.4536,IF(AO5=\$AO\$16	=IF(ISBLANK(AA5),AM		=\$AE\$13,AD5/42*AH5,A	
	,AN5*0.4536/42,IF(AO5=\$AO\$18,AN	5*AP5,AC5*AH5)*1*(	=IF(D5=\$D\$18,\$AR\$1	D5*AH5),AC5*AI5)*1*(4	=IF(D5=\$D\$18,\$AT\$1
5	5*0.4536,AN5))))	44/12)	4,\$AR\$13)	4/12)	4,\$AT\$13)
	AO\$14,AN6*0.4536,IF(AO6=\$AO\$16	=IF(ISBLANK(AA6),AM		=\$AE\$13,AD6/42*AH6,A	
	,AN6*0.4536/42,IF(AO6=\$AO\$18,AN	6*AP6,AC6*AH6)*1*(	=IF(D6=\$D\$18,\$AR\$1	D6*AH6),AC6*AI6)*1*(4	=IF(D6=\$D\$18,\$AT\$1
6	6*0.4536,AN6))))	44/12)	4,\$AR\$13)	4/12)	4,\$AT\$13)
7	]				
8	1				
9	1				
	]				
10					
11					
12					
13			kg/gal		kg/gal
14			kg/SCF		kg/SCF

	AU	AV	AW	AX
1	B/C		Direct	
2	CO2		CO2	
3	CO2 Emission Factor	Units	Emission Factor	Units
	=VLOOKUP(D4,CO2_	=IF(D4=\$D\$18,\$AV\$	=IF(F4=\$F\$13,AQ4,IF(F4	=IF(F4=\$F\$13,AR4,IF(F
4	B_C_BUS,4,FALSE)	14,\$AV\$13)	=\$F\$14,A54,A04))	4=\$F\$14,A14,AV4])
	=VLOOKUP(D5,CO2_	=IF(D5=\$D\$18,\$AV\$	=IF(F5=\$F\$13,AQ5,IF(F5	=IF(F5=\$F\$13,AR5,IF(F
5	B_C_Bus,4,FALSE)	14,\$AV\$13)	=\$F\$14,AS5,AU5))	5=\$F\$14,AT5,AV5))
	=VLOOKUP(D6,CO2	=IF(D6=\$D\$18,\$AV\$	=IF(F6=\$F\$13,AQ6,IF(F6	=IF(F6=\$F\$13,AR6,IF(F
6	B_C_Bus,4,FALSE)	14,\$AV\$13)	=\$F\$14,AS6,AU6))	6=\$F\$14,AT6,AV6))
7				
8				
9				
10				
11				
12				
13		kg/gal		
14		kg/SCF		

Figure 29: Calculator worksheet: Bus (cont.).
## Figure 30: Calculator worksheet: Bus (cont.).

6 el_heavy_duty,2,FALSE),"")))))

	~ -	
L	27	
L	<u> </u>	

	ВА
1	В
2	N2O
3	Emission Factor (g/mi.)
4	=IF(W4=\$W\$13,VLOOKUP(Y4,N2O_CH4_B_gas_pax_car,2,FALSE),IF(W4=\$W\$14,VLOOKUP(Y4,N2O_CH4_B_gas_light_truck,2,FA LSE),IF(W4=\$W\$15,VLOOKUP(Y4,N2O_CH4_B_gas_heavy_duty,2,FALSE),IF(W4=\$W\$16,VLOOKUP(Y4,N2O_CH4_B_diesel_pax_c ar,2,FALSE),IF(W4=\$W\$17,VLOOKUP(Y4,N2O_CH4_B_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(Y4,N2O_CH4_B_dies el_heavy_duty,2,FALSE),"")))))
5	=IF(W5=\$W\$13,VLOOKUP(Y5,N2O_CH4_B_gas_pax_car,2,FALSE),IF(W5=\$W\$14,VLOOKUP(Y5,N2O_CH4_B_gas_light_truck,2,FA LSE),IF(W5=\$W\$15,VLOOKUP(Y5,N2O_CH4_B_gas_heavy_duty,2,FALSE),IF(W5=\$W\$16,VLOOKUP(Y5,N2O_CH4_B_diesel_pax_c ar,2,FALSE),IF(W5=\$W\$17,VLOOKUP(Y5,N2O_CH4_B_diesel_light_truck,2,FALSE),IF(W5=\$W\$18,VLOOKUP(Y5,N2O_CH4_B_dies el_heavy_duty,2,FALSE),"")))))
6	=IF(W6=\$W\$13,VLOOKUP(Y6,N2O_CH4_B_gas_pax_car,2,FALSE),IF(W6=\$W\$14,VLOOKUP(Y6,N2O_CH4_B_gas_light_truck,2,FA LSE),IF(W6=\$W\$15,VLOOKUP(Y6,N2O_CH4_B_gas_heavy_duty,2,FALSE),IF(W6=\$W\$16,VLOOKUP(Y6,N2O_CH4_B_diesel_pax_c ar,2,FALSE),IF(W6=\$W\$17,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,2,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_dies el_heavy_duty,2,FALSE),"")))))

	AZ
1	Α
2	СН4
3	Emission Factor (g/mi.)
4	=IF(W4=\$W\$13,VLOOKUP(X4,N2O_CH4_A_gas_pax_car,3,FALSE),IF(W4=\$W\$14,VLOOKUP(X4,N2O_CH4_A_gas_light_truck,3,FA LSE),IF(W4=\$W\$15,VLOOKUP(X4,N2O_CH4_A_gas_heavy_duty,3,FALSE),IF(W4=\$W\$16,VLOOKUP(X4,N2O_CH4_A_diesel_pax_c ar,3,FALSE),IF(W4=\$W\$17,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,3,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diese el_heavy_duty,3,FALSE),"")))))
5	=IF(W5=\$W\$13,VLOOKUP(X5,N2O_CH4_A_gas_pax_car,3,FALSE),IF(W5=\$W\$14,VLOOKUP(X5,N2O_CH4_A_gas_light_truck,3,FA LSE),IF(W5=\$W\$15,VLOOKUP(X5,N2O_CH4_A_gas_heavy_duty,3,FALSE),IF(W5=\$W\$16,VLOOKUP(X5,N2O_CH4_A_diesel_pax_c ar,3,FALSE),IF(W5=\$W\$17,VLOOKUP(X5,N2O_CH4_A_diesel_light_truck,3,FALSE),IF(W5=\$W\$18,VLOOKUP(X5,N2O_CH4_A_diese el_heavy_duty,3,FALSE),"")))))
6	=IF(W6=\$W\$13,VLOOKUP(X6,N2O_CH4_A_gas_pax_car,3,FALSE),IF(W6=\$W\$14,VLOOKUP(X6,N2O_CH4_A_gas_light_truck,3,FA LSE),IF(W6=\$W\$15,VLOOKUP(X6,N2O_CH4_A_gas_heavy_duty,3,FALSE),IF(W6=\$W\$16,VLOOKUP(X6,N2O_CH4_A_diesel_pax_c ar,3,FALSE),IF(W6=\$W\$17,VLOOKUP(X6,N2O_CH4_A_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(X6,N2O_CH4_A_diese el_heavy_duty,3,FALSE),"")))))

	AY
1	Α
2	N2O
3	Emission Factor (g/mi.)
4	=IF(W4=\$W\$13,VLOOKUP(X4,N2O_CH4_A_gas_pax_car,2,FALSE),IF(W4=\$W\$14,VLOOKUP(X4,N2O_CH4_A_gas_light_truck,2,FA LSE),IF(W4=\$W\$15,VLOOKUP(X4,N2O_CH4_A_gas_heavy_duty,2,FALSE),IF(W4=\$W\$16,VLOOKUP(X4,N2O_CH4_A_diesel_pax_c ar,2,FALSE),IF(W4=\$W\$17,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W4=\$W\$18,VLOOKUP(X4,VLOAUAAAAAAAAAAAAAAAAAAAA
5	=IF(W5=\$W\$13,VLOOKUP(X5,N2O_CH4_A_gas_pax_car,2,FALSE),IF(W5=\$W\$14,VLOOKUP(X5,N2O_CH4_A_gas_light_truck,2,FA LSE),IF(W5=\$W\$15,VLOOKUP(X5,N2O_CH4_A_gas_heavy_duty,2,FALSE),IF(W5=\$W\$16,VLOOKUP(X5,N2O_CH4_A_diesel_pax_c ar,2,FALSE),IF(W5=\$W\$17,VLOOKUP(X5,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W5=\$W\$18,VLOOKUP(X5,N2O_CH4_A_diese el_heavy_duty,2,FALSE),"")))))
	=IF(W6=\$W\$13,VLOOKUP(X6,N2O_CH4_A_gas_pax_car,2,FALSE),IF(W6=\$W\$14,VLOOKUP(X6,N2O_CH4_A_gas_light_truck,2,FA LSE),IF(W6=\$W\$15,VLOOKUP(X6,N2O_CH4_A_gas_heavy_duty,2,FALSE),IF(W6=\$W\$16,VLOOKUP(X6,N2O_CH4_A_diesel_pax_c ar,2,FALSE),IF(W6=\$W\$17,VLOOKUP(X6,N2O_CH4_A_diesel_light_truck,2,FALSE),IF(W6=\$W\$18,VLOOKUP(X6,N2O_CH4_A_diese

1	28	
-		

Figure 31:	Calculator worksheet:	Bus (cont.).
------------	-----------------------	--------------

	BE	BF	BG	BH	BI	BJ	ВК	BL
1			A1, A2, B Activity	C Activity	A, B Activity	C Activity	A, B Activity	C Activity
2	N2O	CH4	Direct	Direct	Direct	Direct	Direct	Direct
3	Emission Factor (g/mi.)	Emission Factor (g/mi.)	CO2 (kg)	CO2 (kg)	N2O (g)	N2O (g)	CH4 (g)	CH4 (g)
	=IF(H4=\$H\$13,AY4,IF(H	=IF(H4=\$H\$13,AZ4,IF(H						
4	4=\$H\$14,BA4,BC4))	4=\$H\$14,BB4,BD4))	=L4*AW4	=M4*AW4	=P4*BE4	=Q4*BE4	=P4*BF4	=Q4*BF4
	=IF(H5=\$H\$13,AY5,IF(H	=IF(H5=\$H\$13,AZ5,IF(H						
5	5=\$H\$14,BA5,BC5))	5=\$H\$14,BB5,BD5))	=L5*AW5	=M5*AW5	=P5*BE5	=Q5*BE5	=P5*BF5	=Q5*BF5
	=IF(H6=\$H\$13,AY6,IF(H	=IF(H6=\$H\$13,AZ6,IF(H						
6	6=\$H\$14,BA6,BC6))	6=\$H\$14,BB6,BD6))	=L6*AW6	=M6*AW6	=P6*BE6	=Q6*BE6	=P6*BF6	=Q6*BF6

	BC	BD
1	С	C
2	N2O	CH4
2	Emission Eactor (g/mi)	Emission Factor (g/mi)
3		
4	=IF(W4=\$W\$21,VLOOKUP(Z4,N2O_CH4_C_light_duty_veh,2,FA LSE),IF(W4=\$W\$22,VLOOKUP(Z4,N2O_CH4_C_heavy_duty_veh ,2,FALSE),IF(W4=\$W\$23,VLOOKUP(Z4,N2O_CH4_C_bus,2,FALSE ),"")))	=IF(W4=\$W\$21,VLOOKUP(Z4,N2O_CH4_C_light_duty_veh, 3,FALSE),IF(W4=\$W\$22,VLOOKUP(Z4,N2O_CH4_C_heavy_ duty_veh,3,FALSE),IF(W4=\$W\$23,VLOOKUP(Z4,N2O_CH4_ C_bus,3,FALSE),"")))
5	=IF(W5=\$W\$21,VLOOKUP(Z5,N2O_CH4_C_light_duty_veh,2,FA LSE),IF(W5=\$W\$22,VLOOKUP(Z5,N2O_CH4_C_heavy_duty_veh ,2,FALSE),IF(W5=\$W\$23,VLOOKUP(Z5,N2O_CH4_C_bus,2,FALSE ),"")))	=IF(W5=\$W\$21,VLOOKUP(Z5,N2O_CH4_C_light_duty_veh, 3,FALSE),IF(W5=\$W\$22,VLOOKUP(Z5,N2O_CH4_C_heavy_ duty_veh,3,FALSE),IF(W5=\$W\$23,VLOOKUP(Z5,N2O_CH4_ C_bus,3,FALSE),"")))
6	=IF(W6=\$W\$21,VLOOKUP(Z6,N2O_CH4_C_light_duty_veh,2,FA LSE),IF(W6=\$W\$22,VLOOKUP(Z6,N2O_CH4_C_heavy_duty_veh ,2,FALSE),IF(W6=\$W\$23,VLOOKUP(Z6,N2O_CH4_C_bus,2,FALSE ),""")))	=IF(W6=\$W\$21,VLOOKUP(Z6,N2O_CH4_C_light_duty_veh, 3,FALSE),IF(W6=\$W\$22,VLOOKUP(Z6,N2O_CH4_C_heavy_ duty_veh,3,FALSE),IF(W6=\$W\$23,VLOOKUP(Z6,N2O_CH4_ C_bus,3,FALSE),"")))

т		
2	CH4	
2	Emission Factor (g/mi)	
5		
4	=IF(W4=\$W\$13,VLOOKUP(Y4,N2O_CH4_B_gas_pax_car,3,FALSE),IF(W4=\$W\$14,VLOOKUP(Y4,N2O_CH4_B_gas_light_truck,3,FA LSE),IF(W4=\$W\$15,VLOOKUP(Y4,N2O_CH4_B_gas_heavy_duty,3,FALSE),IF(W4=\$W\$16,VLOOKUP(Y4,N2O_CH4_B_diesel_pax_c ar,3,FALSE),IF(W4=\$W\$17,VLOOKUP(Y4,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W4=\$W\$18,VLOOKUP(Y4,N2O_CH4_B_dies el_heavy_duty,3,FALSE),"")))))	
5	=IF(W5=\$W\$13,VLOOKUP(Y5,N2O_CH4_B_gas_pax_car,3,FALSE),IF(W5=\$W\$14,VLOOKUP(Y5,N2O_CH4_B_gas_light_truck,3,FA LSE),IF(W5=\$W\$15,VLOOKUP(Y5,N2O_CH4_B_gas_heavy_duty,3,FALSE),IF(W5=\$W\$16,VLOOKUP(Y5,N2O_CH4_B_diesel_pax_c ar,3,FALSE),IF(W5=\$W\$17,VLOOKUP(Y5,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W5=\$W\$18,VLOOKUP(Y5,N2O_CH4_B_dies el_heavy_duty,3,FALSE),"")))))	
6	=IF(W6=\$W\$13,VLOOKUP(Y6,N2O_CH4_B_gas_pax_car,3,FALSE),IF(W6=\$W\$14,VLOOKUP(Y6,N2O_CH4_B_gas_light_truck,3,FA LSE),IF(W6=\$W\$15,VLOOKUP(Y6,N2O_CH4_B_gas_heavy_duty,3,FALSE),IF(W6=\$W\$16,VLOOKUP(Y6,N2O_CH4_B_diesel_pax_c ar,3,FALSE),IF(W6=\$W\$17,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diese ar,3,FALSE),IF(W6=\$W\$17,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_light_truck,3,FALSE),IF(W6=\$W\$18,VLOOKUP(Y6,N2O_CH4_B_diesel_Light_truck,3,FALS	
ь	el_neavy_uury,5,FAL5E/, //////	

BB

1 0

	BM	ΒN	BO E	ЗP	BQ B	ΒR	BS	BT
1	Scone 1 Emissions						Total	
2	Scope I Linissions						lotal	
3	CO2		N2O		CH4		CO2e	
	=IFERROR(IF(E4=\$E\$1		=IFERROR(IF(G4=\$G		=IFERROR(IF(G4=\$G\$		=(BM4/1000)+(BO4*VLOOKUP(background!\$I\$12,G	
	4,BH4,BG4),"0")*(1-		\$14,BJ4,BI4),"0")*(		14,BL4,BK4),"0")*(1-		WP,4,FALSE)/1000000)+(BQ4*VLOOKUP(backgroun	
4	14)	kg	1-I4) g	g	I4) g	3	d!\$I\$12,GWP,3,FALSE)/1000000)	tonnes
	=IFERROR(IF(E5=\$E\$1		=IFERROR(IF(G5=\$G		=IFERROR(IF(G5=\$G\$		=(BM5/1000)+(BO5*VLOOKUP(background!\$I\$12,G	
	4,BH5,BG5),"0")*(1-		\$14,BJ5,BI5),"0")*(		14,BL5,BK5),"0")*(1-		WP,4,FALSE)/1000000)+(BQ5*VLOOKUP(backgroun	
5	15)	kg	1-I5) ຢູ	g	<b>I5)</b> g	3	d!\$I\$12,GWP,3,FALSE)/1000000)	tonnes
	=IFERROR(IF(E6=\$E\$1		=IFERROR(IF(G6=\$G		=IFERROR(IF(G6=\$G\$		=(BM6/1000)+(BO6*VLOOKUP(background!\$I\$12,G	
	4,BH6,BG6),"0")*(1-		\$14,BJ6,BI6),"0")*(		14,BL6,BK6),"0")*(1-		WP,4,FALSE)/1000000)+(BQ6*VLOOKUP(backgroun	
6	I6)	kg	1-I6) g	g	<b>I6)</b> g	3	d!\$I\$12,GWP,3,FALSE)/1000000)	tonnes
							=(BM7/1000)+(BO7*VLOOKUP(background!\$I\$12,G	
							WP,4,FALSE)/1000000)+(BQ7*VLOOKUP(backgroun	
7	=SUM(BM4:BM6)	kg	=SUM(BO4:BO6) §	g	=SUM(BQ4:BQ6) g	3	d!\$I\$12,GWP,3,FALSE)/1000000)	tonnes

	BU	BV	BW
1	Fuel-Cycle	GREET V1.8c	
2	CO2	N2O	CH4
3	Em. Fact. (g/MMBtu)	Em. Fact. (g/MMBtu)	Em. Fact. (g/MMBtu)
4	=VLOOKUP(D4,IF(\$BV\$1=\$BV\$13,fuel_ups tream_em_fact_GREET,fuel_upstream_e m_fact_GHGenius),4,FALSE)	=VLOOKUP(D4,IF(\$BV\$1=\$BV\$13,fuel_ups tream_em_fact_GREET,fuel_upstream_em _fact_GHGenius),6,FALSE)	=VLOOKUP(D4,IF(\$BV\$1=\$BV\$13,fuel_upst ream_em_fact_GREET,fuel_upstream_em_ fact_GHGenius),5,FALSE)
5	=VLOOKUP(D5,IF(\$BV\$1=\$BV\$13,fuel_ups tream_em_fact_GREET,fuel_upstream_e m_fact_GHGenius),4,FALSE)	=VLOOKUP(D5,IF(\$BV\$1=\$BV\$13,fuel_ups tream_em_fact_GREET,fuel_upstream_em _fact_GHGenius),6,FALSE)	=VLOOKUP(D5,IF(\$BV\$1=\$BV\$13,fuel_upst ream_em_fact_GREET,fuel_upstream_em_ fact_GHGenius),5,FALSE)
6	=VLOOKUP(D6,IF(\$BV\$1=\$BV\$13,fuel_ups tream_em_fact_GREET,fuel_upstream_e m_fact_GHGenius),4,FALSE)	=VLOOKUP(D6,IF(\$BV\$1=\$BV\$13,fuel_ups tream_em_fact_GREET,fuel_upstream_em _fact_GHGenius),6,FALSE)	=VLOOKUP(D6,IF(\$BV\$1=\$BV\$13,fuel_upst ream_em_fact_GREET,fuel_upstream_em_ fact_GHGenius),5,FALSE)

	BX	ΒY
1	Include Fuel-Cycle?	
2	Scope 3 Emissions: Fuel-Cycle	
3	CO2	
	=IF(\$BZ\$1=\$BZ\$13,IFERROR(IF(D4=\$D\$18,IF(ISBLANK(AA4)=FALSE,O4*AC4,O4*1027/1000000)*BU4,O4*	
4	(VLOOKUP(D4,fuel_upstream_em_fact_GREET,3,FALSE)/1000000)*BU4)/1000,"0"),0)	kg
	=IF(\$BZ\$1=\$BZ\$13,IFERROR(IF(D5=\$D\$18,IF(ISBLANK(AA5)=FALSE,O5*AC5,O5*1027/1000000)*BU5,O5*	
5	(VLOOKUP(D5,fuel_upstream_em_fact_GREET,3,FALSE)/1000000)*BU5)/1000,"0"),0)	kg
	=IF(\$BZ\$1=\$BZ\$13,IFERROR(IF(D6=\$D\$18,IF(ISBLANK(AA6)=FALSE,O6*AC6,O6*1027/1000000)*BU6,O6*	
6	(VLOOKUP(D6,fuel_upstream_em_fact_GREET,3,FALSE)/1000000)*BU6)/1000,"0"),0)	kg
7	=SUM(BX4:BX6)	kg

Figure 32: Calculator worksheet: Bus (cont.).

	BZ	CA
1	YES	
2		
3	N2O	
	=IF(\$BZ\$1=\$BZ\$13,IFERROR(IF(D4=\$D\$18,IF(ISBLANK(AA4)=FALSE,O4*AC4,O4*1027/1000000)*BV4,O4*(	
4	VLOOKUP(D4,fuel_upstream_em_fact_GREET,3,FALSE)/1000000)*BV4)/1000,"0"),0)	kg
	=IF(\$BZ\$1=\$BZ\$13,IFERROR(IF(D5=\$D\$18,IF(ISBLANK(AA5)=FALSE,O5*AC5,O5*1027/1000000)*BV5,O5*(	
5	VLOOKUP(D5,fuel_upstream_em_fact_GREET,3,FALSE)/1000000)*BV5)/1000,"0"),0)	kg
	=IF(\$BZ\$1=\$BZ\$13,IFERROR(IF(D6=\$D\$18,IF(ISBLANK(AA6)=FALSE,O6*AC6,O6*1027/1000000)*BV6,O6*(	
6	VLOOKUP(D6,fuel_upstream_em_fact_GREET,3,FALSE)/1000000)*BV6)/1000,"0"),0)	kg
7	=SUM(BZ4:BZ6)	kg
8		
9		
10		
11		
12		
13	YES	
14	NO	

	СВ
1	
2	
3	CH4
	=IF(\$BZ\$1=\$BZ\$13,IFERROR(IF(D4=\$D\$18,IF(ISBLANK(AA4)=FALSE,O4*AC4,O4*1027/1000000)*BW4,O4*(V
4	LOOKUP(D4,fuel_upstream_em_fact_GREET,3,FALSE)/1000000)*BW4)/1000,"0"),0)
	=IF(\$BZ\$1=\$BZ\$13,IFERROR(IF(D5=\$D\$18,IF(ISBLANK(AA5)=FALSE,O5*AC5,O5*1027/1000000)*BW5,O5*(V
5	LOOKUP(D5,fuel_upstream_em_fact_GREET,3,FALSE)/1000000)*BW5)/1000,"0"),0)
	=IF(\$BZ\$1=\$BZ\$13,IFERROR(IF(D6=\$D\$18,IF(ISBLANK(AA6)=FALSE,O6*AC6,O6*1027/1000000)*BW6,O6*(V
6	LOOKUP(D6,fuel_upstream_em_fact_GREET,3,FALSE)/1000000)*BW6)/1000,"0"),0)
7	=SUM(CB4:CB6)

Figure 33: Calculator worksheet: Bus (cont.).

	CD	CE	CF
1			
2			
			EIO-LCA Sector /
3	CO2e		Vehicle Type
	=(BX4/1000)+(BZ4*VLOOKUP(background!\$I\$12,GWP,4,FALSE)/1000)+(CB4*		
4	VLOOKUP(background!\$I\$12,GWP,3,FALSE)/1000)	tonnes	
	=(BX5/1000)+(BZ5*VLOOKUP(background!\$I\$12,GWP,4,FALSE)/1000)+(CB5*		
5	VLOOKUP(background!\$I\$12,GWP,3,FALSE)/1000)	tonnes	
	=(BX6/1000)+(BZ6*VLOOKUP(background!\$!\$12,GWP,4,FALSE)/1000)+(CB6*		
6	VLOOKUP(background!\$I\$12,GWP,3,FALSE)/1000)	tonnes	
	=(BX7/1000)+(BZ7*VLOOKUP(background!\$I\$12,GWP,4,FALSE)/1000)+(CB7*		
7	VLOOKUP(background!\$I\$12,GWP,3,FALSE)/1000)	tonnes	
8			<b>u</b>
9			
10			
11			
12			
13			Heavy duty
14			Light truck/utility

	CG	СН	CI	CJ
1	Manufacturing			Maintenance
2	CO2	N2O	CH4	CO2
n	Em. Fact. (kg/\$)	Em. Fact. (kg/\$)	Em. Fact. (kg/\$)	Em. Fact. (kg/\$)
4	=IF(CF4=\$CF\$13,'EIO- LCA_factors'!\$D\$5,IF(CF4=\$CF\$ 14,'EIO-LCA_factors'!\$V\$5,0))	=IF(CF4=\$CF\$13,'EIO- LCA_factors'!\$G\$5,IF(CF4=\$CF\$14,'EIO- LCA_factors'!\$Y\$5,0))/VLOOKUP(background !\$I\$12,GWP,4,FALSE)	=IF(CF4=\$CF\$13,'EIO- LCA_factors'!\$F\$5,IF(CF4=\$CF\$14,'EIO- LCA_factors'!\$X\$5,0))/VLOOKUP(backgrou nd!\$I\$12,GWP,3,FALSE)	=IF(ISBLANK(CF4), 0,'EIO- LCA_factors'!\$AN \$5)
5	=IF(CF5=\$CF\$13,'EIO- LCA_factors'!\$D\$5,IF(CF5=\$CF\$ 14,'EIO-LCA_factors'!\$V\$5,0))	=IF(CF5=\$CF\$13,'EIO- LCA_factors'!\$G\$5,IF(CF5=\$CF\$14,'EIO- LCA_factors'!\$Y\$5,0))/VLOOKUP(background !\$I\$12,GWP,4,FALSE)	=IF(CF5=\$CF\$13,'EIO- LCA_factors'!\$F\$5,IF(CF5=\$CF\$14,'EIO- LCA_factors'!\$X\$5,0))/VLOOKUP(backgrou nd!\$I\$12,GWP,3,FALSE)	=IF(ISBLANK(CF5), 0,'EIO- LCA_factors'!\$AN \$5)
6	=IF(CF6=\$CF\$13,'EIO- LCA_factors'!\$D\$5,IF(CF6=\$CF\$ 14,'EIO-LCA_factors'!\$V\$5,0))	=IF(CF6=\$CF\$13,'EIO- LCA_factors'!\$G\$5,IF(CF6=\$CF\$14,'EIO- LCA_factors'!\$Y\$5,0))/VLOOKUP(background !\$I\$12,GWP,4,FALSE)	=IF(CF6=\$CF\$13,'EIO- LCA_factors'!\$F\$5,IF(CF6=\$CF\$14,'EIO- LCA_factors'!\$X\$5,0))/VLOOKUP(backgrou nd!\$I\$12,GWP,3,FALSE)	=IF(ISBLANK(CF6), 0,'EIO- LCA_factors'!\$AN \$5)

Figure 34: Calculator worksheet: Bus (cont.).

	СК	CL	CM CN
1			Include VehCycle?
2	N2O	CH4	Scope 3 Emissions: Vehicle-Cycle
3	Em. Fact. (kg/\$)	Em. Fact. (kg/\$)	CO2
4	=IF(ISBLANK(CF4),0,'EIO- LCA_factors'!\$AQ\$5)/VLOOKUP(back ground!\$I\$12,GWP,4,FALSE)	=IF(ISBLANK(CF4),0,'EIO- LCA_factors'!\$AP\$5)/VLOOKUP(back ground!\$I\$12,GWP,3,FALSE)	=IFERROR(IF(\$CO\$1=\$BZ\$13,DC4*CG 4+CJ4*DD4,0),"0") kg
5	=IF(ISBLANK(CF5),0,'EIO- LCA_factors'!\$AQ\$5)/VLOOKUP(back ground!\$I\$12,GWP,4,FALSE)	=IF(ISBLANK(CF5),0,'EIO- LCA_factors'!\$AP\$5)/VLOOKUP(back ground!\$I\$12,GWP,3,FALSE)	=IFERROR(IF(\$CO\$1=\$BZ\$13,DC5*CG 5+CJ5*DD5,0),"0") kg
6	=IF(ISBLANK(CF6),0,'EIO- LCA_factors'!\$AQ\$5)/VLOOKUP(back ground!\$I\$12,GWP,4,FALSE)	=IF(ISBLANK(CF6),0,'EIO- LCA_factors'!\$AP\$5)/VLOOKUP(back ground!\$I\$12,GWP,3,FALSE)	=IFERROR(IF(\$CO\$1=\$BZ\$13,DC6*CG 6+CJ6*DD6,0),"0") kg
7			=SUM(CM4:CM6) kg

	СО	СР	CQ	CR	CS	СТ
1	YES					
2						
3	N2O		CH4		CO2e	
4	=IFERROR(IF(\$CO\$1=\$BZ\$13,(DC4 *CH4+CK4*DD4),0),"0")	kg	=IFERROR(IF(\$CO\$1=\$BZ\$13,( DC4*Cl4+CL4*DD4),0),"0")	kg	=(CM4/1000)+(CO4*VLOOKUP(background!\$I\$ 12,GWP,4,FALSE)/1000)+(CQ4*VLOOKUP(backg round!\$I\$12,GWP,3,FALSE)/1000)	tonnes
5	=IFERROR(IF(\$CO\$1=\$BZ\$13,(DC5 *CH5+CK5*DD5),0),"0")	kg	=IFERROR(IF(\$CO\$1=\$BZ\$13,( DC5*CI5+CL5*DD5),0),"0")	kg	=(CM5/1000)+(CO5*VLOOKUP(background!\$I\$ 12,GWP,4,FALSE)/1000)+(CQ5*VLOOKUP(backg round!\$I\$12,GWP,3,FALSE)/1000)	tonnes
6	=IFERROR(IF(\$CO\$1=\$BZ\$13,(DC6 *CH6+CK6*DD6),0),"0")	kg	=IFERROR(IF(\$CO\$1=\$BZ\$13,( DC6*CI6+CL6*DD6),0),"0")	kg	=(CM6/1000)+(CO6*VLOOKUP(background!\$I\$ 12,GWP,4,FALSE)/1000)+(CQ6*VLOOKUP(backg round!\$I\$12,GWP,3,FALSE)/1000)	tonnes
7	=SUM(CO4:CO6)	kg	=SUM(CQ4:CQ6)	kg	=(CM7/1000)+(CO7*VLOOKUP(background!\$I\$ 12,GWP,4,FALSE)/1000)+(CQ7*VLOOKUP(backg round!\$I\$12,GWP,3,FALSE)/1000)	tonnes

	CU	CV	CW	СХ	CY	CZ
1						
2	Scope 3 Emissions: Total					
3	CO2		N2O		CH4	
4	=BX4+CM4	kg	=BZ4+CO4	kg	=CB4+CQ4	kg
5	=BX5+CM5	kg	=BZ5+CO5	kg	=CB5+CQ5	kg
6	=BX6+CM6	kg	=BZ6+CO6	kg	=CB6+CQ6	kg
7	=SUM(CU4:CU6)	kg	=SUM(CW4:CW6)	kg	=SUM(CY4:CY6)	kg

Figure 35: Calculator worksheet: Bus (cont.).

	DA	DB	DC	DD
1				
2				
3	CO2e		Vehicle Capital Cost (\$)	Vehicle Maint. Cost (\$)
	=(CU4/1000)+(CW4*VLOOKUP(background!\$I\$1			=IFERROR(HLOOKUP(DE4,Cost_vehicle,7
	2,GWP,4,FALSE)/1000)+(CY4*VLOOKUP(backgro		=IFERROR(HLOOKUP(DE4,Cost_ve	1,FALSE)*C4+HLOOKUP(DE4,Cost_vehicl
4	und!\$I\$12,GWP,3,FALSE)/1000)	tonnes	hicle,73,FALSE)*C4,0)	e,72,FALSE)*MAX(P4,Q4),0)
	=(CU5/1000)+(CW5*VLOOKUP(background!\$I\$1			=IFERROR(HLOOKUP(DE5,Cost_vehicle,7
	2,GWP,4,FALSE)/1000)+(CY5*VLOOKUP(backgro		=IFERROR(HLOOKUP(DE5,Cost_ve	1,FALSE)*C5+HLOOKUP(DE5,Cost_vehicl
5	und!\$I\$12,GWP,3,FALSE)/1000)	tonnes	hicle,73,FALSE)*C5,0)	e,72,FALSE)*MAX(P5,Q5),0)
	=(CU6/1000)+(CW6*VLOOKUP(background!\$I\$1			=IFERROR(HLOOKUP(DE6,Cost_vehicle,7
	2,GWP,4,FALSE)/1000)+(CY6*VLOOKUP(backgro		=IFERROR(HLOOKUP(DE6,Cost_ve	1,FALSE)*C6+HLOOKUP(DE6,Cost_vehicl
6	und!\$l\$12,GWP,3,FALSE)/1000)	tonnes	hicle,73,FALSE)*C6,0)	e,72,FALSE)*MAX(P6,Q6),0)
	=(CU7/1000)+(CW7*VLOOKUP(background!\$I\$1			
	2,GWP,4,FALSE)/1000)+(CY7*VLOOKUP(backgro			
7	und!\$I\$12,GWP,3,FALSE)/1000)	tonnes		

	DE	DF	DG
1 2			
3	Cost ID	Cost-Eff. Baseline?	Cost (\$/mile)
4			=IFERROR(HLOOKUP(DE4,Cost_vehicle,66,FALSE)+((HLOOKUP(DE4,Cost_v ehicle,65,FALSE)+HLOOKUP(DE4,Cost_vehicle,69,FALSE))*C4+(O4*HLOOK UP(DE4,Cost_vehicle,67,FALSE)))/MAX(P4,Q4),"")
5			=IFERROR(HLOOKUP(DE5,Cost_vehicle,66,FALSE)+((HLOOKUP(DE5,Cost_v ehicle,65,FALSE)+HLOOKUP(DE5,Cost_vehicle,69,FALSE))*C5+(O5*HLOOK UP(DE5,Cost_vehicle,67,FALSE)))/MAX(P5,Q5),"")
6			=IFERROR(HLOOKUP(DE6,Cost_vehicle,66,FALSE)+((HLOOKUP(DE6,Cost_v ehicle,65,FALSE)+HLOOKUP(DE6,Cost_vehicle,69,FALSE))*C6+(O6*HLOOK UP(DE6,Cost_vehicle,67,FALSE)))/MAX(P6,Q6),"")

Figure 36: Calculator worksheet: Bus (cont.).

	DH	DI
1	Scope	
2	1	
3	CO2e Emiss. Rate (g/mile)	Cost-Eff. (\$/tonne)
4	=IFERROR(IF(\$DH\$2=\$DH\$13,BS4,I F(\$DH\$2=\$DH\$14,BS4+DA4,0))/MA X(P4,Q4)*1000000,"")	=IFERROR(IF((DH4-VLOOKUP(\$DF\$13,Cost_Baseline,3,FALSE))>0,"GHG Increase",((DG4- VLOOKUP(\$DF\$13,Cost_Baseline,2,FALSE))/(VLOOKUP(\$DF\$13,Cost_Baseline, 3,FALSE)-DH4))*1000000),"")
5	=IFERROR(IF(\$DH\$2=\$DH\$13,BS5,I F(\$DH\$2=\$DH\$14,BS5+DA5,0))/MA X(P5,Q5)*1000000,"")	=IFERROR(IF((DH5-VLOOKUP(\$DF\$13,Cost_Baseline,3,FALSE))>0,"GHG Increase",((DG5- VLOOKUP(\$DF\$13,Cost_Baseline,2,FALSE))/(VLOOKUP(\$DF\$13,Cost_Baseline, 3,FALSE)-DH5))*1000000),"")
6	=IFERROR(IF(\$DH\$2=\$DH\$13,BS6,I F(\$DH\$2=\$DH\$14,BS6+DA6,0))/MA X(P6,Q6)*1000000,"")	=IFERROR(IF((DH6-VLOOKUP(\$DF\$13,Cost_Baseline,3,FALSE))>0,"GHG Increase",((DG6- VLOOKUP(\$DF\$13,Cost_Baseline,2,FALSE))/(VLOOKUP(\$DF\$13,Cost_Baseline, 3,FALSE)-DH6))*1000000),"")

Figure 37: Calculator worksheet: Bus (cont.).

## APPENDIX C: CALCULATOR DATA TABLES

		Tier	]	Гier B/C						
Fuel	Carbon	o Content	Heat C	Content	Emissi	on Factor	Source			
biodiesel										
(B100)	NA		NA		9.46	kg CO2 / gal	(1)			
~~~~						kg CO2 /				
CNG	14.47	kg C / MMBtu	1027	MMBtu/SCF	0.054	SCF	(1)			
diesel	19.95	kg C / MMBtu	5.825	MMBtu/barrel	10.15	kg CO2 / gal	(2)			
ethane	16.25	kg C / MMBtu	2.916	MMBtu/barrel	4.14	kg CO2 / gal	(3)			
ethanol										
(E100)	17.99	kg C / MMBtu	3.539	MMBtu/barrel	5.56	kg CO2 / gal	(1)			
gasoline	19.33	kg C / MMBtu	5.218	MMBtu/barrel	8.81	kg CO2 / gal	(3)			
isobutane	17.75	kg C / MMBtu	4.162	MMBtu/barrel	6.45	kg CO2 / gal	(3)			
kerosene	19.72	kg C / MMBtu	5.67	MMBtu/barrel	9.76	kg CO2 / gal	(2)			
LNG	NA	kg C / MMBtu	NA		4.46	kg CO2 / gal	(1)			
LPG	17.23	kg C / MMBtu	3.849	MMBtu/barrel	5.79	kg CO2 / gal	(1)			
methanol	NA	kg C / MMBtu	NA		4.1	kg CO2 / gal	(4)			
n-butane	17.72	kg C / MMBtu	4.328	MMBtu/barrel	6.7	kg CO2 / gal	(3)			
propane	17.2	kg C / MMBtu	3.824	MMBtu/barrel	5.74	kg CO2 / gal	(3)			
	(1) TCI	R GRP Table 13.1	1: EPA C	Climate Leaders,	Mobile (Combustion Gui	dance,			
Source:	2007						·			
	(2) TCI	R GRP Table 13.	1: U.S. I	EPA, Inventory o	f Greenh	ouse Gas Emiss	sions and			
	Sinks: 1990-005 (2007), Annex 2.1, Tables A-31, A-34, A-36, A-40									
	(3) TCR GRP Table 13.1: U.S. EPA, Inventory of Greenhouse Gas Emissions and									
	Sinks: 1	990-005 (2007),	Annex 2	.1, Tables A-31,	A-34, A	-36, A-39				
	(4) TCI	R GRP Table 13.1	1: Califo	rnia Climate Acti	ion Regi	stry General Rej	porting			
	Protoco	l Version 2.2, 200	07, Table	e C.3						

 Table 25: U.S. Default CO2 Emission Factors for Transport Fuels. Based on (6)

Gasoline Passenger Cars	N2O (g/mi)	CH4 (g/mi)	Gasoline Heavy-Duty Vehicles	N2O (g/mi)	CH4 (g/mi)
EPA Tier 2	0.0036	0.0173	EPA Tier 2	0.0134	0.0333
Low Emission					
Vehicles	0.015	0.0105	Low Emission Vehicles	0.032	0.0303
EPA Tier 1	0.0429	0.0271	EPA Tier 1	0.175	0.0655
EPA Tier 0	0.0647	0.0704	EPA Tier 0	0.2135	0.263
Oxidation Catalyst	0.0504	0.1355	Oxidation Catalyst	0.1317	0.2356
Non-Catalyst Control	0.0197	0.1696	Non-Catalyst Control	0.0473	0.4181
Uncontrolled	0.0197	0.178	Uncontrolled	0.0497	0.4604
Gasoline Light Trucks (Vans,					
Pickup Trucks,	N2O	CH4	Diesel Heavy-Duty	N2O	CH4
SUVs)	(g/mi)	(g/mi)	Vehicles	(g/mi)	(g/mi)
EPA Tier 2	0.0066	0.0163	Advanced	0.0048	0.0051
Low Emission					
Vehicles	0.0157	0.0148	Moderate	0.0048	0.0051
EPA Tier 1	0.0871	0.0452	Uncontrolled	0.0048	0.0051
				N2O	CH4
EPA Tier 0	0.1056	0.0776	Diesel Light Trucks	(g/mi)	(g/mi)
Oxidation Catalyst	0.0639	0.1516	Advanced	0.0015	0.001
Non-Catalyst		<u> </u>		2.004.4	
Control	0.0218	0.1908	Moderate	0.0014	0.0009
Uncontrolled	0.022	0.2024	Uncontrolled	0.0017	0.0011
Diesel Passenger	N2O	CH4			
Cars	(g/mi)	(g/mi)	Source TCP GPD Table	12 3. U.S. E	D۸
Advanced	0.001	0.0005	Inventory of U.S. Greenho	15.5. U.S. En Duse Gas Em	rA, issions and
Moderate	0.001	0.0005	Sinks: 1990-2005 (2007),	Annex 3.2, 7	Table A-
Uncontrolled	0.0012	0.0006	99.	,	

Table 26: Tier A Default CH_4 and N_2O Emission Factors for Highway Vehicles by Vehicle Type and Control Technology. Based on (6)

Gasoline Light Trucks (Vans, Pickup Trucks, N2O **Gasoline Passenger** N2O CH4 CH4 (g/mi) Cars (g/mi) SUVs) (g/mi) (g/mi)Model Years 1984-1993 Model Years 1987-1993 0.0647 0.0704 0.1035 0.0813 Model Year 1994 0.056 0.0531 Model Year 1994 0.0982 0.0646 Model Year 1995 0.0473 0.0358 Model Year 1995 0.0908 0.0517 Model Year 1996 0.0426 Model Year 1996 0.0452 0.0272 0.0871 Model Year 1997 0.0422 0.0268 Model Year 1997 0.0871 0.0452 Model Year 1998 0.0393 0.0249 Model Year 1998 0.0728 0.0391 0.0216 Model Year 1999 Model Year 1999 0.0564 0.0321 0.0337 Model Year 2000 0.0273 0.0178 Model Year 2000 0.0621 0.0346 Model Year 2001 0.0158 0.011 Model Year 2001 0.0164 0.0151 Model Year 2002 Model Year 2002 0.0153 0.0107 0.0228 0.0178 Model Year 2003 0.0135 0.0114 Model Year 2003 0.0114 0.0155 Model Year 2004 0.0145 Model Year 2004 0.0152 0.0083 0.0132 Model Year 2005 0.0079 0.0147 Model Year 2005 0.0157 0.0101 **Gasoline Heavy-Duty** N2O CH4 N2O CH4 Vehicles (g/mi) (g/mi)**Diesel Passenger Cars** (g/mi)(g/mi) Model Years 1985-1986 0.0515 0.409 Model Years 1960-1982 0.0012 0.0006 Model Year 1987 0.0849 0.3675 Model Years 1983-2004 0.0005 0.001 N2O CH4 Model Years 1988-1989 0.0933 0.3492 **Diesel Light Trucks** (g/mi) (g/mi) Model Years 1990-1995 0.1142 0.3246 Model Years 1960-1982 0.0017 0.0011 Model Year 1996 0.1278 Model Years 1983-1995 0.0014 0.0009 0.168 Model Year 1997 0.1726 0.0924 Model Years 1996-2004 0.0015 0.001 **Diesel Heavy-Duty** N2O CH4 Vehicles Model Year 1998 0.1693 0.0641 (g/mi)(g/mi) Model Year 1999 0.1435 0.0578 All Model Years 0.0048 0.0051 Model Year 2000 0.1092 0.0493 Model Year 2001 0.1235 0.0528 Model Year 2002 0.1307 0.0546 Source: TCR GRP Table 13.4: U.S. EPA, Model Year 2003 0.124 0.0533 Inventory of U.S. Greenhouse Gas Emissions Model Year 2004 0.0285 0.0341 and Sinks: 1990-2005 (2007), Annex 3.2, Table 0.0177 Model Year 2005 0.0326 A-98.

Table 27: Tier B Default CH_4 and N_2O Emission Factors for Highway Vehicles by Vehicle Type and Model Year. Based on (6)

Light Duty Vehicles	N2O (g/mi)	CH4 (g/mi)	Source
gasoline	0.0639	0.1516	(1)
diesel	0.0014	0.0009	(2)
methanol	0.067	0.018	(3)
CNG	0.05	0.737	(3)
LPG	0.067	0.037	(3)
ethanol	0.067	0.055	(3)
Heavy Duty Vehicles	N2O (g/mi)	CH4 (g/mi)	Source
gasoline	0.1317	0.2356	(4)
diesel	0.0048	0.0051	(5)
methanol	0.175	0.066	(3)
CNG	0.175	1.966	(3)
LNG	0.175	1.966	(3)
LPG	0.175	0.066	(3)
ethanol	0.175	0.197	(3)
Buses	N2O (g/mi)	CH4 (g/mi)	Source
gasoline	0.1317	0.2356	(4)
diesel	0.0048	0.0051	(5)
methanol	0.175	0.066	(3)
CNG	0.175	1.966	(3)
ethanol	0.175	0.197	(3)

Table 28: Tier C U.S. Default CH_4 and N_2O Emission Factors for Highway Vehicles by Vehicle Type. Based on (6)

Source:

(1) TCR GRP Table 13.3, Gasoline Light Trucks, Oxidation Catalyst: U.S. EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2005 (2007), Annex 3.2, Table A-99.

(2) TCR GRP Table 13.3, Diesel Light Trucks, Moderate: U.S. EPA, Inventory of U.S.

Greenhouse Gas Emissions and Sinks: 1990-2005 (2007), Annex 3.2, Table A-99.

(3) TCR GRP Table 13.5: U.S. EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2005 (2007), Annex 3.2, Table A-100.

(4) TCR GRP Table 13.3, Gasoline Heavy-Duty Vehicles, Oxidation Catalyst: U.S. EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2005 (2007), Annex 3.2, Table A-99.

(5) TCR GRP Table 13.3, Diesel Heavy-Duty Vehicles: U.S. EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2005 (2007), Annex 3.2, Table A-99.

	N2O	CH4
Ships and Boats	(g/gal)	(g/gal)
Residual Fuel Oil	0.3	0.86
Diesel Fuel	0.26	0.74
Gasoline	0.22	0.64
	N2O	CH4
Locomotives	(g/gal)	(g/gal)
Diesel Fuel	0.26	0.8
	N2O	CH4
Agricultural Equipment	(g/gal)	(g/gal)
Gasoline	0.22	1.26
Diesel Fuel	0.26	1.44
	N2O	CH4
Construction	(g/gal)	(g/gal)
Gasoline	0.22	0.5
Diesel Fuel	0.26	0.58
	N2O	CH4
Other Non-Highway	(g/gal)	(g/gal)
Snowmobiles (Gasoline)	0.22	0.5
Other Recreational (Gasoline)	0.22	0.5
Other Small Utility (Gasoline)	0.22	0.5
Other Large Utility (Gasoline)	0.22	0.5
Other Large Utility (Diesel)	0.26	0.58
	N2O	CH4
Aircraft	(g/gal)	(g/gal)
Jet Fuel	0.31	0.27
Aviation Gasoline	0.11	7.04
Source: TCR GRP Table 13.6, U	J.S. EPA Cli	imate
Leaders, Mobile Combustion Gu	idance (200'	7) based
on U.S. EPA Inventory of U.S. C	Freenhouse (Gas
Emissions and Sinks: 1990-2005	(2007), Ani	nex 3.2,
Table A-101.		

Table 29: Default CH_4 and N_2O Emission Factors for Non-Highway Vehicles by Vehicle Type and Fuel Type. Based on (6)

	Tie	er B	Tier		
Engl	Heat Contort	<u>Carbon</u>	<u>CO2 Em.</u>	<u>CO2 Em.</u>	
<u>F dei</u>	<u>Content</u>	<u>content</u>	<u>Fact.</u>	<u>Fact.</u>	
Coal and Coke	short ton	MMBtu	MMBtu	short ton	Source
Anthracite Coal	25.09	28.26	103.62	2,599.83	(1)
Bituminous Coal	24.93	25.49	93.46	2,330.04	(1)
Sub-bituminous Coal	17.25	26.48	97.09	1,674.86	(1)
Lignite	14.21	26.3	96.43	1,370.32	(1)
Unspecified (Residential/ Commercial)	22.05	26	95.33	2,102.29	(1)
Unspecified (Industrial Coking)	26.27	25.56	93.72	2,462.12	(1)
Unspecified (Other Industrial)	22.05	25.63	93.98	2,072.19	(1)
Unspecified (Electric Utility)	19.95	25.76	94.45	1,884.53	(1)
Coke	24.8	31	113.67	2,818.93	(1)
Natural Care (Der Hart Caretard)	Dt / SCE	kg C /	kg CO2 /	kg CO2 /	
Natural Gas (By Heat Content)			MINIBLU	SCF	(1)
975 to 1,000 Btu / Sta cubic root	988	14./3	54.01	0.0534	(1)
1,000 to 1,025 Btu / Std cubic foot	1013	14.43	52.91	0.0536	(1)
1,025 to 1,050 Btu / Std cubic foot	1038	14.47	53.06	0.0551	(1)
1,050 to 1,075 Btu / Std cubic foot	1063	14.58	53.46	0.0568	(1)
1,075 to 1,100 Btu / Std cubic foot	1088	14.65	53.72	0.0584	(1)
Greater than 1,100 Btu / Std cubic foot	1115	14.92	54.71	0.0610	(1)
Unspecified (Weighted U.S. Average)	1,029	14.47	53.06	0.0546	(1)
Non-Fossil Fuels (solid)	MMBtu / short ton	kg C / MMBtu	kg CO2 / MMBtu	kg CO2 / short ton	
Waste Tires	28	30.77	112.84	3,159.49	(2)
Wood and Wood Waste (12% moisture)	15.38	25.6	93.87	1,443.67	(2)
Kraft Black Liquor (North American hardwood)	11.98	25.75	94.41	1,130.76	(2)
Kraft Black Liquor (North American	12.24	25.05	05.13	1 164 02	(2)
softwood)	12.24	23.93	95.15	1,104.02	(2)
Non-Fossil Fuels (gas)	Btu / SCF	Kg C / MMBtu	Kg CO2 / MMBtu	Kg CO2 / SCF	
Landfill Gas (50% CH4 / 50% CO2)	502.5	14.2	52.07	0.0262	(2)
Wastewater Treatment Biogas	502.5	14.2	52.07	0.0262	(2)

 Table 30: U.S. Default Factors for Stationary Combustion CO₂ Emissions. Based on (6)

Source:

TCR GRP Table 12.1 U.S. Default Factors for Calculating CO2 Emissions from Fossil Fuel Combustion
 TCR GRP Table 12.2 U.S. Default Factors for Calculating CO2 Emissions from Non-Fossil Fuel Combustion

Table 31:	U.S. Default Factors for	Stationary Combustion	CO ₂ Emissions	(cont.). Based on
(6)				

	Tier B			Tier C		
	Heat	Heat Carbon		<u>CO2 Em.</u>		
Fuel	Content	Content	<u>Fact.</u>	<u>Fact.</u>		
Petroleum Products	MMBtu / barrel	kg C / MMBtu	kg CO2 / MMBtu	kg CO2 / gal		
Asphalt & Road Oil	6.636	20.62	75.61	11.95		
Aviation Gasoline	5.048	18.87	69.19	8.32		
Distillate Fuel Oil (#1, 2 & 4)	5.825	19.95	73.15	10.15		
Jet Fuel	5.67	19.33	70.88	9.57		
Kerosene	5.67	19.72	72.31	9.76		
LPG (average for fuel use)	3.849	17.23	63.16	5.79		
Propane	3.824	17.2	63.07	5.74		
Ethane	2.916	16.25	59.58	4.14		
Isobutene	4.162	17.75	65.08	6.45		
n-Butane	4.328	17.72	64.97	6.7		
Lubricants	6.065	20.24	74.21	10.72		
Motor Gasoline	5.218	19.33	70.88	8.81		
Residual Fuel Oil (#5 & 6)	6.287	21.49	78.8	11.8		
Crude Oil	5.8	20.33	74.54	10.29		
Naphtha (<401 deg. F)	5.248	18.14	66.51	8.31		
Natural Gasoline	4.62	18.24	66.88	7.36		
Other Oil (>401 deg. F)	5.825	19.95	73.15	10.15		
Pentanes Plus	4.62	18.24	66.88	7.36		
Petrochemical Feedstocks	5.428	19.37	71.02	9.18		
Petroleum Coke	6.024	27.85	102.12	14.65		
Still Gas	6	17.51	64.2	9.17		
Special Naphtha	5.248	19.86	72.82	9.1		
Unfinished Oils	5.825	20.33	74.54	10.34		
Waxes	5.537	19.81	72.64	9.58		
Source: TCR GRP Table 12.1 U.S. Defau	Ilt Factors for Calcu	lating CO2 Emission	ns from Fossil Fue	l Combustion		

Table 32: Default CH_4 and N_2O Emission Factors by Technology Type (Tier B) and Fuel Type (Tier C) for the Commercial Sector. Based on (6)

Tier B: Fuel Type and Basic Technology, Source (1)	Configuration	<u>CH4</u> (g/MMBtu)	<u>N2O</u> (g/MMBtu)
Liquid Fuels			
Residual Fuel Oil Boilers		1.4	0.3
Gas/Diesel Oil Boilers		0.7	0.4
Liquefied Petroleum Gases Boilers		0.9	4
Solid Fuels			
Other Bituminous/Sub-bit. Overfeed Stoker Boilers		1	0.7
Other Bituminous/Sub-bit. Underfeed Stoker Boilers		14	0.7
Other Bituminous/Sub-bit. Hand-fed Units		87.2	0.7
Other Bituminous/Sub-bituminous Pulverized Boilers	Dry Bottom, wall fired	0.7	0.5
Other Bituminous/Sub-bituminous Pulverized Boilers	Dry Bottom, tangentially fired	0.7	1.4
Other Bituminous/Sub-bituminous Pulverized Boilers	Wet Bottom	0.9	1.4
Other Bituminous Spreader Stokers		1	0.7
Other Bituminous/Sub-bit. Fluidized Bed Combustor	Circulating Bed	1	61.1
Other Bituminous/Sub-bit. Fluidized Bed Combustor	Bubbling Bed	1	61.1
Natural Gas			
Natural Gas Boilers		0.9	0.9
Gas-Fired Gas Turbines >3MWa		3.8	1.3
Biomass			
Wood/Wood Waste Boilers		9.3	5.9
<u>Tier C: Fuel Type, Source (2)</u>		<u>CH4</u> (g/MMBtu)	<u>N2O</u> (g/MMBtu)
Coal		11	1.6
Petroleum Products		11	0.6
Natural Gas		5	0.1
Wood		316	4.2
Source:			

(1) TCR GRP Table 12.8 Default CH4 and N2O Emission Factors by Technology Type for the Commercial Sector (Tier B)

(2) TCR GRP Table 12.9 COMMERCIAL SECTOR Default CH4 and N2O Emission Factors By Fuel Type and Sector (Tier C)

Fuel (TCR)	Fuel (GREET)	CO2 (g / MMBtu of Fuel)	CH4 (g / MMBtu of Fuel)	N2O (g / MMBtu of Fuel)	Source
Anthracite Coal	Coal	1,620.18	119.20	0.0313	(1)
Bituminous Coal	Coal	1,620.18	119.20	0.0313	(1)
Sub-bituminous Coal	Coal	1,620.18	119.20	0.0313	(1)
Lignite	Coal	1,620.18	119.20	0.0313	(1)
Unspecified (Residential/ Commercial)	Coal	1,620.18	119.20	0.0313	(1)
Unspecified (Industrial Coking)	Coal	1,620.18	119.20	0.0313	(1)
Unspecified (Other Industrial)	Coal	1,620.18	119.20	0.0313	(1)
Unspecified (Electric Utility)	Coal	1,620.18	119.20	0.0313	(1)
Coke	Coke	1,349.52	118.87	0.0244	(1)
coal and coke	Coal and Coke	1,620.18	119.20	0.0313	(1)
975 to 1,000 Btu / Std cubic foot	Nat. Gas	5,257.73	196.36	0.0867	(2)
1,000 to 1,025 Btu / Std cubic foot	Nat. Gas	5,257.73	196.36	0.0867	(2)
1,025 to 1,050 Btu / Std cubic foot	Nat. Gas	5,257.73	196.36	0.0867	(2)
1,050 to 1,075 Btu / Std cubic foot	Nat. Gas	5,257.73	196.36	0.0867	(2)
1,075 to 1,100 Btu / Std cubic foot	Nat. Gas	5,257.73	196.36	0.0867	(2)
Greater than 1,100 Btu / Std cubic foot	Nat. Gas	5,257.73	196.36	0.0867	(2)
Unspecified (Weighted U.S. Average)	Nat. Gas	5,257.73	196.36	0.0867	(2)
natural gas	Nat. Gas	5,257.73	196.36	0.0867	(2)
Source					
(1) Worksheet "Coal", Table 3, Coal t	o Power Plants				
(2) Worksheet "NG", Table 4.1, Natur	al Gas as Stationary	Fuels			

 Table 33: Stationary Combustion Upstream Fuel-Cycle Emission Factors. Based on (46)

		CO2 (g /	CH4 (g / MMBtu	N2O (g / MMBtu	_
Fuel (TCR)	Fuel (GREET)	MMBtu of Fuel)	of Fuel)	of Fuel)	Source
Residual Fuel Oil (#5 & 6)	Petrol. (resid.)	10,616.24	99.18	0.1759	(1)
Asphalt & Road Oil	Petrol. (resid.)	10,616.24	99.18	0.1759	(1)
Distillate Fuel Oil (#1, 2 & 4)	Petrol. (diesel)	14,415.49	103.39	0.2328	(1)
Crude Oil	Petrol.	4,970.04	92.92	0.0870	(2)
Other Oil (>401 deg. F)	Petrol.	4,970.04	92.92	0.0870	(2)
Motor Gasoline	Petrol. (gasoline)	17,112.13	106.37	0.2736	(3)
Aviation Gasoline	Petrol. (gasoline)	17,112.13	106.37	0.2736	(3)
Natural Gasoline	Petrol. (gasoline)	17,112.13	106.37	0.2736	(3)
LPG (average for fuel use)	Petrol. (LPG)	10,715.11	99.30	0.1787	(4)
Propane	Petrol. (LPG)	10,715.11	99.30	0.1787	(4)
Naphtha (<401 deg. F)	Petrol. (Naptha)	10,519.34	99.10	0.1739	(5)
Special Naphtha	Petrol. (Naptha)	10,519.34	99.10	0.1739	(5)
petroleum products	Petrol. (resid.)	10,616.24	99.18	0.1759	(6)
Source					
(1) Worksheet "Petroleum", Table 5.1,	Crude for Use in U.	S. Refineries, and Ro	esidual Oil		
(2) Worksheet "Petroleum", Table 5.1,	Crude for Use in U.	S. Refineries			
(3) Worksheet "Petroleum", Table 5.1,	Crude for Use in U.	S. Refineries, and Co	onv. Gasolir	ne	
(4) Worksheet "Petroleum", Table 5.1,	Crude for Use in U.	S. Refineries, and Ll	PG		
(5) Worksheet "Petroleum", Table 5.1,	Crude for Use in U.	S. Refineries, and C	rude Naptha		

 Table 34: Stationary Combustion Upstream Fuel-Cycle Emission Factors (cont.). Based on

 (46)

(6) Worksheet "Petroleum", Table 5.1, Crude for Use in U.S. Refineries, and Residual Oil

	lbs CO2	lbs CH4	lbs N2O		lbs CO2	lbs CH4	lbs N2O
State	/ MWh	/ GWh	/ GWh	State	/ MWh	/ GWh	/ GWh
AK	1,089.79	24.66	6.04	MT	1,592.05	19.73	27.20
AL	1,340.53	25.10	23.08	NC	1,224.97	19.82	21.32
AR	1,229.23	31.98	22.30	ND	2,325.16	25.10	37.35
AZ	1,158.58	15.53	15.93	NE	1,605.90	18.58	26.69
CA	540.06	30.60	4.50	NH	788.28	61.00	15.01
CO	1,910.88	23.48	29.26	NJ	718.57	30.22	10.79
СТ	803.92	67.79	13.63	NM	1,935.90	23.28	30.53
DC	2,432.30	104.97	21.00	NV	1,440.79	20.02	17.85
DE	2,018.04	36.49	26.52	NY	828.33	36.96	10.41
FL	1,340.54	45.73	17.68	OH	1,771.84	20.99	29.90
GA	1,402.54	22.02	23.93	OK	1,562.76	21.67	20.44
HI	1,731.01	165.40	29.96	OR	401.45	16.97	4.80
IA	1,907.24	22.38	31.62	PA	1,244.50	25.42	20.94
ID	133.73	19.16	3.44	RI	964.72	19.21	1.98
IL	1,126.00	13.15	18.50	SC	893.86	14.92	15.17
IN	2,087.75	24.54	34.76	SD	1,181.45	13.96	19.03
KS	1,894.92	23.25	31.31	TN	1,259.07	16.41	21.69
KY	2,057.45	24.13	34.91	TX	1,355.41	19.75	15.35
LA	1,175.49	25.45	13.42	UT	2,102.97	24.14	35.19
MA	1,262.91	68.41	17.23	VA	1,196.05	40.99	21.27
MD	1,352.27	34.58	22.73	VT	4.65	88.61	11.83
ME	739.65	229.01	32.49	WA	331.11	16.40	6.04
MI	1,347.55	29.65	23.65	WI	1,720.13	25.52	28.28
MN	1,594.67	38.72	28.49	WV	1,928.12	21.89	32.72
MO	1,846.93	21.31	30.71	WY	2,251.46	25.68	37.24
MS	1,225.77	26.49	17.42				

 Table 35: eGRID2007 State GHG Annual Emission Rates. Based on (44)

State	lbs CO2 / MWh	lbs CH4 / GWh	lbs N2O / GWh	State	lbs CO2 / MWh	lbs CH4 / GWh	lbs N2O / GWh
AK	1,470.56	40.63	8.87	MT	2,760.93	75.25	50.35
AL	1,723.00	41.29	28.23	NC	1,952.11	29.80	31.41
AR	1,572.16	45.70	24.18	ND	2,508.90	41.00	41.71
AZ	1,175.38	20.04	9.39	NE	2,172.49	29.03	29.49
CA	1,061.13	39.98	4.90	NH	1,362.59	63.24	15.84
CO	1,606.13	22.10	20.35	NJ	1,464.80	35.42	17.03
СТ	1,478.77	77.68	17.37	NM	1,480.82	24.85	10.41
DC	2,432.30	104.97	21.00	NV	1,254.35	22.07	7.26
DE	1,947.85	39.23	23.37	NY	1,517.76	51.98	13.83
FL	1,382.92	47.46	14.04	OH	1,988.51	24.17	32.48
GA	1,654.63	33.18	24.93	OK	1,293.63	21.57	10.08
HI	1,800.75	185.69	29.99	OR	999.75	42.47	11.10
IA	2,240.01	27.16	36.15	PA	1,845.16	34.63	25.71
ID	653.57	72.11	13.81	RI	1,053.31	21.14	2.20
IL	2,097.08	25.51	32.78	SC	1,760.87	28.36	25.34
IN	2,120.76	25.55	33.93	SD	2,224.28	29.49	29.90
KS	2,351.42	37.22	34.58	TN	2,050.63	26.41	34.99
KY	2,113.67	25.68	35.31	TX	1,138.47	20.71	5.83
LA	1,294.94	27.53	10.02	UT	1,838.57	24.47	24.85
MA	1,295.66	44.94	12.48	VA	1,612.42	55.13	24.39
MD	1,964.52	50.19	31.08	VT	173.96	1,016.50	136.04
ME	1,261.17	264.00	37.23	WA	1,240.81	71.56	21.36
MI	1,698.29	29.59	26.93	WI	1,789.46	36.34	25.23
MN	2,102.88	72.75	36.74	WV	1,965.62	22.52	33.10
MO	2,031.97	25.04	31.25	WY	2,141.24	25.98	33.46
MS	1,473.67	29.27	16.86				

 Table 36:
 eGRID2007 State GHG Non-Baseload Emission Rates. Based on (44)

		Annual			Non-baseload		
			lbs	lbs		lbs	lbs
		lbs CO2	CH4 /	N2O /	lbs CO2	CH4 /	N2O /
Subregion	Subregion Name	/ MWh	GWh	GWh	/ MWh	GWh	GWh
AKGD	ASCC Alaska Grid	1,232.36	25.60	6.51	1,473.43	36.41	8.24
AKMS	ASCC Miscellaneous	498.86	20.75	4.08	1,457.11	60.47	11.87
ERCT	ERCOT All	1,324.35	18.65	15.11	1,118.86	20.15	5.68
FRCC	FRCC All	1,318.57	45.92	16.94	1,353.72	48.16	12.95
HIMS	HICC Miscellaneous	1,514.92	314.68	46.88	1,674.15	338.44	51.42
HIOA	HICC Oahu	1,811.98	109.47	23.62	1,855.10	120.11	20.79
MROE	MRO East	1,834.72	27.59	30.36	1,828.63	28.82	25.20
MROW	MRO West	1,821.84	28.00	30.71	2,158.79	45.57	35.22
NYLI	NPCC Long Island	1,536.80	115.41	18.09	1,509.85	60.32	10.78
NEWE	NPCC New England	927.68	86.49	17.01	1,314.53	77.47	16.02
NYCW	NPCC NYC/Westchester	815.45	36.02	5.46	1,525.05	56.80	9.08
NYUP	NPCC Upstate NY	720.80	24.82	11.19	1,514.11	45.30	18.41
RFCE	RFC East	1,139.07	30.27	18.71	1,790.50	41.61	24.36
RFCM	RFC Michigan	1,563.28	33.93	27.17	1,663.15	29.40	26.24
RFCW	RFC West	1,537.82	18.23	25.71	1,992.86	24.49	31.72
SRMW	SERC Midwest	1,830.51	21.15	30.50	2,101.16	25.66	32.92
SRMV	SERC Mississippi Valley	1,019.74	24.31	11.71	1,257.10	29.50	9.82
SRSO	SERC South	1,489.54	26.27	25.47	1,697.22	35.20	26.41
SRTV	SERC Tennessee Valley	1,510.44	20.05	25.64	1,998.36	28.25	32.86
SRVC	SERC Virginia/Carolina	1,134.88	23.77	19.79	1,781.28	40.09	27.46
SPNO	SPP North	1,960.94	23.82	32.09	2,169.74	31.18	31.99
SPSO	SPP South	1,658.14	24.98	22.61	1,379.05	24.40	12.04
CAMX	WECC California	724.12	30.24	8.08	1,083.02	39.24	5.55
NWPP	WECC Northwest	902.24	19.13	14.90	1,333.64	49.28	18.73
RMPA	WECC Rockies	1,883.08	22.88	28.75	1,617.71	22.42	20.14
AZNM	WECC Southwest	1,311.05	17.45	17.94	1,201.44	20.80	8.50

 Table 37: eGRID2007 Subregion GHG Emission Rates. Based on (44)

			Annual			Non-baseload		
			lbs	lbs		lbs	lbs	
		lbs CO2	CH4 /	N2O /	lbs CO2	CH4 /	N2O /	
NERC	NERC Name	/ MWh	GWh	GWh	/ MWh	GWh	GWh	
	Alaska Systems							
ASCC	Coordinating Council	1,089.79	24.66	6.04	1,470.56	40.63	8.87	
	Florida Reliability							
FRCC	Coordinating Council	1,318.57	45.92	16.94	1,353.72	48.16	12.95	
	Hawaiian Islands							
HICC	Coordinating Council	1,731.01	165.40	29.96	1,800.75	185.69	29.99	
	Midwest Reliability							
MRO	Organization	1,823.69	27.94	30.66	2,092.64	42.21	33.22	
	Northeast Power							
NPCC	Coordinating Council	875.74	60.56	13.55	1,413.51	65.00	14.94	
	Reliability First							
RFC	Corporation	1,427.21	23.19	23.87	1,882.91	30.33	28.70	
	SERC Reliability							
SERC	Corporation	1,368.85	23.32	22.54	1,726.81	32.36	25.07	
SPP	Southwest Power Pool	1,751.37	24.62	25.52	1,560.25	25.95	16.62	
TRE	Texas Regional Entity	1,324.35	18.65	15.11	1,118.86	20.15	5.68	
	Western Electricity							
WECC	Coordinating Council	1,033.12	22.62	14.77	1,218.34	33.26	10.23	

 Table 38: eGRID2007 NERC Region GHG Emission Rates. Based on (44)

State	Cool	Fuel oil	NC	Nuclear	Biomoss	Uydro	Wind	Other	Other Carbon
	0.47%	11 560/	11G			11yu10			
	9.47%	0.15%	10 100/	0.00%	0.08%	7 200/	0.01%	0.00%	0.00%
	49.200/	0.13%	10.10%	25.08%	2.55%	7.39%	0.00%	0.01%	0.09%
AK	48.20%	0.43%	12.57%	28.64%	3.03%	6.49%	0.00%	0.00%	0.03%
AZ	39.56%	0.04%	28.48%	25.43%	0.06%	6.41%	0.00%	0.01%	0.00%
CA	0.98%	1.29%	46.71%	18.08%	2.91%	19.88%	2.13%	6.89%	1.13%
CO	71.67%	0.03%	24.06%	0.00%	0.07%	2.61%	1.56%	0.00%	0.00%
СТ	11.91%	9.41%	26.42%	46.39%	2.12%	1.42%	0.00%	0.03%	2.30%
DC	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
DE	59.40%	14.95%	19.55%	0.00%	0.00%	0.00%	0.00%	0.00%	6.10%
FL	28.43%	16.93%	38.05%	13.08%	1.97%	0.12%	0.00%	0.79%	0.62%
GA	63.85%	0.74%	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%	0.04%
HI	14.16%	78.77%	0.00%	0.00%	2.61%	0.83%	0.06%	1.92%	1.65%
IA	77.49%	0.34%	5.64%	10.32%	0.26%	2.18%	3.74%	0.00%	0.03%
ID	0.88%	0.00%	14.32%	0.00%	5.33%	78.91%	0.00%	0.56%	0.00%
IL	47.52%	0.17%	3.66%	48.03%	0.35%	0.07%	0.07%	0.00%	0.12%
IN	94.25%	0.20%	2.76%	0.00%	0.05%	0.34%	0.00%	0.33%	2.07%
KS	75.18%	2.15%	2.48%	19.23%	0.00%	0.02%	0.93%	0.00%	0.00%
KY	91.07%	3.76%	1.70%	0.00%	0.43%	3.03%	0.00%	0.00%	0.02%
LA	24.89%	3.76%	47.29%	16.91%	2.89%	0.88%	0.00%	0.34%	3.04%
MA	25.34%	14.98%	42.69%	11.53%	2.53%	1.18%	0.00%	0.00%	1.75%
MD	55.69%	7.25%	3.59%	27.93%	1.04%	3.24%	0.00%	0.00%	1.25%
ME	1.83%	8.62%	42.60%	0.00%	21.93%	23.28%	0.00%	0.00%	1.74%
MI	57.83%	0.74%	11.21%	27.02%	2.09%	0.29%	0.00%	0.00%	0.83%
MN	62.12%	1.48%	5.14%	24.26%	1.89%	1.46%	2.99%	0.09%	0.56%
MO	85.23%	0.19%	4.29%	8.84%	0.01%	1.37%	0.00%	0.00%	0.08%
MS	36.91%	3.19%	34.02%	22.36%	3.48%	0.00%	0.00%	0.00%	0.04%

 Table 39: eGRID2007 State Power Mixes. Based on (44)

		Fuel							Other
State	Coal	oil	NG	Nuclear	Biomass	Hydro	Wind	Other	Carbon
MT	63.79%	1.48%	0.13%	0.00%	0.23%	34.32%	0.00%	0.00%	0.05%
NC	60.47%	0.37%	2.41%	30.82%	1.42%	4.27%	0.00%	0.18%	0.06%
ND	94.76%	0.11%	0.03%	0.00%	0.03%	4.20%	0.69%	0.00%	0.18%
NE	66.16%	0.10%	2.55%	27.97%	0.14%	2.77%	0.31%	0.00%	0.00%
NH	16.68%	5.56%	27.79%	38.73%	3.84%	7.14%	0.00%	0.00%	0.26%
NJ	19.10%	1.80%	25.09%	51.58%	1.38%	0.00%	0.00%	0.10%	0.95%
NM	85.23%	0.11%	11.92%	0.00%	0.01%	0.47%	2.26%	0.00%	0.00%
NV	44.93%	0.11%	47.44%	0.00%	0.00%	4.16%	0.00%	3.09%	0.27%
NY	13.75%	16.23%	22.46%	28.66%	1.24%	16.89%	0.07%	0.00%	0.70%
OH	87.19%	0.89%	1.72%	9.43%	0.25%	0.33%	0.01%	0.00%	0.19%
OK	51.72%	0.10%	43.00%	0.00%	0.41%	3.52%	1.21%	0.01%	0.03%
OR	7.00%	0.12%	27.04%	0.00%	1.77%	62.50%	1.48%	0.00%	0.09%
PA	55.44%	2.27%	4.96%	34.99%	0.91%	0.69%	0.13%	0.01%	0.58%
RI	0.00%	0.92%	98.97%	0.00%	0.00%	0.11%	0.00%	0.00%	0.00%
SC	38.70%	0.66%	5.28%	51.83%	1.74%	1.70%	0.00%	0.00%	0.09%
SD	45.95%	0.32%	4.16%	0.00%	0.00%	47.15%	2.42%	0.00%	0.00%
TN	61.00%	0.24%	0.55%	28.66%	0.57%	8.98%	0.00%	0.00%	0.00%
TX	37.35%	0.57%	49.26%	9.62%	0.28%	0.34%	1.07%	0.21%	1.30%
UT	94.27%	0.11%	3.09%	0.00%	0.00%	2.06%	0.00%	0.48%	0.00%
VA	44.91%	5.38%	10.43%	35.42%	3.12%	0.08%	0.00%	0.00%	0.65%
VT	0.00%	0.18%	0.04%	71.22%	7.18%	21.18%	0.20%	0.00%	0.00%
WA	10.30%	0.10%	8.42%	8.08%	1.56%	70.68%	0.49%	0.00%	0.37%
WI	67.35%	1.14%	10.48%	16.04%	1.89%	2.75%	0.15%	0.07%	0.12%
WV	97.66%	0.24%	0.29%	0.00%	0.00%	1.55%	0.16%	0.00%	0.10%
WY	95.12%	0.09%	0.71%	0.00%	0.00%	1.77%	1.57%	0.14%	0.58%

 Table 40: eGRID2007 State Power Mixes. Based on (44)

Subregion	Coal	Fuel oil	NG/boiler	Nuclear	Biomass	Hydro	Wind	Other	Other Carbon
AKGD	11.76%	7.13%	69.38%	0.00%	0.01%	11.72%	0.00%	0.00%	0.00%
AKMS	0.00%	29.91%	3.71%	0.00%	0.38%	65.95%	0.05%	0.00%	0.00%
ERCT	37.06%	0.48%	47.52%	11.91%	0.07%	0.31%	1.24%	0.17%	1.24%
FRCC	26.24%	17.87%	39.03%	13.83%	1.54%	0.01%	0.00%	0.84%	0.64%
HIMS	1.47%	83.49%	0.00%	0.00%	4.70%	3.06%	0.21%	7.06%	0.00%
HIOA	18.91%	77.00%	0.00%	0.00%	1.83%	0.00%	0.00%	0.00%	2.26%
MROE	67.95%	2.19%	11.99%	10.18%	3.68%	3.59%	0.12%	0.15%	0.15%
MROW	73.52%	0.60%	4.04%	14.62%	0.76%	4.15%	2.07%	0.03%	0.22%
NYLI	0.00%	59.06%	34.74%	0.00%	3.33%	0.00%	0.00%	0.00%	2.87%
NEWE	15.15%	9.80%	36.65%	25.64%	5.28%	6.01%	0.01%	0.01%	1.46%
NYCW	0.00%	20.21%	34.93%	43.82%	0.54%	0.02%	0.00%	0.00%	0.48%
NYUP	21.55%	7.76%	15.48%	27.04%	1.19%	26.43%	0.11%	0.00%	0.44%
RFCE	45.09%	3.97%	9.64%	38.31%	1.07%	0.91%	0.09%	0.03%	0.89%
RFCM	66.89%	0.85%	13.75%	15.60%	1.89%	0.00%	0.00%	0.00%	1.02%
RFCW	72.83%	0.35%	2.73%	22.34%	0.34%	0.67%	0.07%	0.07%	0.61%
SRMW	83.15%	0.26%	3.52%	11.95%	0.08%	0.99%	0.00%	0.00%	0.04%
SRMV	21.20%	3.34%	45.16%	24.47%	2.07%	1.27%	0.00%	0.22%	2.28%
SRSO	64.73%	0.47%	10.96%	17.34%	3.09%	3.32%	0.00%	0.01%	0.08%
SRTV	66.74%	1.69%	3.58%	19.48%	0.81%	7.70%	0.00%	0.00%	0.01%
SRVC	50.46%	1.69%	4.95%	38.73%	1.93%	1.93%	0.00%	0.07%	0.22%
SPNO	78.26%	1.60%	5.94%	13.36%	0.00%	0.12%	0.65%	0.00%	0.08%
SPSO	55.67%	0.36%	37.41%	0.00%	1.52%	3.67%	0.94%	0.17%	0.25%
CAMX	11.90%	1.17%	42.27%	16.46%	2.61%	17.65%	1.94%	4.96%	1.03%
NWPP	34.36%	0.27%	10.84%	3.28%	1.27%	48.61%	0.71%	0.38%	0.28%
RMPA	71.69%	0.04%	19.46%	0.00%	0.05%	7.37%	1.39%	0.00%	0.00%
AZNM	45.75%	0.06%	31.61%	16.38%	0.04%	3.54%	0.33%	2.22%	0.07%

 Table 41: eGRID2007 Subregion Power Mixes. Based on (44)

NERC Region	Coal	Fuel oil	NG/boiler	Nuclear	Biomass	Hydro	Wind	Other	Other Carbon
ASCC	9.47%	11.56%	56.62%	0.00%	0.08%	22.26%	0.01%	0.00%	0.00%
FRCC	26.24%	17.87%	39.03%	13.83%	1.54%	0.01%	0.00%	0.84%	0.64%
HICC	14.16%	78.77%	0.00%	0.00%	2.61%	0.83%	0.06%	1.92%	1.65%
MRO	72.72%	0.82%	5.18%	13.98%	1.18%	4.07%	1.79%	0.04%	0.21%
NPCC	14.42%	13.16%	29.24%	27.22%	3.16%	11.70%	0.04%	0.00%	1.06%
RFC	64.42%	1.43%	5.78%	26.22%	0.70%	0.61%	0.07%	0.05%	0.73%
SERC	57.14%	1.46%	11.73%	24.17%	1.75%	3.27%	0.00%	0.05%	0.42%
SPP	62.63%	0.74%	27.72%	4.11%	1.05%	2.58%	0.85%	0.12%	0.20%
TRE	37.06%	0.48%	47.52%	11.91%	0.07%	0.31%	1.24%	0.17%	1.24%
WECC	33.45%	0.48%	26.29%	10.09%	1.30%	24.66%	1.08%	2.21%	0.44%

 Table 42: eGRID2007 NERC Region Power Mixes. Based on (44)

APPENDIX D: MARTA GHG EMISSIONS INVENTORY

∍				Avg.	Occ.) RH
T					Rev. Veh-Hr							0
S		Calc	Fuel	Econ.	(mpg)	3.78	3.55	3.77	3.75	10.77	6.51	
R		User	Fuel	Econ.	(mpg)	ŝ	ĺ	ĺ				MV
σ	C (CH4, N2O)	Calc		Vehicle Miles	(estimated)							9,373,254
Ь		User		Vehicle Miles	(actual)	353,789	1,752,365	3,433,290	3,175,913	471,626	186,271	
К					Units	- gal) gal	i gal	s gal	l gal	. gal	
ſ		User	Fuel	Combustion	(actual)	93,684	493,050	910,876	846,638	43,774	28,631	2,416,653
т		CH4		En.	Fact.	υ	U	C	J	С	J	
U	Tiers	N20, 0			Activity	A/B	A/B	A/B	A/B	A/B	A/B	
F	Data			Em.	Fact.	B/C	B/C	B/C	B/C	B/C	B/C	
ш		CO2			Activity	A1/A2/B	A1/A2/B	A1/A2/B	A1/A2/B	A1/A2/B	A1/A2/B	
D					Fuel Type	diesel	diesel	diesel	diesel	diesel	diesel	
J				Qty. of	Buses	10	40	60	49	15	15	
В					Model	OR-D40-02-2200	OR-D40-04-2200	OR-D35-04-2300	NF-D40-05-2300	SM.BUS E450 RETIRED	SM.BUS GOSHEN	
A					Bus Number(s)	2231 - 2240	2191 - 2230	2301 - 2360	2361 - 2410	3667 - 3681	3947 - 3975	
		7			m	4	S	9	~	∞	6	10

	>	~	Z	AW /	X	BE	BF	BM BN	BO	BP BQ). ВР	BS	ΒТ
				Direct									
2				CO2	N20	Ċ	44	cope 1 Emissions				Total	
					Emi	ission Er	nission						
				Emission	Fact	tor Fa	ctor						
e	PMT	Vehicle Category	Vehicle Type	Factor Uni	ts (g/r	ni.) (g	/mi.)	C02	N20	CH ₂	4	CO2e	
4		Buses	diesel	10.15 kg/	gal (0.0048	0.0051	950,893 kg	1,698	g 1,	,804 g	951.44 to	onnes
5)	Buses	diesel	10.15 kg/	gal (0.0048	0.0051	5,004,458 kg	8,411	g 8,	,937 g	5,007.19 to	onnes
9)	Buses	diesel	10.15 kg/	gal (0.0048	0.0051	9,245,391 kg	16,480	g 17,	, 510 g	9,250.74 to	onnes
7		Buses	diesel	10.15 kg/	gal (0.0048	0.0051	8,593,376 kg	15,244	g 16 ,	,197 g	8,598.32 to	onnes
8)	Buses	diesel	10.15 kg/	gal (0.0048	0.0051	444,306 kg	2,264	g 2,	,405 g	445.04 to	onnes
6		Buses	diesel	10.15 kg/	gal (0.0048	0.0051	290,605 kg	894	50	950 g	290.89 to	onnes
10) Passenger-Miles (sum)						24,529,028 kg	44,992	g 47,	804 g	24,543.63 to	onnes
11			- -				1						
12													
13													

Figure 38: MARTA GHG Emissions Inventory. Worksheet: bus_diesel.

Oute Include TES N20 CH4 Scope 3 Emissions: Fuel-Cycle ct. Em. Fact. EIO-LCA Sector / Btu) (g/MMBtu) (g/MMBtu) CO2 N20 R87.71 0.25 104.53 199,332 kg 3 kg 1,345 kg 233.92 tonnes R87.71 0.25 104.53 1,049,063 kg 17 kg 7,080 kg 1,231.08 tonnes Heavy duty
I20 CH4 Scope 3 Emissions: Fuel-Cycle m. Fact. Em. Fact. EIO-LCA Sector / g/MMBtu) (g/MMBtu) CO2 N2O CH4 CO2e Vehicle Type 0.25 104.53 199,332 kg 3 kg 1,345 kg 233.92 tonnes Heavy duty 0.25 104.53 1,045,063 kg 17 kg 7,080 kg 1,231.08 tonnes Heavy duty 0.26 104.53 1,045,063 kg 31 fs 7,080 kg 1,231.08 tonnes Heavy duty
Em. Fact. Em. Fact. EIO-LCA Sector / (g/MMBtu) (g/MMBtu) CO2 N2O CH4 CO2e Vehicle Type 0.25 104.53 199,332 kg 3 kg 1,345 kg 233.92 tonnes Heavy duty 0.25 104.53 1,049,063 kg 17 kg 7,080 kg 1,231.08 tonnes Heavy duty
(g/MMBtu) CO2 N20 CH4 CO2e Vehicle Type 0.25 104.53 199,332 kg 3 kg 1,345 kg 233.92 tonnes Heavy duty 0.25 104.53 1,049,063 kg 17 kg 7,080 kg 1,231.08 tonnes Heavy duty 0.25 104.53 1,049,063 kg 17 kg 7,080 kg 1,231.08 tonnes Heavy duty
0.25 104.53 199,332 kg 3 kg 1,345 kg 233.92 tonnes Heavy duty 0.25 104.53 1,049,063 kg 17 kg 7,080 kg 1,231.08 tonnes Heavy duty 0.25 104.53 1,049,063 kg 17 kg 7,080 kg 1,231.08 tonnes Heavy duty 0.25 104.53 1,029,063 kg 31 kg 7,080 kg 1,231.08 tonnes Heavy duty
1 0.25 104.53 1,049,063 kg 17 kg 7,080 kg 1,231.08 tonnes Heavy duty
1 0 35 104 52 1 020 073 1 2 21 1 1 2 000 1 2 371 21 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
T 0.23 TO4.23 TO4.23 TO4.23 TO 21 NS TO 21 NS TO 21 NS TO 21 TO 1011 TO 1010
1 0.25 104.53 1,801,393 kg 29 kg 12,158 kg 2,113.94 tonnes Heavy duty
1 0.25 104.53 93,138 kg 1 kg 629 kg 109.30 tonnes Light truck/utility
1 0.25 104.53 60,918 kg 1 kg 411 kg 71.49 tonnes Light truck/utility
5,141,916 kg 82 kg 34,703 kg 6,034.06 tonnes

	ź	ŗ		5	2	5	, ,	~ ~ ~	5	22	~ ~ ~	5	5	ļ	5	נ
-	ce		Include VehCyc	le?	YES											
2	N2O	CH4	Scope 3 Emissio	IS: Ve	hicle-Cycle					Scope 3 Emissions:	Total					
	Em. Fact.	Em. Fact.														
m	(kg/\$)	(kg/\$)	C02		N20		CH4		CO2e	C02	N20		CH4		CO2e	
4	4.46309E-05	0.002056	5 269,132	kg	15	kg	791 k	β	293.48 tonnes	468,464 kg		19 kg	2,136	kg	527.40	tonnes
5	4.46309E-05	0.002056	1,117,852	kg	63	kg	3,283 k	50	1,218.85 tonnes	2,166,915 kg		80 kg	10,364	kg	2,449.93	tonnes
9	4.46309E-05	0.002056	1,676,778	kg	95	kg	4,925 k	ρΰ	1,828.28 tonnes	3,614,850 kg	1	26 kg	18,005	kg	4,102.61	tonnes
7	4.46309E-05	0.002056	1,398,652	kg	1 6 2	kg	4,107 k	β	1,524.92 tonnes	3,200,045 kg	1	08 kg	16,265	kg	3,638.87	tonnes
∞	4.46309E-05	0.002056	198,812	kg	14	kg	610 k	μ	218.36 tonnes	291,950 kg		16 kg	1,239	kg	327.66	tonnes
6	4.46309E-05	0.002056	198,812	kg	14	kg	610 k	50	218.36 tonnes	259,730 kg		15 kg	1,022	kg	289.85	tonnes
10			4,860,037	kg	282	kg	14,327 k	ρņ	5,302.26 tonnes	10,001,952 kg	e	64 kg	49,030	kg	11,336.32	tonnes

Figure 39: MARTA GHG Emissions Inventory. Worksheet: bus_diesel (cont.).

	DC	DD	DE	DF	DG	DH	DI
1						Scope	
2						1	
3	Vehicle Capital Cost (\$)	Vehicle Maint. Cost (\$)	Cost ID	Cost-Eff. Baseline?	Cost (\$/mile)	CO2e Emiss. Rate (g/mile)	Cost-Eff. (\$/tonne)
4	\$199,917	\$207,699	diesel Orion 10		\$1.15	2,689	
5	\$865,500	\$830,794	diesel Orion 40		\$0.97	2,857	
6	\$1,298,250	\$1,246,192	diesel Orion 40		\$0.74	2,694	
7	\$1,106,890	\$1,017,723	diesel NF 54		\$0.67	2,707	
8	\$300,000	\$49,453	Paratransit		\$0.74	944	
9	\$300,000	\$49,453	Paratransit		\$1.88	1,562	

Figure 40: MARTA GHG Emissions Inventory. Worksheet: bus_diesel (cont.).

D			Avg.	Occ.									0 RH	ΒТ						onnes	onnes	onnes	onnes	onnes	onnes	onnes
г				Rev. Veh-Hr										BS					02e	2,773.21 t	9,173.49 t	11,609.28 t	10,547.28 t	6,484.90 t	7,282.34 t	3,649.51 t
S		Calc Fuel	Econ.	(mpg)	2.98	3.11	3.14	3.13	3.30	2.99	3.04	3.05				otal			ö							
R		User Fuel	Econ.	(mpg)									VM	λ BF		Ĕ			4	l ,829 g),692 g	7,010 g	7,459 g),655 g	3,830 g	3,036 g
ď	4, N2O)		cle Miles	nated)									1,178,557	BP BC					СН	g 2,141	g 7,379	g 9,417	g 8,517	g 5,51(g 5,638	g 2,873
	c (cH	Calc	S Vehic	(estin	35	28	34	l S	78	74	51	37	2,	BO					N20	190,651	556,890	838,238	758,167	190,521	501,930	255,738
ч		ser	ehicle Miles	ctual)	1,089,43	3,753,65	4,789,93	4,332,38	2,802,97	2,868,17	1,461,3(80,63		BN		IS				846 kg :	245 kg (061 kg 8	414 kg	954 kg	791 kg	478 kg
		Ď	Ve	(a										BM		1 Emissior			C02	2,662,	8,793,	11,124,	10,108,	6,200,	6,991,	3,501,
×				Units	DGE				Scope						2		2	0								
J			nbustion	ual)	365,154	1,205,811	1,525,434	1,386,159	850,332	958,779	480,155	26,446	6,798,270	BF		CH4	Emission	Factor	(g/mi.)	1.96	1.96	1.96	1.96	1.96	1.96	1.96
н		4 Use Fue	m. Con	act. (act	υ	υ	υ	υ	υ	υ	υ	υ		BE		120	mission	actor	g/mi.)	0.175	0.175	0.175	0.175	0.175	0.175	0.175
פ	irs	N2O, CH	ш	tivity F	A/B		AX		2	ш	ш	Jnits (:g/SCF	g/SCF	:g/SCF	:g/SCF	g/SCF	g/SCF	:g/SCF							
_	Data Tie		Em.	Fact. Ac	B/C		AW	ect	2		ission	tor L	0.05 k	0.05 k	0.05 k	0.05 k	0.05 k	0.05 k	0.05 k							
ц		C02		ctivity	A1/A2/B			Dir	8		Em	ype Fac		Γ	Γ	Γ	Γ	Γ	Γ							
				A	1	1	4	4	4	4	1	1		Z					Vehicle T	CNG	CNG	CNG	CNG	CNG	CNG	CNG
D				adyT lau	DN																					
υ			tty. of	uses Fi	22 CI	81 CI	100 CI	91 CI	55 CI	60 CI	30 CI	2 CI														
			0	Β	3000	2800	0063	2700	2400	2100	2100	EPWR	 	×					ory							
В				del	IF-G30-00-3	IF-G40-00-2	IF-G40-01-2	IF-G40-96-2	IF-G40-06-2	R-G40-02-:	R-G40-04-:	G40-96-R							nicle Catego	se	S	S	sa	S	8	S
_) Moc	 			~	 			11		-					Vel	0 Busé	0 Buse	0 Busé	0 Busé	0 Busé	0 Buse	0 Buse
A				us Number(s	3003 - 3024	2819 - 2900	2901 - 3002	2701 - 2818	2411 - 2465	2101 - 2160	2161 - 2190	2800 - 2801		>					ИΤ							
	1	2		3	4	5	9	7	∞	6	10	11	12		1	2			3 PI	4	5	9	7	∞	6	10

CNG.
bus
Worksheet:
Inventory.
Emissions
GHG
MARTA
Figure 41:

201.02 tonnes 51,721.03 tonnes

158,532 g

14,111 g

0.175

CNG

 V
 Understand
 Understand

3,501,478 kg 192,855 kg

49,575,644 kg 3,706,247 g 41,637,043 g

1.966 1.966 1.966 1.966 1.966 1.966

0.05 kg/SCF 0.05 kg/SCF 0.05 kg/SCF 0.05 kg/SCF 0.05 kg/SCF 0.05 kg/SCF

J	laintenan 32		m. Fact.	(\$/\$)	0.6916	0.6916	0.6916	0.6916	0.6916	0.6916	0.6916	0.6916		aC	ני				tonnes	tonnes	tonnes	tonnes	tonnes	tonnes	tonnes	tonnes	tonnes
C	144 ∑ ∑		im. Fact. El	kg/\$) (k	0.00182	0.00182	0.00182	0.00182	0.00182	0.00182	0.00182	0.00182		٩d	5			CO2e	1,594.48	5,598.17	7,001.52	6,230.80	3,618.72	4,269.36	2,140.20	127.08	30,580.34
СН			n. Fact. E	3/\$) (.05034E-05	.05034E-05	.05034E-05	.05034E-05	.05034E-05	.05034E-05	.05034E-05	.05034E-05		2	74			4	,370 kg	,348 kg	,947 kg	,032 kg	,216 kg	,955 kg	,013 kg	,072 kg	,954 kg
g	ufacturin N2		Fact. En	έ) (k	.6277 3	.6277 3	.6277 3	.6277 3	.6277 3	.6277 3	.6277 3	.6277 3			5			CH	g 14	g 48	g 60	g 55	g 33	g 37	g 19	g 1	g 269
	Man CO2		Em.	(kg/;	0								Ì		~			20	45 k	165 k	204 k	180 k	101 k	122 k	61 k	4 k	882 k
CF			IO-LCA Sector /	/ehicle Type	leavy duty	leavy duty	leavy duty	leavy duty	leavy duty	leavy duty	leavy duty	leavy duty			>	ssions: Total		Z	855 kg	327 kg	926 kg	383 kg	210 kg	151 kg	645 kg	132 kg	630 kg
CE			ш	<u>_</u> .	connes H	connes H	connes H	onnes F	onnes F	connes H	onnes H	connes H	onnes	Ę	3	pe 3 Emi		C02	1,221,	4,340,	5,416,	4,801,	2,758,	3,284,	1,646,	66	23,568,
CD				CO2e	895.59 t	2,957.41 t	3,741.33 t	3,399.74 t	2,085.55 t	2,351.53 t	1,177.64 t	64.86 t	16,673.67 t	t	5	Sco			tonnes	tonnes	tonnes	tonnes	tonnes	tonnes	tonnes	tonnes	tonnes
CB CC				CH4	12,488 kg	41,239 kg	52,171 kg	47,407 kg	29,082 kg	32,791 kg	16,422 kg	904 kg	32,504 kg	ر د	3			CO2e	698.89	2,640.76	3,260.19	2,831.05	1,533.17	1,917.83	962.56	62.22	13,906.67
CA				-	9 kg	9 kg	6 kg	3 kg	o kg	3 kg	1 kg	1 kg	1 kg 2	CR	5				882 kg	109 kg	777 kg	625 kg	134 kg	164 kg	592 kg	168 kg	449 kg
ΒZ	S Cvcle			N20	-	2	3	3	2	2	1		16		5			CH2	1,	7,	g 8,	7,	5 4,	5	3	b0	37,
ВΥ	ycle? YE ions: Fuel-6				96 kg	35 kg	32 kg	58 kg	97 kg	38 kg	11 kg	54 kg	30 kg		2	Cycle		N2O	36 k _i	136 k _i	168 k	147 k _i	81 k	99 k ₍	50 k _i	3 k _i	721 k
BX	de Fuel-C e 3 Emissi			C02	580,79	1,917,9(2,426,28	2,204,75	1,352,49	1,524,98	763,71	42,06	10,813,0(Z		Vehicle-			50	50	2	50	2	50	20	50	50
	Inclue Scope	-		n)	.60	.60	.60	.60	.60	.60	.60	.60				ehCycle: missions:			11,059 k _β	2,422 kg	90,644 kg	96,625 kg)5,713 kg	5 9,163 kg	32,934 kg	;7,069 k ₈	5,629 k ₈
BW	CH4		Em. Fact.	(g/MMBt	246	246	246	246	246	246	246	246		Z		nclude Vé cope 3 Er		C02	97	2,42	2,95	2,55	1,40	1,75	88	0	12,75
BV	GREET V1.8C		Em. Fact. 1	(g/MMBtu) (0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17				CH4 S	Em. Fact.	(kg/\$)	0.002056	0.002056	0.002056	0.002056	0.002056	0.002056	0.002056	0.002056	
BU	-uel-Cycle (202 P		Em. Fact. E	g/MMBtu) (11,468.36	11,468.36	11,468.36	11,468.36	11,468.36	11,468.36	11,468.36	11,468.36		ž	Ś	ie V2O	Em. Fact.	kg/\$)	4.46309E-05	4.46309E-05	4.46309E-05	4.46309E-05	4.46309E-05	4.46309E-05	4.46309E-05	4.46309E-05	
			ш.	3	4	5	9	7	∞	6	10	11	12		•	C	<u>ت</u>	3 (4	S	9	7	∞	6	10	11	12

Figure 42: MARTA GHG Emissions Inventory. Worksheet: bus_CNG (cont.).

	DC	DD	DE	DF	DG	DH	DI
1						Scope	_
2			1				
	Vehicle Capital	Vehicle Maint.		Cost-Eff.		CO2e Emiss.	Cost-Eff.
3	Cost (\$)	Cost (\$)	Cost ID	Baseline?	Cost (\$/mile)	Rate (g/mile)	(\$/tonne)
4	\$517,829	\$456,937	CNG NF 22		\$0.89	2,546	
5	\$2,005,580	\$1,682,359	CNG NF 81		\$0.98	2,444	
6	\$2,476,025	\$2,076,986	CNG NF 101		\$0.95	2,424	
7	\$2,054,264	\$1,890,057	CNG NF 94		\$0.91	2,435	
8	\$980,833	\$1,142,342	CNG NF 55		\$0.76	2,314	
9	\$1,429,500	\$1,246,192	CNG Orion 60		\$0.93	2,539	
10	\$720,090	\$623,096	CNG Orion 30		\$0.92	2,497	
11	\$45,149	\$41,540	CNG NF 94		\$1.08	2,493	

Figure 43: MARTA GHG Emissions Inventory. Worksheet: bus_CNG (cont.).

	А	В		C	D	F	F	G	н	1	К	Р		
1				<u> </u>		Data Tiers								
2	1					CO2 N2O						User		
										Fuel				
				Qty. of			Em.	Em		Combustio	า	Vehicle Miles		
3	Veh. Number(s)	Model		Veh.	Fuel Type	Activity	Fact.	Activity	Fact.	(actual)	Units	(actual)		
4	3529-3666	L/VAN FORD	RETIRED	81	diesel	A1/A2/B	B/C	A/B	С	114,0	22 gal	985,012		
5	3701-3731	L/VAN GM/	GLAVAL	30	diesel	A1/A2/B	B/C	A/B	С	159,1	17 gal	1,452,864		
6	3801-3945	L/VAN GM/	GOSHEN	144	diesel	A1/A2/B	B/C	A/B	С	500,4	54 gal	4,227,695		
7										773,5	93			
8	4													
9														
10	10													
		D									-			
1		K S			U V			VV			Z	AW		
2	L [C (CH4, N2O) Direct													
	Fue	el Fuel										602		
	Vehicle Miles Eco	on. Econ.		А	vg.							Emission		
3	estimated) (mpg) (mpg) Rev. Veh-Hr Occ. PMT Vehicle Category Vehicle Type Facto													
4		8.6	4			0 Heavy	Duty Vehi	cles			diesel	10.15		
5		9.1	.3			0 Heavy	Duty Vehi	cles			diesel	10.15		
6		8.4	5			0 Heavy	diesel	diesel 10.15						
7	6,665,571 VM 0 RH 0 Passenger-Miles (sum)													
8					5,423	,300 Passe	enger-I	Miles (alte	rnate 1	total)	_			
9											-			
10	C 5,423,300 Passenger-Miles (alternate total)													
1	AX BE	BF	BN		и во вн	BQ BH	B	S B		BU Val Cuala		BW		
2	N20	CHA	Scopo 1	Emission	c		Total							
2	Emission Emission Emissions I otal CO2 N2O CH4													
	Factor	Factor									Em. Fact.	Em. Fact.		
3	Units (g/mi.)	(g/mi.)	CO	2	N2O	CH4	CO2e			g/MMBtu)	(g/MMBtu)	(g/MMBtu)		
4	kg/gal 0.004				4 729 g	E 024 a	24 g 1,158.86 tor							
-		48 0.0051	1,15	5 7,323 kg	4,/20 g	5,024 g		6.60 10111	es	15,487.71	0.2	104.53		
5	kg/gal 0.004	48 0.0051 48 0.0051	1,15	57,323 kg .5,038 kg	6,974 g	7,410 g	1,61	7.30 tonn	es es	15,487.71 15,487.71	0.2 0.2	25 104.53 25 104.53		
6	kg/gal 0.004 kg/gal 0.004	48 0.0051 48 0.0051 48 0.0051	1,15 1,61	57,323 kg 5,038 kg 9,608 kg	6,974 g 20,293 g	7,410 g 21,561 g	1,61 5,08	7.30 tonn 6.19 tonn	es es es	15,487.71 15,487.71 15,487.71	0.2 0.2 0.2	25104.5325104.5325104.53		
5 6 7	kg/gal 0.004 kg/gal 0.004	48 0.0051 48 0.0051 48 0.0051	1,15 1,61 5,07 7,85	7,323 kg 15,038 kg '9,608 kg 1,969 kg	4,728 g 6,974 g 20,293 g 31,995 g	7,410 g 21,561 g 33,994 g	1,61 5,08 7,86	7.30 tonn 6.19 tonn 2.35 tonn	es es es	15,487.71 15,487.71 15,487.71	0.2 0.2 0.2	25104.5325104.5325104.53		
5 6 7 8	kg/gal 0.004 kg/gal 0.004	48 0.0051 48 0.0051 48 0.0051	1,15 1,61 5,07 7,85	57,323 kg 15,038 kg 19,608 kg 1,969 kg	4,728 g 6,974 g 20,293 g 31,995 g	7,410 g 21,561 g 33,994 g	1,61 5,08 7,86	7.30 tonn 6.19 tonn 2.35 tonn	es es es	15,487.71 15,487.71 15,487.71	0.2 0.2 0.2	25 104.53 25 104.53 25 104.53		
5 6 7 8 9	kg/gal 0.004 kg/gal 0.004	48 0.0051 48 0.0051 48 0.0051	1,15 1,61 5,07 7,85	57,323 kg 15,038 kg '9,608 kg 11,969 kg	4,728 g 6,974 g 20,293 g 31,995 g	7,410 g 21,561 g 33,994 g	1,61 5,08 7,86	7.30 tonn 6.19 tonn 2.35 tonn	es es es es	15,487.71 15,487.71 15,487.71	0.2 0.2 0.2	25 104.53 25 104.53 25 104.53 25 104.53		
5 6 7 8 9 10	kg/gal 0.004 kg/gal 0.004	48 0.0051 48 0.0051 48 0.0051	1,15 1,61 5,07 7,85	57,323 kg 15,038 kg '9,608 kg 1,969 kg	4,728 g 6,974 g 20,293 g 31,995 g	7,410 g 21,561 g 33,994 g	1,61 5,08 7,86	7.30 tonn 6.19 tonn 2.35 tonn	es es es	15,487.71 15,487.71 15,487.71	0.2 0.2 0.2	25 104.53 25 104.53 25 104.53		
5 6 7 8 9 10	kg/gal 0.004 kg/gal 0.004	48 0.0051 48 0.0051 48 0.0051	1,15 1,61 5,07 7,85	57,323 kg 5,038 kg 9,608 kg 1,969 kg	4,728 g 6,974 g 20,293 g 31,995 g	7,410 g 21,561 g 33,994 g	1,61 5,08 7,86	7.30 tonn 6.19 tonn 2.35 tonn	es es es	15,487.71 15,487.71 15,487.71	0.2	25 104.53 25 104.53 25 104.53		
5 6 7 8 9 10	kg/gal 0.004 kg/gal 0.004	48 0.0051 48 0.0051 48 0.0051 <u>BY BZ</u>	1,15 1,61 5,07 7,85	7,323 kg 15,038 kg 19,608 kg 11,969 kg	4,728 g 6,974 g 20,293 g 31,995 g	7,410 g 21,561 g 33,994 g	1,61 5,08 7,86	7.30 tonn 6.19 tonn 2.35 tonn	es es es CC	15,487.71 15,487.71 15,487.71	0.2	25 104.53 25 104.53 25 104.53		
5 6 7 8 9 10	kg/gal 0.004 kg/gal 0.004 BX Include Fuel-Cycle	48 0.0051 48 0.0051 48 0.0051 48 0.0051 97 87 97 97 97 97 97 97 97 97 97 97 97 97 97	1,15 1,61 5,07 7,85	7,323 kg 15,038 kg 19,608 kg 1,969 kg	4,728 g 6,974 g 20,293 g 31,995 g	7,410 g 21,561 g 33,994 g	1,61 5,08 7,86	7.30 tonn 6.19 tonn 2.35 tonn	es es es CC Manu	15,487.71 15,487.71 15,487.71		25 104.53 25 104.53 25 104.53 25 104.53		
5 6 7 8 9 10 1 2	kg/gal 0.00 kg/gal 0.00 BX Include Fuel-Cycle Scope 3 Emission	48 0.0051 48 0.0051 48 0.0051 48 <u>BZ</u> e? <u>YES</u> s: Fuel-Cycle	1,15 1,61 5,07 7,85	7,323 kg 15,038 kg 19,608 kg 1,969 kg CB C	4,728 g 6,974 g 20,293 g 31,995 g	7,410 g 21,561 g 33,994 g	1,61 5,08 7,86	7.30 tonn 6.19 tonn 2.35 tonn	es es es CC Manu CO2	15,487.71 15,487.71 15,487.71 6 CF facturing N2O	0.2 0.2 0.2	25 104.53 25 104.53 25 104.53 25 104.53 25 Maintenan CO2		
5 6 7 8 9 10 1 2	kg/gal 0.00 kg/gal 0.00 BX Include Fuel-Cycle Scope 3 Emission	48 0.0051 48 0.0051 48 0.0051 48 <u>BZ</u> 2? <u>YES</u> 5: Fuel-Cycle	1,15 1,61 5,07 7,85	7,323 kg 15,038 kg 19,608 kg 11,969 kg CB CI	4,728 g 6,974 g 20,293 g 31,995 g	7,410 g 21,561 g 33,994 g CE	1,61 5,08 7,86	7.30 tonn 6.19 tonn 2.35 tonn F.	es es es CC Manu CO2 Em. Fa	15,487.71 15,487.71 15,487.71 5 CF facturing N2O act. Em. Fac	0.2 0.2 0.2 1 CH4 t. Em. F	25 104.53 25 104.53 25 104.53 25 104.53 25 <u>104.53</u> 25 <u>104.53</u> 25 <u>CJ</u> Maintenar CO2		
5 6 7 8 9 10 1 2 3	kg/gal 0.00 kg/gal 0.00 BX Include Fuel-Cycle Scope 3 Emission	48 0.0051 48 0.0051 48 0.0051 48 0.0051 <u>BY BZ</u> 5? <u>YES</u> 5: Fuel-Cycle N20	1,15 1,61 5,07 7,85	7,323 kg 15,038 kg 19,608 kg 11,969 kg CB C	4,726 g 6,974 g 20,293 g 31,995 g	7,410 g 21,561 g 33,994 g CE EIO Ver	-LCA Senicle Ty	7.30 tonn 6.19 tonn 2.35 tonn F Ector / pe	es es es es CO Manu ⁴ CO2 Em. Fa (kg/\$)	15,487.71 15,487.71 15,487.71 5 CF facturing N2O act. Em. Fac (kg/\$)	0.2 0.2 0.2 1 CH4 t. Em. F (kg/\$	25 104.53 25 104.53 25 104.53 25 CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ C		
5 6 7 8 9 10 1 2 3 4	kg/gal 0.00 kg/gal 0.00 BX Include Fuel-Cycle Scope 3 Emission CO2 242,605	48 0.0051 48 0.0051 48 0.0051 48 0.0051 5: Fuel-Cycle N20 kg	1,15 1,61 5,07 7,85	7,323 kg 5,038 kg 79,608 kg 1,969 kg CB C CB C H4 1,637 kg	4,728 g 6,974 g 20,293 g 31,995 g C CD CO2e 284.70 to	7,410 g 21,561 g 33,994 g CE EIO Ver nnnes	-LCA Se nicle Ty nt truck	7.30 tonn 6.19 tonn 2.35 tonn 2.35 tonn F Ector / pe /utility	es es es es CO Manu CO2 Em. Fa (kg/\$) 0.5	15,487.71 15,487.71 15,487.71 5 CF facturing N2O act. Em. Fac (kg/\$) 5487 4.060	0.2 0.2 0.2 1 CH4 t. Em. F (kg/\$ 4E-05 0.00	25 104.53 25 104.53 25 104.53 25 Maintenan CO2 Fact. Em. Fact.) (kg/\$) 1696 0.6916		
5 6 7 8 9 10 1 2 3 4 5	kg/gal 0.00 kg/gal 0.00 BX Include Fuel-Cycle Scope 3 Emission CO2 242,605 338,553	48 0.0051 48 0.0	1,15 1,61 5,07 7,85	7,323 kg <u>5,038 kg</u> <u>9,608 kg</u> <u>1,969 kg</u> <u>CB CC</u> <u>CB CC</u> <u>1,637 kg</u> <u>2,285 kg</u>	4,728 g 6,974 g 20,293 g 31,995 g C CD CO2e 284.70 to 397.29 to	7,410 g 21,561 g 33,994 g CE CE Light nnes Light	-LCA Senicle Ty nt truck	F cctor / pe /utility /utility	es es es es CCC Manut CO2 Em. Fa (kg/\$) 0.5 0.5	15,487.71 15,487.71 15,487.71 5 CF facturing N2O act. Em. Fac (kg/\$) 5487 4.060 5487 4.060	0.2 0.2 0.2 1 CH4 t. Em. F (kg/\$ 4E-05 0.00 4E-05 0.00	25 104.53 25 104.53 25 104.53 25 Maintenan CO2 Fact. Em. Fact.) (kg/\$) 1696 0.6916 1696 0.6916		
5 6 7 8 9 10 10 1 2 3 4 5 6	kg/gal 0.00 kg/gal 0.00 kg/gal 0.00 BX Include Fuel-Cycle Scope 3 Emission CO2 242,605 338,553 1,064,817	48 0.0051 48 0.0	1,15 1,61 5,07 7,85 CA CA CA	7,323 kg 15,038 kg 79,608 kg 11,969 kg CB CI 2,285 kg 7,187 kg 7,187 kg	CO2e CO2e CO2e CO2e CO2e CO2e CO2e CO2e	CE EIO CE LIGE nnnes Lige nnnes Lige	-LCA Se nicle Ty t truck	F cctor / pe /utility /utility	es es es es Manur CO2 Em. Fa (kg/\$) 0.5 0.5 0.5	15,487.71 15,487.71 15,487.71 15,487.71 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.2 0.2 0.2 1 CH4 t. Em.F (kg/\$ 4E-05 0.00 4E-05 0.00	25 104.53 25 104.53 25 104.53 25 104.53 25 Maintenar CO2 5act. Em. Fact.) (kg/\$) 1696 0.6916 1696 0.6916		
5 6 7 8 9 10 10 1 2 3 4 5 6 7	kg/gal 0.00 kg/gal 0.00 kg/gal 0.00 BX Include Fuel-Cycle Scope 3 Emission CO2 242,605 338,553 1,064,817 1,645,975	48 0.0051 48 0.0	1,15 1,61 5,07 7,85 CA CA CA CA CA CA CA CA CA CA CA CA CA	7,323 kg 15,038 kg 79,608 kg 11,969 kg CB CI CB CI 1,637 kg 7,187 kg 1,109 kg	4,728 g 6,974 g 20,293 g 31,995 g C CD C CD C CD C CD C CD CD	CE EIO Ver nnnes Ligr nnnes Ligr nnnes Ligr	-LCA Se nicle Ty nt truck	F /utility /utility /utility	es es es es CCC Manur CO2 Em. Fa (kg/\$) 0.5 0.5 0.5	15,487.71 15,487.71 15,487.71 15,487.71 5487.71 5487 4.060 5487 4.060 5487 4.060	0.2 0.2 0.2 1 CH4 t. Em.F (kg/\$ 4E-05 0.00 4E-05 0.00	25 104.53 25 104.53 25 104.53 25 104.53 26 104.53 27 104.53 28 104.53 29 104.53 20 104.53 21 CJ Maintenar CO2 104.53 5 104.53 5 104.53 6 0.6916 1696 0.6916 1696 0.6916 1696 0.6916		
5 6 7 8 9 10 10 1 2 3 4 5 6 7 8	kg/gal 0.00 kg/gal 0.00 kg/gal 0.00 BX Include Fuel-Cycle Scope 3 Emission CO2 242,605 338,553 1,064,817 1,645,975	48 0.0051 48 0.0	1,15 1,61 5,07 7,85 CA CA CA CA	7,323 kg 15,038 kg 79,608 kg 11,969 kg 1,969 kg CB CI CB CI 1,637 kg 1,637 kg 1,109 kg	4,726 g 6,974 g 20,293 g 31,995 g C CD C CD 1,249.57 to 1,931.56 to	CE EIO Ver nnes Ligr nnes Ligr nnes Ligr	-LCA Se nicle Ty nt truck	F /utility /utility	es es es es CCC Manur CO2 Em. Fa (kg/\$)) 0.5 0.5	15,487.71 15,487.71 15,487.71 15,487.71 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.2 0.2 0.2 1 CH4 t. Em.F (kg/\$ 4E-05 0.00 4E-05 0.00	25 104.53 25 104.53 25 104.53 25 104.53 25 Maintenar CO2 Fact. Em. Fact.) (kg/\$) 1696 0.6916 1696 0.6916		
5 6 7 8 9 10 10 1 2 3 4 5 6 7 8 9 9	kg/gal 0.00 kg/gal 0.00 kg/gal 0.00 bx Include Fuel-Cycle Scope 3 Emission CO2 242,605 338,553 1,064,817 1,645,975	48 0.0051 48 0.0	1,15 1,61 5,07 7,85 CA CA CA CA CA CA CA CA CA CA CA CA CA	7,323 kg 15,038 kg 79,608 kg 11,969 kg 11,969 kg CB CI CB CI 2,285 kg 7,187 kg 1,109 kg	4,728 g 6,974 g 20,293 g 31,995 g C CD C CD 1,249.57 to 1,931.56 to	7,410 g 7,410 g 21,561 g 33,994 g CE EIO Vel nnes Ligh nnes Ligh nnes Ligh	-LCA Se nicle Ty t truck	F /utility /utility	es es es es ccc Manur CO2 Em. Fa (kg/\$) 0.5	15,487.71 15,487.71 15,487.71 5 6 CF facturing N2O act. Em. Fac (kg/\$) 5487 4.060 5487 4.060	0.2 0.2 0.2 1 CH4 t. Em.F (kg/\$ 4E-05 0.00 4E-05 0.00	 25 104.53 26 104.53 27 104.53 28 104.53 29 104.53 20 104.54 20 104.54 20 104.54 20 104.54		

Figure 44: MARTA GHG Emissions Inventory. Worksheet: Paratransit.

	СК	CL		CM	CN	CO	СР	CQ	C	CR	CS	СТ		CU	CV CV	W	сх	CY	CZ
1	e Include VehCycle? YES																		
2	N2O	ns: Ve	hicle-Cycle Scope 3							Scope 3 Emissions	: Total								
		Im Fact Im Fact																	
	Em. Fact.	Em. Fact	•					~ ~ ~										~ ~ ~	
3	(kg/\$)	(kg/\$)		CO2		N2U CH4		CH4	t CO2e		CO2e			02	N2	20		CH4	
4	4.46E-05	0.00205	66	1,073,582 kg		78	78 kg 3,		297 kg 1,1		1,179.1	9.15 tonnes		1,316,187	g 82 kg		٨g	3 4,934 kg	
5	4.46E-05	05 0.002056 397,623 kg		kg	29	kg	1,221 kg		g	436.72 tonnes			736,177	3 34 kg		kg	3,506 kg		
6	4.46E-05	4.46E-05 0.002056 1,908,591 kg		kg	138	kg	5,861 kg		g	2,096.27 tonnes		s	2,973,408	g 155 kg		kg	13,047 kg		
7		3,379,797 kg		kg	245	kg	10,378 kg		g	3,712.14 tonnes		5,025,772	g	g 271 kg		21,487 kg			
8																			
9																			
10																			
	DA DB DC				DD				DE		DF		DG	DH			DI		
1	1														Scope		-		
2	<u>!</u>															1	-		
				Vehicle Ca	oital	Vehicle Maint.						Cost-Eff.			CO2e Emiss.		Co	Cost-Eff.	
3	3 CO2e Cost (\$)				Cost (\$) (Cost ID			Baselin	9?	Cost (\$/mile)	Rate (g/mile)		(\$/tonne)			
4	4 1,463.85 tonnes			\$1,62	20,000	\$267,045			Paratransit					\$1.92		1,176	ò		
5	5 834.02 tonnes			\$60	0,000	\$98,906		8,906 I	Paratransit					\$0.48	1,113		6		
6	6 3,345.83 tonnes			\$2,88	30,000)	\$47	\$474,747 F		Paratransit				\$0.79		1,203	5		
7	7 5,643.70 tonnes																		
8				-1															
9	1																		
10	1																		
10																			

Figure 45: MARTA GHG Emissions Inventory. Worksheet: Paratransit (cont.).
	A	В	С	D	E	F	G	Н
1		-			Data Tier			
2					CO2, CH4, N2O	CO2, Cł	14, N2O	
3	Veh. Number(s)	Model	Qty. of Veh.	Line	Activity	Em. Factor	Energy Consumption (kWh)	Vehicle Miles
4	All	NA	338	NA	A/B	В	97,411,500.00	24,063,100.00
5	Old	NA	120	NA				
6	Rebuilds	NA	218	NA				
7	[24,063,100
8								
9]							
10								24,063,100

	I	J	К	0	Р	R	S	Т	U
1							Direct		
2							CO2	CH4	N2O
							Emission	Emission	Emission
							Factor	Factor	Factor
							(lbs/MWh)	(lbs/GWh)	(lbs/GWh)
3	Avg. Occ.	Rev. Veh-Hr	PMT	Electricity Grid Reg	ion	Emission Rate	(default)	(default)	(default)
4			0	state	GA	Annual	1402.5397	22.0169	23.9289
5			0						
6			0						
7	VM (sum)	0	0	-		-			
8	MM (at)		593,419,400						
9		_	-						
10	VM (sum)		593,419,400						

	V	W	Х	Y	AI	AJ	AK	AL	AM	AN	AO	AP
1												
2	Scope 2 Emissio	ons			Scope 3 En	nissions (pov	ver mix)					
				CO2e	Coal	Oil	NG	Nuclear	Biomass	Hydro	Wind	Other
3	CO2 (kg)	CH4 (g)	N2O (g)	(tonnes)	(default)	(default)	(default)	(default)	(default)	(default)	(default)	(default)
4	61,972,417.8	972.8	1,057.3	61,972.8	63.85%	0.74%	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%
5	0.0	0.0	0.0	0.0								
6	0.0	0.0	0.0	0.0		*****	******	*****	*****			******
7	61,972,417.8	972.8	1,057.3	61,972.8								
8												
9]											
10												

Figure 46: MARTA GHG Emissions Inventory. Worksheet: HR.

	AQ	AR	AS	AT	AU	AV	AW	AX	AY	AZ	BA	CM	CN	CO
1												Fuel-Cycle?	YES	
2		Scope 3	Emission	s (plant e	fficiency)							Scope 3 Emissions	: Fuel-Cycle	_
	Other													
	Carbon									Other	T&D			
3	(default)	Coal	Oil	NG	Nuclear	Biomass	Hydro	Wind	Other	Carbon	Losses	CO2 (kg)	CH4 (kg)	N2O (g)
4	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%	100.0%	34.0%	34.0%	8.0%	6,900,307.2	92,730.5	28,014.7
5		34.1%	34.8%	40.1%	100.0%	32.1%	100.0%	100.0%	34.0%	34.0%	8.0%	0.0	0.0	0.0
6		34.1%	34.8%	40.1%	100.0%	32.1%	100.0%	100.0%	34.0%	34.0%	8.0%	0.0	0.0	0.0
7												6,900,307.2	92,730.5	28,014.7
8														
9														

	СР	CQ	CR	CS	СТ	CU	CV	CW	CX	CY	CZ
1		Manufactu	iring		Maintenan	ice		VehCycle?	YES		
2		CO2	CH4	N2O	CO2	CH4	N2O	Scope 3 Emission	ons: Vehicle C	Cycle	
	CO 20	Em East	Em East	Em East	Em East	Em East	Em East				CO 26
	COZe	Em. Fact.	Em. Fact.	Em. Fact.	Em. Fact.	Em. Fact.	Em. Fact.				COZe
3	(tonnes)	(kg/\$)	(kg/\$)	(g/\$)	(kg/\$)	(kg/\$)	(g/\$)	CO2 (kg)	CH4 (kg)	N2O (g)	(tonnes)
4	9,226.9	0.46885	0.001228	0.01644295	0.5914	0.001604	0.027852349	0.0	0.0	0.0	0.0
5	0.0	0.46885	0.001228	0.01644295	0.5914	0.001604	0.027852349	5,088,492.3	13,487.0	199,053.3	5,485.0
6	0.0	0.46885	0.001228	0.01644295	0.5914	0.001604	0.027852349	10,800,676.3	28,578.3	416,204.2	11,639.2
7	9,226.9							15,889,168.6	42,065.3	615,257.5	17,124.1
8		-									
9											
10											

	DA	DB	DC	DD	DE	DF	DG	DH	DI	DJ	DK
1	Scope 3 Emissio	ons								Scope 2]
				CO2e	Vehicle Capital	Vehicle Maint.		Cost-Eff.	Cost	Emiss. Rate	Cost-Eff.
3	CO2 (kg)	CH4 (kg)	N2O (g)	(tonnes)	Cost (\$)	Cost (\$)	Cost ID	Baseline?	(\$/mi.)	(g/mi.)	(\$/tonne)
4	6,900,307.2	92,730.5	28,014.7	9,226.9	\$0	\$0				1000 2,5 75	
5	5,088,492.3	13,487.0	199,053.3	5,485.0	\$7,200,000	\$2,896,132	HR Veh. Old				
6	10,800,676.3	28,578.3	416,204.2	11,639.2	\$16,400,000	\$5,261,306	HR Veh. Rebld				
7	22,789,475.8	134,795.9	643,272.2	26,351.1							
8					-						
9											
10											

Figure 47: MARTA GHG Emissions Inventory. Worksheet: HR (cont.).

	A	В	С	D	E	F	G	Н		К	L
1						Data	Tiers				
2					CO2		N2O, 0	CH4		User	
									Non-	Fuel	
			Qty. of			Em.		Em.	High	Combustion	
3	Veh. Number(s)	Model	Veh.	Fuel Type	Activity	Fact.	Activity	Fact.	way	(actual)	Units
4	NA	Light Duty	389	gasoline	A1/A2/B	B/C	A/B	С	NO	405,728	gal
5	NA	Heavy Duty	41	diesel	A1/A2/B	B/C	A/B	С	NO	55,811	gal
6	NA	Automobile	16	CNG	С	B/C	A/B	С	NO		
7	NA	Non-road, loco.	5	diesel	A1/A2/B	B/C	A/B	Α	YES	1,130	gal
8	NA	Non-road, const.	4	diesel	A1/A2/B	B/C	A/B	A	YES	92	gal
9	[······································									

	N	0	Q	R	S	Т	U	V
1	C (CO2)			C (CH4, N2O)				
2	Calc		User	Calc	User	Calc		
	Fuel				Fuel	Fuel		
	Combustion		Vehicle Miles	Vehicle Miles	Econ.	Econ.		
3	(estimated)	Units	(actual)	(estimated)	(mpg)	(mpg)	Vehicle Category	Control Technology
4		3333	5,661,474]	33333	13.95	Light Duty Vehicles	
5		<u> 3333</u>	204,549			3.67	Heavy Duty Vehicles	
6	633,368	SCF	60,971		13.00		Light Duty Vehicles	
7		888					Locomotives	Diesel Fuel
8		888					Construction	Diesel Fuel
9				5,926,994	VM]		

	X	AU	AV	BC		BD		BK	BL	BM	1	BN	BO	BP	BQ	BR	BS
1		Direct															Fuel-Cycle
2		CO2		N2O	CH4	1	Scope	e 1 Emi	ssions					٦	Total		CO2
				Emission	Emi	ission											
		Emission		Factor	Fac	tor											Em. Fact.
3	Vehicle Type	Factor	Units	(g/mi.)	(g/r	ni.)	(02		N2C)		CH4		CO2e		(g/MMBtu)
4	gasoline	8.81	kg/gal	0.063	9	0.1516	3	,574,46	64 kg	361,	768	g	858,2	79 g	3,703.73	tonnes 8	16,812.32
5	diesel	10.15	kg/gal	0.004	8	0.0051		566,48	82 kg		982	g	1,0	43 g	566.80) tonnes	15,487.71
6	CNG	0.05	kg/SCF	0.0	5	0.737		34,20	02 kg	3,	049	g	44,9	36 g	36.23	tonnes 8	11,468.36
7		10.15	kg/gal	0.2	6	0.8		11,47	70 kg		294	g	9	04 g	11.58	B tonnes	15,487.71
8		10.15	kg/gal	0.2	6	0.58		93	34 kg		24	g		53 g	0.94	tonnes	15,487.71
9	T	_					4	,187,55	51 kg	366,	116	g	905,2	16 g	4,319.28	B tonnes	
	BT	BU		BV	BW	B	х	BY	ΒZ	CA		CB		CC		CD	CE
1	GREET V1.8c		Fuel-Cy	/cle?	YES												Manufactu
2	N2O	CH4	Scope	3 Emission	s: Fu	el-Cycle	5										CO2
	Em. Fact.	Em. Fact.													EIO-LCA	Sector /	Em. Fact.
3	(g/MMBtu)	(g/MMBtu)	(02		N2	0		CH4			CO2e	ۆ		Vehicle	Туре	(kg/\$)
4	1.14	108.74		848,151	kg		58	kg	5,48	6 kg		1,00	02.44	onnes	Automo	bile	0.5079
5	0.25	104.53	Ð	118,749	kg		2	kg	80	1 kg		13	89.35 1	onnes	Light tr	uck/utility	0.5487
6	0.17	246.60		7,460	kg		0	kg	16	0 kg		1	1.50	onnes	Automo	bile	0.5079
7	0.25	104.53		2,404	kg		0	kg	1	6 kg			2.82	onnes	Heavy o	luty	0.6277
8	0.25	104.53		196	kg		0	kg		1 kg			0.23	onnes	Light tr	uck/utility	0.5487
9				976,960	kg		60	kg	6,46	5 kg		1,15	6.34	onnes			

Figure 48: MARTA GHG Emissions Inventory. Worksheet: Non-Rev_Veh.

	CF	CG	СН	CI	CJ	СК	CL	CM	CN	CO	СР	CQ	CR
1	ring		Maintenar	nce		VehCycle?	YES						
2	N2O	CH4	CO2	N2O	CH4	Scope 3 Emissio	ns: V	ehicle-Cycle					
	Em. Fact.	Em. Fact.	Em. Fact.	Em. Fact.	Em. Fact.								
3	(kg/\$)	(kg/\$)	(kg/\$)	(kg/\$)	(kg/\$)	CO2		N2O		CH4		CO2e	
4	4.36242E-05	0.001676	0.6916	4.46E-05	0.002056	576,255	kg	49	kg	1,902	2 kg	638.54	tonnes
5	0.0121	0.0424	0.6916	4.46E-05	0.002056	187,473	kg	4,134	kg	14,48	7 kg	1,781.62	tonnes
6	0.013	0.0419	0.6916	4.46E-05	0.002056	23,702	kg	607	kg	1,95	5 kg	253.37	tonnes
7	0.00909	0.0455	0.6916	4.46E-05	0.002056	26,154	kg	379	kg	1,89	6 kg	186.42	tonnes
8	0.0121	0.0424	0.6916	4.46E-05	0.002056	18,290	kg	403	kg	1,413	3 kg	173.82	tonnes
9						831,874	kg	5,572	kg	21,65	3 kg	3,033.77	tonnes

	CS C	СT	CU	CV	CW	CX	CY	CZ	DA	DB	DC	DD
1												
2	Scope 3 Emissions:	: то	otal									
									Vehicle Capital	Vehicle Maint.		Cost-Eff.
3	CO2		N2O		CH4		CO2e		Cost (\$)	Cost (\$)	Cost ID	Baseline?
4	1,424,406 k	g	107	kg	7,38	7 kg	1,640.98	tonnes	\$1,134,583	\$0	Non-Rev gasoline	
5	306,222 k	g	4,136	kg	15,28	8 kg	1,920.97	tonnes	\$341,667	\$0	Non-Rev diesel	
6	31,162 k	g	607	kg	2,11	6 kg	264.88	tonnes	\$46,667	\$0	Non-Rev CNG	
7	28,558 k	g	379	kg	1,91	2 kg	189.24	tonnes	\$41,667	\$0	Non-Rev diesel	
8	18,486 k	g	403	kg	1,41	5 kg	174.05	tonnes	\$33,333	\$0	Non-Rev diesel	
9	1,808,834 k	g	5,632	kg	28,11	8 kg	4,190.11	tonnes				-

	DE	DF	DG
1		Scope	ſ
2		1	ļ
		CO2e Emiss.	Cost-Eff.
3	Cost (\$/mile)	Rate (g/mile)	(\$/tonne)
4	\$0.20	654	
5	\$1.67	2,771	
6	\$0.77	594	
7			
8			
9			

Figure 49: MARTA GHG Emissions Inventory. Worksheet: Non-Rev_Veh (cont.).

Γ			S				- 8						5 36	2										
1	-	n Units	05 therm		AB		ts 302 / SCF		BD		CH4	Em. Fact.	196	A/N#	#N/A									
-	, e c	mbustion ctual)	510,6		<pre> </pre>	분드	nt Jlt) Uni 15987 kg (BC	ET V1.8c		act.	0 00	¢N/A	¢N/A									
$\left \right $	- Contraction of the second se	lac (ac	8		Ā	B, C Defau Carbo	Conte (defau			GREE	N20	Em. I	73	, ,	4									
-	-	Biofu (%)	8		>		Jnits		BB	bstream	02	m. Fact.	5/ IVIIVIDLU	#N/A	#N/A						8	8	8	
					×	/2, B Jser čarbon	content actual) L		BA		0	ш	senne	onnes	onnes	onnes	BQ		st-Eff.	(tonne)			8	1
			S. Average)		>				AZ		Total		2.717.17 to	0.00 to	0.00 to	2,717.17 to	BP	be 1	e Emiss. Co	e (kg/SF) (\$				
	3, C)		shted U.S				Units 29 Btu / S		A		•	-	307 0	0 0	0 g	, 302 g		Scop	C02	Rate				
	CO2 (F		ed (Weig		⊃	B Default Heat	Content (default) 1,0		A N			2	255	8	50	255	BO			t (\$/SF)			å	
		uel Type	Jnspecifi		s	1	8		AV A				5,106	0	³ 0	5,106	_		Ť.	ne? Cos	83	83	8	
ſ		H					Units		AU		ions		kσ	kg kg) kg	kg	BN		Cost-E	Baselir				
U) 	Fuel Type	natural gas		8	A2, B User Heat	Content (actual)		AT		cope 1 Emiss	ŝ	2 200 269		0	2,709,269	BM			t D				
	ost-Eff.	ty Area				,	8		AR		H4 S mission	actor ////////)	<u> </u>		BL			Cost	onnes	onnes	onnes	Sennes
L	4 For C	Facili (SF)				O (B, C)	ation		q		sion E	Or F.		1						e	20.43 to	0.00 to	0.00 to	20.43 tr
L	iers N2O, CH	Em. Fact	J			CH4, N2	Configur		1		N2O Emis	Fact	18/14				BK	Total		C02	5			5 I
c	Data T CO2	Em. Fact.	J						AL				, SCF	5			BJ				026 kg	0 kg	0 kg	726 kg
Ĺ	,	Qty.	1				ial Sector					1 Linite	ke CO2 /	1100 84			BI			CH4	10,(10,(
ſ							Commerci		AK	ect	2	iission tor	0.05	0			ВН				4 kg	0 kg	0 kg	4 kg
	2	ЭС	NA		۵.		hnology (I			Dir	8	ΕЩ		88	8		BG			N20				
╞	-	TYF					Basic Tech		AD								BF	YES ssions			52 kg	0 kg	o kg	2 kg
<	;	scility	AII			14, N2O (B, C	el Type and t uralGas		AC	2	ser arbon	ontent					BE	uel-Cycle? cope 3 Emis		CO2	268,46			268.46
	7 7	3 Fa	4	5 6 6	┥┝	5 1	3 Fu 4 Nat	5 6 6		1 7	⊃ ö ~	ŭ ú r	0 4	- Lo	9	7		1 2 S		e	4	S	9	7

Data - CO2, (iar					
CO2, c						
	CH4, N2O 0	CO2, CH4	i, N2O	For Cost-Eff.		
		ш	acility Energy			
	ш	ë.	Consumption	Facility Area		
Activi	۲ ۲	actor (I	kWh)	(SF)	Electricity Grid	Region
k Yards A/B	Ш	8	83,525,011.06		state	GA
Headquarters A/B		~	6,267,791.00		state	GA
ia Building A/B	Ш	~	6,093,039.00		state	GA
EDMONT RD NE		~	10,200.00		state	GA
RRY BLVD NW	Ш	~	434,220.00		state	GA
W PEACHTREE RD A/B		~	45,330.00		state	GA
RRY BLVD NW A/B	В	8	1,380,000.00		state	GA
SHOALS RD A/B	E	8	56,645.00		state	GA
A/B A/B	В	8	52,400.00		state	GA
EDO DR A/B	Н	~	851,120.00		state	GA
W PEACHTREE RD A/B	B	3	609,400.00		state	GA
ADY AVE NW	В	8	870,960.00		state	GA
MMOND DR	В	8	272,440.00		state	GA
I FULTON INDUSTRIAL	E	8	51,287.00		state	GA
JRYDEN RD A/B	В	8	89,943.00		state	GA
AYSON ST NE	В	8	32,454.00		state	GA
AYSON ST NE	Ш	3	35,880.00		state	GA
RRY BLVD NW A/B	B	3	960,840.00		state	GA
RLIGHT DR NE	B	3	22,980.00		state	GA
AMILTON BLVD	B	3	2,437.00		state	GA
OWNS MILL RD	Ε	3	2,643,200.00		state	GA
AKLEY ROAD EXT TOWER A/B	В	8	51,320.00		state	GA
ATEWOOD RD NE	Ε	3	31.00		state	GA
SAMOUR DR NE	Ш	8	318,960.00		state	GA
SAMOUR DR NE	Ш	8	78,320.00		state	GA

_Elect.
Purch
Worksheet:
Inventory.
Emissions
GHG
MARTA
Figure 51:

I							
	A	В	J	D	Н	N	0
		Data Tier					
2		CO2, CH4, N2O	со2, сн	4, N2O	For Cost-Eff.		
				Facility Energy			
			Em.	Consumption	Facility Area		
e	Facility	Activity	Factor	(kWh)	(SF)	Electricity Grid	Region
29	4747 GRANITE DR UNIT B	A/B	В	21,556.00		state	GA
30	500 PLASTER AVE NE	A/B	В	324,520.00		state	GA
31	3385 HAMILTON BLVD SW	A/B	В	1,910,160.00		state	GA
32	4200 MEMORIAL DR	A/B	В	37,014.00		state	GA
33	572 MOROSGO DR NE	A/B	В	30,720.00		state	GA
34	6110 NEW PEACHTREE RD	A/B	В	43,320.00		state	GA
35	6444 WATSON ST	A/B	В	1,125.00		state	GA
36	650 CANTERBURY RD NE	A/B	В	28,814.00		state	GA
37	3509 MAIN ST	A/B	В	34,588.00		state	GA
38	996 FIFTH ST	A/B	В	18,894.00		state	GA
39	227 LAREDO DR UNIT BOOTH	A/B	В	4,391.00		state	GA
40	227 LAREDO DR	A/B	В	2,534,560.00		state	GA
41	3385 HAMILTON BLVD	A/B	В	245,120.00		state	GA
42	1484 DEKALB AVE NE	A/B	В	1,171,760.00		state	GA
43	6190 NEW PEACHTREE RD	A/B	В	39,947.00		state	GA
44	0 DEKALB AVE NE UNIT GAPBK	A/B	В	5,680.00		state	GA
45	686 WINDSOR TER	A/B	В	46,200.00		state	GA
46	3401 BROWNS MILL RD SE	A/B	В	8,789.00		state	GA
47	0 MANSELL RD PARK	A/B	В	41,236.00		state	GA
48	7010 PEACHTREE DUNWOODY RD	A/B	В	85,861.00		state	GA
49	3401 BROWNS MILL RD	A/B	В	2,271.00		state	GA
50							
51				111,392,734.06			

Figure 52: MARTA GHG Emissions Inventory. Worksheet: Purch_Elect (cont.).

I											ſ
	ð	R	S	Т	U	~	W	×	АН	AI	
1		Direct									
7		C02	CH4	N2O	Scope 2 Emissic	suc			Scope 3 Em	issions (powe
		Emission	Emission	Emission							
		Factor	Factor	Factor							
		(hWM/sdl)	(lbs/GWh)	(Ibs/GWh)				CO2e	Coal		
ŝ	Emission Rate	(default)	(default)	(default)	CO2 (kg)	CH4 (g)	N2O (g)	(tonnes)	(default)	Oil (def	ault)
4		1402.5397	22.0169	23.9289	53,137,944.5	834.2	906.6	53,138.2	63.85%	Ó	.74%
2		1402.5397	22.0169	23.9289	3,987,518.5	62.6	68.0	3,987.5	63.85%	Ó	.74%
9		1402.5397	22.0169	23.9289	3,876,342.7	60.9	66.1	3,876.4	63.85%	Ó	.74%
~		1402.5397	22.0169	23.9289	6,489.2	0.1	0.1	6.5	63.85%	ö	.74%
∞		1402.5397	22.0169	23.9289	276,247.3	4.3	4.7	276.2	63.85%	Ö	.74%
6		1402.5397	22.0169	23.9289	28,838.6	0.5	0.5	28.8	63.85%	Ö	.74%
10		1402.5397	22.0169	23.9289	877,945.0	13.8	15.0	877.9	63.85%	0	.74%
11		1402.5397	22.0169	23.9289	36,037.1	0.6	0.6	36.0	63.85%	0	.74%
12		1402.5397	22.0169	23.9289	33,336.5	0.5	0.6	33.3	63.85%	0	.74%
13		1402.5397	22.0169	23.9289	541,475.7	8.5	9.2	541.5	63.85%	o	.74%
14		1402.5397	22.0169	23.9289	387,695.4	6.1	6.6	387.7	63.85%	ō	.74%
15		1402.5397	22.0169	23.9289	554,097.8	8.7	9.5	554.1	63.85%	ö	.74%
16		1402.5397	22.0169	23.9289	173,324.2	2.7	3.0	173.3	63.85%	ó	.74%
17		1402.5397	22.0169	23.9289	32,628.4	0.5	0.6	32.6	63.85%	Ó	.74%
18		1402.5397	22.0169	23.9289	57,221.0	0.9	1.0	57.2	63.85%	Ö	.74%
19		1402.5397	22.0169	23.9289	20,647.0	0.3	0.4	20.6	63.85%	Ö	.74%
20		1402.5397	22.0169	23.9289	22,826.6	0.4	0.4	22.8	63.85%	Ö	.74%
21		1402.5397	22.0169	23.9289	611,278.7	9.6	10.4	611.3	63.85%	õ	.74%
22		1402.5397	22.0169	23.9289	14,619.7	0.2	0.2	14.6	63.85%	0	.74%
23		1402.5397	22.0169	23.9289	1,550.4	0.0	0.0	1.6	63.85%	Ö	.74%
24		1402.5397	22.0169	23.9289	1,681,582.7	26.4	28.7	1,681.6	63.85%	Ö	.74%
25		1402.5397	22.0169	23.9289	32,649.4	0.5	0.6	32.6	63.85%	Ö	.74%
26		1402.5397	22.0169	23.9289	19.7	0.0	0.0	0.0	63.85%	ö	.74%
27		1402.5397	22.0169	23.9289	202,919.8	3.2	3.5	202.9	63.85%	ó	.74%
28		1402.5397	22.0169	23.9289	49,826.6	0.8	0.9	49.8	63.85%	Ö	.74%

Figure 53: MARTA GHG Emissions Inventory. Worksheet: Purch_Elect (cont.).

ŀ										
	Q	R	S	Т	D	>	×	×	АН	AI
1		Direct								
2		C02	CH4	N2O	Scope 2 Emissio	su			Scope 3 Em	issions (pow
		Emission	Emission	Emission						
		Factor	Factor	Factor						
		(hWM/sdl)	(lbs/GWh)	(lbs/GWh)				CO2e	Coal	
3	Emission Rate	(default)	(default)	(default)	CO2 (kg)	CH4 (g)	N2O (g)	(tonnes)	(default)	Oil (default)
29		1402.5397	22.0169	23.9289	13,713.8	0.2	0.2	13.7	63.85%	0.74%
30		1402.5397	22.0169	23.9289	206,457.0	3.2	3.5	206.5	63.85%	0.74%
31		1402.5397	22.0169	23.9289	1,215,228.5	19.1	20.7	1,215.2	63.85%	0.74%
32		1402.5397	22.0169	23.9289	23,548.0	0.4	0.4	23.5	63.85%	0.74%
33		1402.5397	22.0169	23.9289	19,543.8	0.3	0.3	19.5	63.85%	0.74%
34		1402.5397	22.0169	23.9289	27,559.8	0.4	0.5	27.6	63.85%	0.74%
35		1402.5397	22.0169	23.9289	715.7	0.0	0.0	0.7	63.85%	0.74%
36		1402.5397	22.0169	23.9289	18,331.2	0.3	0.3	18.3	63.85%	0.74%
37		1402.5397	22.0169	23.9289	22,004.6	0.3	0.4	22.0	63.85%	0.74%
38		1402.5397	22.0169	23.9289	12,020.2	0.2	0.2	12.0	63.85%	0.74%
39		1402.5397	22.0169	23.9289	2,793.5	0.0	0.0	2.8	63.85%	0.74%
40		1402.5397	22.0169	23.9289	1,612,466.8	25.3	27.5	1,612.5	63.85%	0.74%
41		1402.5397	22.0169	23.9289	155,943.4	2.4	2.7	155.9	63.85%	0.74%
42		1402.5397	22.0169	23.9289	745,464.3	11.7	12.7	745.5	63.85%	0.74%
43		1402.5397	22.0169	23.9289	25,414.0	0.4	0.4	25.4	63.85%	0.74%
44		1402.5397	22.0169	23.9289	3,613.6	0.1	0.1	3.6	63.85%	0.74%
45		1402.5397	22.0169	23.9289	29,392.1	0.5	0.5	29.4	63.85%	0.74%
46		1402.5397	22.0169	23.9289	5,591.5	0.1	0.1	5.6	63.85%	0.74%
47		1402.5397	22.0169	23.9289	26,234.0	0.4	0.4	26.2	63.85%	0.74%
48		1402.5397	22.0169	23.9289	54,624.1	0.9	0.9	54.6	63.85%	0.74%
49		1402.5397	22.0169	23.9289	1,444.8	0.0	0.0	1.4	63.85%	0.74%
50					0.0	0.0	0.0	0.0		
51					70,867,167.1	1,112.5	1,209.1	70,867.6		

Figure 54: MARTA GHG Emissions Inventory. Worksheet: Purch_Elect (cont.).

	A	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV
1													
2	er mix)							Scope 3 E	Emissions	(plant ef	ficiency)		
							Other						
	DN	Nuclear	Biomass	Hydro	Wind	Other	Carbon						
3	(default)	Coal	Oil	DN	Nuclear	Biomass	Hydro						
4	7.15%	23.08%	2.34%	2.80%	0.00%	%00'0	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
5	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
9	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
7	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
8	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
6	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
10	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
11	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
12	7.15%	23.08%	2.34%	2.80%	00.0%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
13	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
14	7.15%	23.08%	2.34%	2.80%	00.0%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
15	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
16	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
17	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
18	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
19	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
20	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
21	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
22	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
23	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
24	7.15%	23.08%	2.34%	2.80%	0:00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
25	7.15%	23.08%	2.34%	2.80%	0:00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
26	7.15%	23.08%	2.34%	2.80%	0:00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
27	7.15%	23.08%	2.34%	2.80%	%00:0	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
28	7.15%	23.08%	2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%

Figure 55: MARTA GHG Emissions Inventory. Worksheet: Purch_Elect (cont.).

	A	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV
1	er mix)							Scope 3 E	missions	(plant eff	ficiency)		
							-						
	5N DN	Nuclear	Biomass	Hydro	Wind	Other	Other Carbon						
ŝ	(default)	(default)	(default)	(default)	(default)	(default)	(default)	Coal	oil	DN	Nuclear	Biomass	Hydro
29	7.15%	% 23.08%	% 2.34%	2.80%	0.00%	%00:0	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
30	7.15%	% 23.08%	% 2.34%	2.80%	0.00%	%00:0	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
31	7.15%	% 23.08%	% 2.34%	2.80%	0.00%	%00:0	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
32	7.15%	% 23.08%	% 2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
33	7.15%	% 23.08%	% 2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
34	7.15%	% 23.08%	% 2.34%	2.80%	0.00%	%00.0	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
35	7.15%	% 23.08%	% 2.34%	2.80%	0.00%	%00.0	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
36	7.15%	% 23.08%	% 2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
37	7.15%	% 23.089	% 2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
38	7.15%	% 23.08%	% 2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
39	7.15%	% 23.08%	% 2.34%	2.80%	0.00%	%00:0	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
40	7.15%	% 23.08%	% 2.34%	2.80%	0.00%	%00.0	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
41	7.15%	% 23.089	% 2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
42	7.15%	6 23.089	% 2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
43	7.15%	% 23.089	% 2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
44	7.15%	% 23.08%	% 2.34%	2.80%	0.00%	0.00%	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
45	7.15%	% 23.08%	% 2.34%	2.80%	0.00%	%00.0	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
46	7.15%	% 23.08%	% 2.34%	2.80%	0.00%	%00:0	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
47	7.15%	% 23.08%	% 2.34%	2.80%	0.00%	%00:0	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
48	7.15%	% 23.08%	% 2.34%	2.80%	0.00%	%00:0	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
49	7.15%	% 23.08%	% 2.34%	2.80%	00.0%	%00.0	0.04%	34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
50								34.1%	34.8%	40.1%	100.0%	32.1%	100.0%
51													

Figure 56: MARTA GHG Emissions Inventory. Worksheet: Purch_Elect (cont.).

СT					Cost-Eff.	(\$/tonne)																									
S	Scope		CO2e	Emiss.	Rate	(kg/SF)																									
ų					Cost	(\$/SF)															88	8									
g					Cost-Eff.	Baseline?																									
СР						Cost ID																									
CO					CO2e	(tonnes)	7,911.6	593.7	577.1	1.0	41.1	4.3	130.7	5.4	5.0	80.6	57.7	82.5	25.8	4.9	8.5	3.1	3.4	91.0	2.2	0.2	250.4	4.9	0.0	30.2	7.4
CN						N2O (g)	24,021.1	1,802.6	1,752.3	2.9	124.9	13.0	396.9	16.3	15.1	244.8	175.3	250.5	78.4	14.7	25.9	9.3	10.3	276.3	6.6	0.7	760.2	14.8	0.0	91.7	22.5
CM	/ES	SI				CH4 (kg)	79,511.3	5,966.6	5,800.2	9.7	413.4	43.2	1,313.7	53.9	49.9	810.2	580.1	829.1	259.3	48.8	85.6	30.9	34.2	914.7	21.9	2.3	2,516.2	48.9	0.0	303.6	74.6
CL	Fuel-Cycle?	Scope 3 Emission				CO2 (kg) (5,916,634.5	443,989.5	431,610.7	722.5	30,758.7	3,211.0	97,754.6	4,012.5	3,711.8	60,290.5	43,167.9	61,695.9	19,298.7	3,633.0	6,371.3	2,298.9	2,541.6	68,062.7	1,627.8	172.6	187,235.5	3,635.3	2.2	22,594.1	5,547.9
AZ					T&D	Losses	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%
AΥ					Other	Carbon	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%
AX					-	Other	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%
AW						Wind	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
		2				ŝ	4	ъ	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28

Figure 57: MARTA GHG Emissions Inventory. Worksheet: Purch_Elect (cont.).

CQ CR CS CT	Scope	2	CO2e	Emiss.	Cost-Eff. Cost Rate Cost-Eff.	Baseline? (\$/SF) (kg/SF) (\$/tonne)																							
СР						Cost ID																							
СО					CO2e	(tonnes)	2.0	30.7	180.9	3.5	2.9	4.1	0.1	2.7	3.3	1.8	0.4	240.1	23.2	111.0	3.8	0.5	4.4	0.8	3.9	8.1	0.2	0.0	10,551.2
CN						N2O (g)	6.2	93.3	549.3	10.6	8.8	12.5	0.3	8.3	9.9	5.4	1.3	728.9	70.5	337.0	11.5	1.6	13.3	2.5	11.9	24.7	0.7	0.0	32,035.6
CM	YES	ns				CH4 (kg)	20.5	308.9	1,818.4	35.2	29.2	41.2	1.1	27.4	32.9	18.0	4.2	2,412.8	233.3	1,115.5	38.0	5.4	44.0	8.4	39.3	81.7	2.2	0.0	106,039.9
CL	Fuel-Cycle?	Scope 3 Emissio				CO2 (kg)	1,527.0	22,987.9	135,309.4	2,621.9	2,176.1	3,068.6	79.7	2,041.1	2,450.1	1,338.4	311.0	179,539.8	17,363.5	83,003.6	2,829.7	402.4	3,272.7	622.6	2,921.0	6,082.1	160.9	0.0	7,890,691.4
AZ					T&D	Losses	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	
AY					Other	Carbon	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	
AX					-	Other (34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	34.0%	
AW						Wind	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	
	1	2				ŝ	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51

Figure 58: MARTA GHG Emissions Inventory. Worksheet: Purch_Elect (cont.).

			_		
	A	В	C	E	H D
-	Vehicle Cos	st ID	HR Veh.	HR Veh. Old	HR Veh. Rebld
2		Fuel/energy type			
e		Vehicle/Equipment Lifetime	40 years	25 years	15 years
ъ		Beginning Year	·	·	
9		Salvage discount rate	10 % per year	10 % per year	10 % per year
~					
∞	Capital Cos	tts			
6		Vehicle purchase	\$2,628,440.37	\$1,500,000.00	\$1,128,440.37
10		Vehicle credit/grant	%	%	%
11		credit/grant	0	0	0
12		Total vehicle purchase	\$2,628,440.37	\$1,500,000.00	\$1,128,440.37
27		Total Capital Costs	\$2,628,440.37	\$1,500,000.00	\$1,128,440.37
28		Annualized Capital Costs	\$65,711.01	\$60,000.00	\$75,229.36
29	i				
30	Operating :	and Maintenace Costs (annual)			
31					
36		Vehicle maintenance (parts)	\$24,134.43 per year	\$24,134.43 per year	\$24,134.43 per year
37		Parts cost growth factor	*select*	*select*	*select*
	A	В	l l	K L	N
1	Vehicle Co	st ID	Paratransit	CNG Orion 60	diesel Orion 10
2		Fuel/energy type			
e		Vehicle/Equipment Lifetime	4 years	12 years	12 years
S		Beginning Year			
9		Salvage discount rate	10 % per year	10 % per year	10 % per year
\sim					
∞	Capital Cos	sts			
6		Vehicle purchase	\$80,000.00	\$285,900.00	\$239,900.00
10		Vehicle credit/grant	%	%	%
11		credit/grant	0	0	0
12		Total vehicle purchase	\$80,000.00	\$285,900.00	\$239,900.00
27		Total Capital Costs	\$80,000.00	\$285,900.00	\$239,900.00
28		Annualized Capital Costs	\$20,000.00	\$23,825.00	\$19,991.67
29	1				
30	Operating	and Maintenace Costs (annual)			
36		Vehicle maintenance (parts)	\$3.296.85 ner vear	\$20.769.86 per vear	\$20.769.86 per vear
37		Parts cost growth factor	*select*	*select*	*select*

Figure 59: MARTA GHG Emissions Inventory. Worksheet: Cost_Vehicle.

	-	-						
	AB		0	Ρ	σ	R	S	Т
⊣	Vehicle Cost ID	CNG	NF 94		CNG NF 55		diesel Orion 40	
7	Fuel/energy type		ſ	L		-		_
e	Vehicle/Equipment Lifetime		12	'ears	12 V	'ears	12	years
പ	Beginning Year	 	 		+ - · · 			
9	Salvage discount rate		10 9	6 per year	10 9	6 per year	10	% per year
∽∣∝	Canital Costs							
σ	Vehicle purchase	.¢\$	70 892 00		\$214 000 00		\$259 650 00	
10	Vehicle credit/grant		6	9	6	%		%
11		credit/grant	0		0		0	
12	Total vehicle purchase	\$2.	70,892.00		\$214,000.00		\$259,650.00	
27	Total Capital Costs	\$2.	70,892.00		\$214,000.00		\$259,650.00	
28	Annualized Capital Costs	Ş	22,574.33	<u></u>	\$17,833.33		\$21,637.50	
29				1		1		1
3 2								
36	Vehicle maintenance (parts)	\$	20,769.86 p	ber year	\$20,769.86 p	ber year	\$20,769.86	per year
37	Parts cost gru	owth factor	*	'select*	*	'select*		*select*
	A B		n	٨	M	×	٨	Z
-	Vehicle Cost ID	CNGC	Drion 30		CNG NF 101		CNG NF 81	
7	Fuel/energy type			L		L	ſ	
m	Vehicle/Equipment Lifetime		12 V	ears	12 y	ears	12	years
ഹ	Beginning Year	 	 		 		т - т 	
9	Salvage discount rate		10 %	é per year	10 %	ó per year	10	% per year
~ ∝	Lanital Costs							
6	Vehicle purchase	\$28	88,036.00		\$297,123.00		\$297,123.00	
10	Vehicle credit/grant		8		%			%
11		credit/grant	0		0		0	
12	Total vehicle purchase	\$28	88,036.00		\$297,123.00		\$297,123.00	
27	Total Capital Costs	\$28	88,036.00		\$297,123.00	<u> </u>	\$297,123.00	
28	Annualized Capital Costs	\$	24,003.00		\$24,760.25	<u></u>	\$24,760.25	
29	:			1		1		
8 5	Operating and Maintenace Costs (annual)							
35	Vehicle maintenance (narts)	Ş	0 760 96 UC	roor	4 70 760 96	1000.10	570 760 86	rention
200	אבווורוב ווימווירבוומוירב (אמירי)	2 <u>7</u>	40,707.00	er year	1 00.001,02¢	er year	100.001,U2¢	ber year *-~!~~+*
'n	Parts COSI Bri	owth ractor	-	select"		select -		*select"

Figure 60: MARTA GHG Emissions Inventory. Worksheet: Cost_Vehicle.

	~	VV	AR	۷C	٩D	ΔF	ΔF
	Vehicle Cost ID	diacal NE 5.1	2	diacal NE EE	ę	CNG NE 22	ł
-							
-	Vehicle/Equipment Lifetime	12	years	12	years	10	Jyears
-	Beginning Year						r
	Salvage discount rate	10	% per year	10	% per year	10	0 % per year
-	Canital Costs						
-	Vehicle purchase	\$271.075.00		\$267.181.00	_	\$235.377.00	
	Vehicle credit/grant		%		%		%
	credit/grant	0		0		0	
	Total vehicle purchase	\$271,075.00		\$267,181.00		\$235,377.00	
-	Total Capital Costs	\$271,075.00		\$267,181.00		\$235,377.00	
_	Annualized Capital Costs	\$22,589.58		\$22,265.08		\$23,537.70	
r i	-		-		-		n
-	Operating and Maintenace Costs (annual)						
-	Vehicle maintenance (parts)	\$20,769.86	per year	\$20,769.86	per year	\$20,769.86	5 per year
	Parts cost growth factor		*select*		*select*		*select*
-	AB	AG	AH	AI	Γ	AK	AL
-	Vehicle Cost ID	Non-Rev diesel		Non-Rev gasoline		Non-Rev CNG	
	Fuel/energy type	•••	-	:	_		5
	Vehicle/Equipment Lifetime	12	years	12	years	12	Z years
	Beginning Year						
	Salvage discount rate	10	% per year	10	% per year	10	0% per year
	Canital Posts						
		\$100 000 O		435 000 00		SAF OOD OC	
	Vehicle credit/grant	00:000	%		%		%
	credit/grant	0		0			
	Total vehicle purchase	\$100,000.00	1	\$35,000.00		\$35,000.00	
	Total Capital Costs	\$100,000.00	1	\$35,000.00		\$35,000.00	
	Annualized Capital Costs	\$8,333.33		\$2,916.67		\$2,916.67	
			-				1
	Operating and Maintenace Costs (annual)						
	Vehicle maintenance (parts)		nervear		ner vear		ner vear
-	Parts cost growth factor		*select*		*select*		*select*
-							

Figure 61: MARTA GHG Emissions Inventory. Worksheet: Cost_Vehicle.

APPENDIX E: COST-EFFECTIVENESS EVALUATIONS

	-	F		-	-		-						-	-		
	A		В	U		D		Е	F	ŋ	Т	ſ	_	~	Р	S
-									Data	Tiers			r.			
7								C02		N2O, (CH4	User Fuel		Use	L	Calc Fuel
				Qty. o	÷				Em.		Em.	Combustio	c	Veh	icle Miles	Econ.
ŝ	Bus Number(s) Mo	del	Buses	Fue	il Type	A	ctivity	Fact.	Activity	Fact.	(actual)	Unit	s (act	ual)	(mpg)
4	2880-288		NF D60LF	10	dies	sel	4	A1/A2/B	B/C	A/B	A	139,9	96 gal		350,567	2.50
ŋ	2780-2789	6	VF DE60LF hy	brid 10	dies	sel	1	A1/A2/B	B/C	A/B	А	114,0	54 gal		362,049	3.17
9	2880-288	6	NF D60LF	10	dies	sel	F	A1/A2/B	B/C	A/B	А	139,9	96 gal		350,567	2.50
7	2780-2789	<u>م</u>	AF DE60LF hy	brid 10	dies	sel	4	A1/A2/B	B/C	A/B	А	114,0	54 gal		362,049	3.17
		M		×		AW	A	K B B	щ	BF	BM	BNB	O BP	BQ	BR BS	BT
	-+					Direct		0	Ċ		1				-	
2						C02		N20 Fmis	sion E	H4 SC mission	cope 1 En	lissions			Total	
						Emissio	ç	Facto	er Fe	actor						
З	Vehicle Category			Control Techno	ology	Factor	Unit	cs (g/m	i.) (g	/mi.)	CO2	N	20	CH4	CO2e	
4	Diesel Heavy-Duty Veh	icles		Moderate		10.	.15 kg/ε	gal 0.	0048	0.0051	1,420,	959 kg	1,683 g	1,788	g 1,421.5	1 tonnes
S	Diesel Heavy-Duty Veh	icles		Moderate		10.	.15 kg/g	gal 0.	0048	0.0051	1,157,	648 kg	1,738 g	1,846	g 1,158.2	1 tonnes
9	Diesel Heavy-Duty Veh	icles		Moderate		10.	.15 kg/g	gal 0.	0048	0.0051	1,420,	959 kg	1,683 g	1,788	g 1,421.5	1 tonnes
7	Diesel Heavy-Duty Veh	icles		Moderate		10.	.15 kg/g	gal 0.	0048	0.0051	1,157,	648 kg	1,738 g	1,846	ig 1,158.2	1 tonnes
8	Passenger-Miles	(uns)				Ţ					5,157,	215 kg	6,841 g	7,269) g 5,159.4	4 tonnes
l																
	BU	BV	BW	BX	BΥ	ΒZ	CA	CB	2	8	Ë	Ъ		g	ъ	Ū
	Fuel-Cycle GF	RET V1.80	CH4	Include Fuel-Cy Scone 3 Emissic	cle?	YES el-Cvcle							2 2	anufacturi	Bu DC	CH4
1	200	ò	t 5										5	2	0	t
	Em. Fact. En	n. Fact.	Em. Fact.	000						000		EIO-LCA Secto	r/ En	ו. Fact. E	m. Fact.	Em. Fact.
ε	(g/MMBtu) (g.	/MMBtu)	(g/MMBtu)	C02		NZO		CH4	-	C02e		/ehicle Type	ž	3/5) (1	<g 5)<="" td=""><td>(kg/\$)</td></g>	(kg/\$)
4	15,487.71	0.25	5 104.53	297,87(o kg	5	kg	2,010 k	8	349.55 t	onnes	Heavy duty	T	0.6277	3.05034E-05	0.00182
2	15,487.71	0.25	5 104.53	242,673	3 kg	4	. kg	1,638 k	в	284.78 t	onnes	Heavy duty		0.6277	3.05034E-05	0.00182
9	15,487.71	0.25	5 104.53	297,87(o kg	2	kg	2,010 k	в	349.55 t	onnes	leavy duty	1	0.6277	3.05034E-05	0.00182
~	15,487.71	0.25	5 104.53	242,673	3 kg	4	, kg	1,638 k	80	284.78 t	onnes	Heavy duty	1	0.6277	3.05034E-05	0.00182
∞				1,081,085	5 kg	17	, kg	7,296 k	20	1,268.66 t	onnes					

Figure 62: King County Metro hybrid bus GHG inventory and cost-effectiveness.

CN CO CP CQ CR CS	Cycle? YES	ssions: Vehicle-Cycle			N2O CH4 CO2e	,785 kg 19 kg 1,008 kg 37	,563 kg 24 kg 1,309 kg 48	,785 kg 19 kg 1,008 kg 37	,563 kg 24 kg 1,309 kg 48	,697 kg 84 kg 4,633 kg 1,72
CK CL CW	ntenance Include VehCy	: N2O CH4 Scope 3 Emissi		Fact. Em. Fact. Em. Fact.	\$) (kg/\$) (kg/\$) CO2	0.6916 4.46309E-05 0.002056 344,78	0.6916 4.46309E-05 0.002056 448,56	0.6916 4.46309E-05 0.002056 344,78	0.6916 4.46309E-05 0.002056 448,56	1,586,69
	1 Ma	2	L	EM	3 (kg	4	5	9	7	8

Figure 63: King County Metro hybrid bus GHG inventory and cost-effectiveness (cont.).

	DC	DD	DE	DF	DG	DH	DI
1						Scope	
2						1	
	Vehicle Capital	Vehicle Maint.		Cost-Eff.		CO2e Emiss.	Cost-Eff.
3	Cost (\$)	Cost (\$)	Cost ID	Baseline?	Cost (\$/mile)	Rate (g/mile)	(\$/tonne)
4	\$370,833	\$161,962	KCM diesel	yes	\$2.31	4,055	
5	\$537,500	\$160,750	KCM hybrid		\$2.55	3,199	\$282.53
6	\$370,833	\$161,962	KCM diesel sub		\$1.46	4,055	
7	\$537,500	\$160,750	KCM hybrid sub		\$1.36	3,199	-\$1,105.23
	DC	DD	DE	DF	DG	DH	DI
1						Scope	
2						1	
	Vehicle Capital	Vehicle Maint.		Cost-Eff.		CO2e Emiss.	Cost-Eff.
3	Cost (\$)	Cost (\$)	Cost ID	Baseline?	Cost (\$/mile)	Rate (g/mile)	(\$/tonne)
4	\$370,833	\$161,962	KCM diesel		\$2.31	4,055	
5	\$537,500	\$160,750	KCM hybrid		\$2.55	3,199	\$1,271.34
6	\$370,833	\$161,962	KCM diesel sub	yes	\$1.46	4,055	
7	\$537,500	\$160,750	KCM hybrid sub		\$1.36	3,199	-\$116.43

Figure 64: King County Metro hybrid bus GHG inventory and cost-effectiveness (cont.).

	Α	В	С	D	E	F
1	Vehicle Co	st ID	KCM diesel		KCM hybrid	
2		Fuel/energy type		-		
3		Vehicle/Equipment Lifetime	12	years	12	years
4		Age	0	years	0	years
5		Beginning Year			 	
6		Salvage discount rate		% per year		% per year
7						
8	Capital Cos	ts				
9		Vehicle purchase	\$445,000.00		\$645,000.00	
10		Vehicle credit/grant				
11		credit/grant	0		0	
12		Total vehicle purchase	\$445,000.00		\$645,000.00	
13	Ī	Vehicle salvage value		[[
27	Ī	Total Capital Costs	\$445,000.00		\$645,000.00	
28		Annualized Capital Costs	\$37,083.33		\$53,750.00	
29		-		•		•
30	Operating	and Maintenace Costs (annual)				
31						
32		Vehicle operator (labor)		per year		per year
33		Labor cost growth factor		\$ per year		*select*
34		Vehicle maintenance (labor)		per mile		per mile
35		Labor cost growth factor		*select*		*select*
36		Vehicle maintenance (parts)	\$0.462	per mile	\$0.444	per mile
37		Parts cost growth factor		*select*		*select*
38		Vehicle Fuel	\$0.791	per mile	\$0.624	per mile
39		Fuel cost growth factor		*select*		*select*

	A	В	G	Н	Ι	J
1	Vehicle Co	st ID	KCM diesel sub		KCM hybrid sub	
2		Fuel/energy type		-		
3		Vehicle/Equipment Lifetime	12	years	12	years
4		Age	00	years	0	years
5		Beginning Year	·	1	, ,	1 1 4
6		Salvage discount rate		% per year		% per year
7						
8	Capital Cos	its				
9		Vehicle purchase	\$445,000.00		\$645,000.00	
10		Vehicle credit/grant	80	%	80	%
11		credit/grant	356000		516000	
12		Total vehicle purchase	\$89,000.00		\$129,000.00	
13		Vehicle salvage value		I		[
27		Total Capital Costs	\$89,000.00		\$129,000.00	
28		Annualized Capital Costs	\$7,416.67		\$10,750.00	
29				-		-
30	Operating	and Maintenace Costs (annual)				
31						-
32		Vehicle operator (labor)		per year		per year
33		Labor cost growth factor		*select*		*select*
34		Vehicle maintenance (labor)		per mile		per mile
35		Labor cost growth factor		*select*		*select*
36		Vehicle maintenance (parts)	\$0.462	per mile	\$0.444	per mile
37		Parts cost growth factor		*select*		*select*
38		Vehicle Fuel	\$0.791	per mile	\$0.624	per mile
39		Fuel cost growth factor		*select*		*select*

Figure 65: King County Metro hybrid bus cost profiles.

				4			ć		:			0						Γ
1	4		L Data Tie CO2, CH₄	r 4, N2O	Ö	2, CH4, I	V20	For	п Cost-Eff.	_	2					_		
	1						ility Enor	ě										
					Em	ēō.	unuy cuer nsumptio	sy n Fac	ility Area									
e	Facility		Activity		Fac	tor (k/	(HV	(SF)	_	Electri	city Grid	Region						
4	Grand Central Termir	nal	A/B		В		980,00	00.00	1,000,00	0 eGRID	subregi	NYCW	NF	PCC NYC/	'Westcheste	2		
S	Grand Central Termir	nal (CFL)	A/B		В				1,000,00	0 eGRID	subregi	NYCW	NF	CC NYC	Westcheste	L		
9							980,00	00.00										
	σ	R		S	F		D	>	N	×	Ah		AI	A	AK	AL	AM	_
7		Direct CO2	CH4	. –	N20	Scope	e 2 Emissio.	ns			Scope	3 Emissic	iawod) suu	ŕ mix)				
		Emission	Emi	sion	Emission													
		(Ibs/MW	h) (lbs/	or (GWh) (Factor (lbs/GWh)	_				CO2e	Coal		2	5	Nuclear	Biomass	Hydro	
e	Emission Rate	(default)	(def	ault) ((default)	CO2 ((kg)	CH4 (g)	N2O (g)	(tonnes)	(defau	lt) Oil (default) (default)	(default)	(default) (defaul	Ē
4	Non-Baseload	1525.	0547	56.8005	9.08	18 6	577,929.5	25	2 4.(67.	7.9 0.7	%00	20.21%	34.93	3% 43.8.	2% 0.5⁄	0.0 %t	02%
5	Non-Baseload	1525.	0547	56.8005	9.08	18	0.0	0.1	0.0)	0.0	%00	20.21%	34.93	3% 43.8.	2% 0.54	1% 0.C	02%
9							577,929.5	25	2 4.() 67;	6.7							1
	AN AO	AP	AQ	AR	AS	AT	AU	AV	AW	AX	AΥ	AZ	C		CM	CN	8	
1												_	Fuel-Cycle	e? YE	S			
2			Scope 3	Emissions	s (plant ef	ficiency)	~						Scope 3 E	missions				
		Other																
	Wind Other	Carbon								-	Other	T&D					CO2e	
З	(default) (default)	(default)	Coal	oil	ВN	Nuclear	· Biomas	s Hydro	Wind	Other (Carbon	Losses	co2 (kg)	Ċ	14 (kg) F	N2O (g)	(tonnes	()
4	0.00% 0.00%	% 0.48%	34.1%	34.8%	40.1%	100.09	% 32.1	% 100.0	% 100.0%	34.0%	34.0%	8.0%	97,	886.5	768.3	640.	5 11:	7.3
S	0:00% 0:00%	% 0.48%	34.1%	34.8%	40.1%	100.05	% 32.1	% 100.0	% 100.0%	34.0%	34.0%	8.0%		0.0	0.0	0.	0	0.0
9			l									·	97,	886.5	768.3	640.	5 11	7.3

Figure 66: NY MTA Grand Central Terminal lighting replacement GHG estimation and cost-effectiveness.

	СР	CQ	CR	CS	СТ
1				Scope	
2				2	
	1			CO2e	•
				Emiss.	
		Cost-Eff.	Cost	Rate	Cost-Eff.
3	Cost ID	Baseline?	(\$/SF)	(kg/SF)	(\$/tonne)
4	Base Facility	yes	0.16	0.68	
5	CFL Lights		0.01	0.00	-\$215.58

Figure 67: NY MTA Grand Central Terminal lighting replacement GHG estimation and cost-effectiveness (cont.).

Facility Cost ID	Base Facility	CFL Lights
Fuel/energy type		
Facility Strategy Lifetime	1 years	1 years
Beginning Year	2008	2008
Salvage discount rate	% per ye	ar <u>10</u> % per year
Capital Costs		
Facility construction/renovation	\$10,200.00	\$11,050.00
Facility credit/grant		
credit/grant	0	0
Total facility const./renov.	\$10,200.00	\$11,050.00
Facility salvage value		
Equipment purchase		
Equipment credit/grant	*select*	*select*
credit/grant	0	0
Total equipment purchase	\$0.00	\$0.00
Equipment salvage value		
Total Capital Costs	\$10,200.00	\$11,050.00
Annualized Capital Costs	\$10,200.00	\$11,050.00
Operating and Maintenace Costs (annual)		
Facility Energy	\$147,000.000 per year	\$0.000 per year

Figure 68: NY MTA Grand Central Terminal lighting replacement cost profiles.

select

select

Fuel cost growth factor

REFERENCES

- 1. Weigel, B., F. Southworth, and M. Meyer. "Calculators for Estimating Greenhouse Gas Emissions from Public Transit Agency Vehicle Fleet Operations". Presented at 89th Annual Meeting of the Transportation Research Board, Washington, D.C. 2010.
- 2. Weigel, B., F. Southworth, and M. Meyer. Calculators for Estimating Greenhouse Gas Emissions from Public Transit Agency Vehicle Fleet Operations. In *Transportation Research Record*, 2010. Forthcoming.
- U.S. Department of Energy, Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration. NREL/TP-560-42781-1, U.S. Department of Energy, Washington, D.C., 2008. http://www.fta.dot.gov/documents/HydrogenandFuelCellTransitBusEvaluations42781-1.pdf
- 4. FTA Grant Programs. *Clean Fuels Grant Program (5308)*. Federal Transit Administration. http://www.fta.dot.gov/funding/grants/grants_financing_3560.html. Accessed July 7, 2009.
- TIGGER. Solicitation of Comments and Notice of Availability of Fiscal Year 2009 Funding for Transit Investments for Greenhouse Gas and Energy Reduction Grants. Federal Transit Administration. http://edocket.access.gpo.gov/2009/pdf/E9-6420.pdf. Accessed July 7, 2009.
- 6. The Climate Registry. *General Reporting Protocol*. Version 1.1. http://www.theclimateregistry.org/downloads/GRP.pdf. Accessed July 7, 2009.
- 7. The European Climate Registry. http://www.europeanclimateregistry.eu/. Accessed July 7, 2009.
- 8. Climate Exchange Plc. http://www.climateexchangeplc.com/. Accessed July 7, 2009.
- 9. American Public Transportation Association, *Recommended Practice for Quantifying Greenhouse Gas Emissions from Transit*. APTA CC-RP-001-09, Washington, D.C., 2009.
 http://www.apta.com/resources/hottopics/Documents/apta_climate_change_recommende d_practice_final_august_14.pdf
- 10. Bailey L., P. L. Mokhtarian, et. al. ICF International, *The Broader Connection Between Public Transportation, Energy Conservation, and Greenhouse Gas Reduction.* Fairfax, VA, 2008.

- 11. U.S. Department of Transportation, *National Transportation Statistics*. Research and Innovative Technology Administration, Bureau of Transportation Statistics, Washington, D.C., 2009. http://www.bts.gov/publications/national_transportation_statistics/
- 12. Cambridge Systematics, Inc., *Moving Cooler: An Analysis of Transportation Strategies* for Reducing Greenhouse Gas Emissions. Urban Land Institute, Washington, D.C., 2009.
- 13. Intergovernmental Panel on Climate Change, *IPCC Fourth Assessment Report*. United Nations, 2007.
- 14. United Nations Framework Conference on Climate Change. *Kyoto Protocol*. United Nations. http://unfccc.int/kyoto_protocol/items/2830.php. Accessed June 8, 2010.
- 15. U.S. Energy Information Administration, *Emissions of Greenhouse Gases Report*. DOE/EIA-0573(2007), Department of Energy, Washington, D.C., 2007. www.eia.doe.gov/oiaf/1605/ggrpt/
- 16. U.S. Environmental Protection Agency, *Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2007.* EPA 430-R-09-004, Washington, D.C., 2009. http://epa.gov/climatechange/emissions/usinventoryreport.html
- 17. Burbank, C. J. "Greenhouse Gas and Energy Mitigation for the Transportation Sector -Recommended Research and Evaluation Program". Presented at *88th Annual Meeting of the Transportation Research Board*, Washington, D.C. 2009.
- 18. U.S. Energy Information Administration, *Annual Energy Outlook 2009*. DOE/EIA-0383(2009), U.S. Department of Energy, Washington, D.C., 2009.
- 19. Highways & Climate Change. *Global Climate Change: Transportation's Role in Reducing Greenhouse Gas Emissions*. Federal Highway Administration. http://www.fhwa.dot.gov/hep/climate/gccalbany.htm. Accessed June 11, 2010.
- 20. American Association of State Highway and Transportation Officials, *Primer on Transportation and Climate Change*. Washington, D.C., 2008.
- 21. U.S. Environmental Protection Agency, *Greenhouse Gas Emissions from the U.S. Transportation Sector 1990-2003.* EPA 420 R 06 003, Washington, D.C., 2006.
- Bailey, L. Prepared for American Public Transportation Association by ICF International, *Public Transportation and Petroleum Savings in the U.S.: Reducing Dependence on Oil.* Fairfax, VA, 2007. http://www.apta.com/research/info/online/documents/apta_public_transportation_fuel_sa vings_final_010807.pdf
- 23. Hodges, T. *Public Transportation's Role in Responding to Climate Change*. Federal Transit Administration, Washington D.C., 2009.

http://www.fta.dot.gov/documents/PublicTransportationsRoleInRespondingToClimateCh ange.pdf

- 24. Chester, M. and A. Horvath. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air v.2. eScholarship Repository, University of California, Berkeley, CA, 2008. http://repositories.cdlib.org/its/future_urban_transport/vwp-2008-2
- 25. Federal Transit Administration, *Transit Greenhouse Gas Emissions Management Compendium*. D2008-GHG-TRI, Washington, D.C., 2008. http://www.fta.dot.gov/documents/TransitGreenhouseGasEmissionsCompendium-D2008-GHG-TRI.pdf
- 26. Federal Transit Administration, *Transit Greenhouse Gas Emissions Management Compendium*. Georgia Institute of Technology, 2010. (Draft).
- 27. National Energy Technology Laboratory, 2008 Buildings Energy Data Book. Department of Energy, Washington, D.C., 2009.
- 28. ISO Standards. *ISO 14000 essentials*. International Organization for Standardization. http://www.iso.org/iso/iso_catalogue/management_standards/iso_9000_iso_14000/iso_14 000_essentials.htm. Accessed June 12, 2010.
- 29. About APTA. 2009 Pilot Phase of APTA Sustainability Commitment. American Public Transportation Association. http://www.apta.com/resources/hottopics/Pages/2009PilotPhaseofAPTASustainabilityCo mmitment.aspx. Accessed June 12, 2010.
- Hendrickson, C., et al. Economic Input-Output Models for Environmental Life-Cycle Assessment. In *Environmental Science & Technology Policy Analysis*, 32(7), April 1,1998, pp. 184A -191A.
- 31. National Risk Management Research Laboratory, *Life Cycle Assessment: Principles and Practice*. EPA/600/R-06/060, U.S. Environmental Protection Agency, 2006.
- 32. American National Standards Institute, *Environmental management Life cycle assessment Principles and framework*. ANSI/ISO 14040 1997, 1997.
- 33. Hendrickson, C., L. Lave, and H. Matthews. *Environmental Life Cycle Assessment of Goods and Services: An Input-Output Approach*. Resources for the Future Press, Washington, D.C., 2006.
- 34. U.S. Department of Transportation, Federal Transit Administration, *Transit Bus Life Cycle Cost and Year 2007 Emissions Estimation*. FTA-WV-26-7004.2007.1, Washington, D.C., 2007.

- 35. Clark, N., F. Zhen, and W. Wayne. Assessment of Hybrid-Electric Transit Bus Technology. TCRP Report 132, Transportation Research Board, Washington, D.C., 2009. http://www.trb.org/Publications/Blurbs/Assessment_of_HybridElectric_Transit_Bus_Tec hnolog_162703.aspx
- 36. Federal Transit Administration, A Report to Congress on Policy Options for Increasing the Use of Alternative Fuels in Transit Vehicles. U.S. Department of Transportation, Washington, D.C., 2006.
- 37. U.S. Department of Transportation, Assessment of the Greenhouse Gas Emission Benefits of Heavy Duty Natural Gas Vehicles in the United States. Washington, D.C., 2005.
- 38. Climate Leaders. *Cross-Sector Guidance*. U.S. Environmental Protection Agency. http://www.epa.gov/stateply/resources/cross-sector.html. Accessed July 7, 2009.
- 39. CRIS. *Climate Registry Information System*. The Climate Registry. http://cris.theclimateregistry.org/eats/tcr/. Accessed July 7, 2009.
- 40. The Greenhouse Gas Protocol. *Corporate Accounting and Reporting Standard*. World Resources Institute. http://www.ghgprotocol.org/standards/corporate-standard. Accessed July 7, 2009.
- 41. The California Climate Action Registry. *The General Reporting Protocol*. Version 3.1. http://www.climateregistry.org/. Accessed July 7, 2009.
- 42. ICLEI. *Local Governments Operations Protocol*. Version 1.0. http://www.icleiusa.org/programs/climate/ghg-protocol. Accessed July 7, 2009.
- 43. ISO, *ISO 14064-1 Greenhouse Gases*. International Organization for Standardization, Geneva, CH, 2006.
- 44. eGRID2007. *The Emissions & Generation Resource Integrated Database*. U.S. Environmental Protection Agency. http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html. Accessed July 7, 2009.
- 45. Deru, M. and P. Torcellini. National Renewable Energy Laboratory, *Source Energy and Emission Factors for Energy Use in Buildings*. NREL/TP-550-38617, U.S. Department of Energy, Washington, D.C., 2007.
- 46. *The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation* (*GREET*) V1.8c.0 Fuel-Cycle Model. U.S. Department of Energy, Argonne National Laboratory. http://www.transportation.anl.gov/modeling_simulation/GREET/index.html. Accessed June 18, 2009.

- 47. *The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation* (*GREET*) V2.7 Vehicle-Cycle Model. U.S. Department of Energy, Argonne National Laboratory. http://www.transportation.anl.gov/modeling_simulation/GREET/index.html. Accessed June 18, 2009.
- 48. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Fleet Footprint Calculator V1.0. U.S. Department of Energy, Argonne National Laboratory. http://www.transportation.anl.gov/modeling_simulation/GREET/index.html. Accessed June 18, 2009.
- 49. *GHGenius*. Natural Resources Canada. http://www.ghgenius.ca/. Accessed July 7, 2009.
- 50. Delucchi, M. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials. UCD-ITS-RR-03-17, eScholarship Repository, University of California, Berkeley, CA, 2003. http://repositories.cdlib.org/itsdavis/UCD-ITS-RR-03-17
- 51. Peet, K., et al. "Future Fleets: An Applied Model for Bus Fleet Planning Based on Energy Costs and Impacts". Presented at *89th Annual Meeting of the Transportation Research Board*, Washington, D.C. 2010.
- 52. Green Design Institute. Economic Input-Output Life Cycle Assessment (EIO-LCA) US Dept of Commerce 1997 Industry Benchmark (491) model. Carnegie Mellon University. http://www.eiolca/net/. Accessed July 7, 2009.
- 53. ASHRAE, Energy Standard for Buildings Except Low-Rise Residential Buildings. ANSI/ASHRAE/IESNA Standard 90.1-2004, American Society of Heating Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA, 2004.
- 54. National Transit Database. Federal Transit Administration. http://www.ntdprogram.gov/ntdprogram/data.htm. Accessed October 15, 2009.
- 55. FTA Grant Programs. *Grants & Financing*. Federal Transit Administration. http://www.fta.dot.gov/grants_financing.html. Accessed June 21, 2010.
- 56. U.S. EIA Electricity. *State Electricity Profiles*. U.S. Energy Information Administration. http://www.eia.doe.gov/cneaf/electricity/st_profiles/e_profiles_sum.html. Accessed June 28, 2010.
- 57. The European Climate Exchange. http://www.ecx.eu/. Accessed April 24, 2010.
- 58. American Public Transportation Association, 2009 Public Transportation Vehicle Database. Washington, D.C., 2009.

- 59. Transportation Research Board, *Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles*. The National Academies, Washington, D.C., 2010.
- 60. National Transit Database. Federal Transit Administration. http://www.fta.dot.gov/documents/PublicTransportationsRoleInRespondingToClimateCh ange.pdf. Accessed July 7, 2009.
- 61. Chandler, K. and K. Walkowicz. National Renewable Energy Laboratory, *King County Metro Transit Hybrid Articulated Buses: Final Evaluation Results*. NREL/TP-540-40585, U.S. Department of Energy, Washington, D.C., 2006.
- 62. New York Metropolitan Transit Authority, *Greening Mass Transit & Metro Regions: The Final Report of the Blue Commission on Sustainability and the MTA*. New York, NY, 2009.
- 63. National Energy Technology Laboratory, *Development of Baseline Data and Analysis of Life Cycle Greenhouse Gas Emissions of Petroleum-Based Fuels*. DOE/NETL-200-/1346, U.S. Department of Energy, Washington, D.C., 2008.
- 64. Environmental Defense Fund. *Fleet Greenhouse Gas Emissions Calculator*. http://innovation.edf.org/page.cfm?tagID=37020. Accessed July 7, 2009.
- 65. *Urban Transportation Emissions Calculator*. Transport Canada. http://wwwapps.tc.gc.ca/prog/2/UTEC-CETU/Calculator.aspx?lang=eng. Accessed July 7, 2009.
- 66. Travel Matters. *Transit Planning Emissions Calculator*. The Center for Neighborhood Technology. http://www.travelmatters.org/calculator/transit/?sid=f2290aedb949de6206fea832124affc4
 . Accessed July 7, 2009.
- 67. *MOVES (Motor Vehicle Emission Simulator)*. U.S. Environmental Protection Agency. http://www.epa.gov/otaq/models/moves/index.htm. Accessed April 23, 2010.