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SUMMARY 

Today, numerous alternative modes of mobility are emerging to provide a 

solution to the problems created by the automobile.  This research envisions a future 

where transportation in urban areas will be dominated by small personal mobility devices 

(PMDs) instead of automobiles.  This Intelligent Mobility System (IMS) would be a car-

free zone where people travel by a shared-system of PMDs providing levels of mobility 

greater than walking but less than a car.  This research effort focuses on the operational 

aspects of this future system by studying PMD performance characteristics as inputs for a 

computer simulation model of an IMS environment. 

Therefore, the primary objective of this research is to evaluate the operations of 

PMDs that are currently used in a variety of settings.  GPS recorders are used to log 

speed and location data each second of pedestrian, bicycle, Segway, and electric cart 

trips.  From this data, typical speed and acceleration profiles are derived for later use in a 

simulation model.  This research also analyzes the results of a Segway test where a group 

of six Georgia Tech researchers and a guide completed a Segway trip of approximately 8 

miles in Atlanta.  Segway speed and acceleration are analyzed using three factors, 

sidewalk width, surface quality, and pedestrian density to study their effect on Segway 

speed. 

Pedestrians have the lowest mean speed and the most narrow speed distribution.  

Segways, bicycles and electric carts have increasingly faster mean speeds and wider 

speed distributions, respectively.  Segways and bicycles were found to have similar 

acceleration distributions.  Segways seem to provide a level of speed and mobility 

between that of pedestrians and cyclists, meaning that Segways might capture new users 

by providing a level of mobility and convenience previously unseen. 

Narrow sidewalk widths, poor sidewalk quality, and heavy pedestrian density all 

decreased Segway speeds.  Even if there was ample sidewalk space and the surface is of 



 xx 

excellent quality, speeds were still low if there are heavy pedestrian densities.  Similarly, 

if there are no pedestrians but the surface is very rough, Segway speeds would likely be 

constrained.  The researchers suspect that surface quality is likely an independent 

constraint for Segway speed and that sidewalk width and pedestrian density interact to 

limit Segway speeds under certain conditions.  This research concludes that these 

external factors may affect PMD speed and should be considered when analyzing PMD 

mobility, especially in an IMS setting. 
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CHAPTER 1 

INTRODUCTION 

The transportation system in the United States and much of the developed world 

is car-centric.  Today, numerous alternative modes of mobility are emerging to provide a 

solution to the problems (congestion, high resource consumption, safety, etc.) often 

associated with the automobile.  Segways, scooters, micro-vehicles, electric carts, and 

even traditional bicycles are designed to efficiently move humans with little or no cargo 

and without the added bulk of traditional automobiles.  Compact, light-weight, and 

powered by clean energy, these human-scaled personal mobility devices (PMDs) could 

provide one aspect of the solution to the challenges associated with traditional vehicle 

travel. 

This research envisions a future where transportation in urban areas will be 

dominated by PMDs instead of automobiles.  Researchers at Georgia Tech call this an 

Intelligent Mobility System (IMS).  An IMS would be a car-free zone where people travel 

by a shared-system of PMDs with autonomous operation capabilities.  Within the IMS 

zone, PMDs would provide levels of personal mobility greater than walking but less than 

that of a car.  PMDs with autonomous operation capability are interconnected via 

wireless communications allowing them to independently pick up system users at their 

location and drop them off at their destination.  Automobiles and transit can make 

connections at the car-free IMS zone boundary.  Transit stations within or near the IMS 

zone boundary provide regional connections to home, work, airports, train, other IMS 

zones, or car parking.  Ultimately, IMS zones may provide a solution to many of the 

problems caused by traditional automobiles while still providing a similar or better level 

of mobility. 

This research in this thesis focuses on the operational aspects of this future 

system.  If IMS zones were to exist, how would the system operate?  Eventually, a 
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computer simulation model would be the best way to evaluate the operation of this 

proposed system.  In order to create this model, research is needed to analyze the 

performance characteristics of PMDs which will be needed as model inputs. 

Therefore, the primary objective of this research is to evaluate the performance 

characteristics of PMDs that are currently used in a variety of settings.  This is 

accomplished by placing Global Positioning System (GPS) data recorders on PMDs to 

log speed and location data each second of the trip.  From this data, typical speed and 

acceleration profiles are derived for later use in a simulation model.  This research 

analyzes the speed and acceleration characteristics of pedestrians, bicycles, Segways, and 

electric carts. 

This research also analyzes the results of a Segway test where a group of six 

Georgia Tech researchers and a guide completed a Segway trip of approximately 8 miles 

in the city of Atlanta.  Segway speed was analyzed using three factors, sidewalk width, 

surface quality, and pedestrian density to evaluate their effect on Segway speed. 

As society pursues more sustainable modes of transportation in the future, it will 

be important to understand PMD operations and behavior as well as the factors that 

influence them.  While this research has many limitations, it is a first step towards 

Intelligent Mobility Systems, a sustainable transportation solution for the future. 
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CHAPTER 2 

BACKGROUND 

This chapter describes the underlying concepts and factors pertinent to this 

project.  This chapter first describes the current state of our car-centric transportation 

system, and outlines a possible alternative in the form of a future transportation system 

populated by masses of human-scaled personal mobility devices (PMDs).  The chapter 

goes on to discuss PMDs in detail, investigates current simulation models, and describes 

the data that would be needed to create a model populated by PMDs. 

2.1 Our Car-Centric World 

There are strong arguments for decreasing car use in favor of safer, more 

sustainable and more equitable modes.  Today, there are over one billion cars on Earth 

(Sperling, 2009).  Over 52 million cars were produced in 2009.  Currently three new cars 

are built every two seconds, one for every three babies born.  Worldwide motor vehicle 

accidents killed 1.2 million people in 2009 and injured 50 million more (Richards, 2010).  

Automobile emissions increasingly create air quality problems in urban areas and are 

responsible for more than 25% of all greenhouse gas emissions in the United States 

(EPA, 2006).  Wide boulevards and freeways sever communities by inhibiting social 

interactions and pedestrian travel, and while few of the very poor own vehicles 

throughout the world, they often receive the brunt of the negative impacts of increased 

car ownership and travel (Wright, 2005). 

Traditionally, the approach to mitigate the adverse effects of mass car use in the 

United States has been to increase automobile fuel efficiency, improve emission controls, 

and attempt to decrease travel demand.  While this has greatly reduced emissions per 

vehicle, national vehicle-miles traveled (VMT) has not decreased dramatically.  

Strategies such as traffic calming, carpooling, virtual commuting, and others are 
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“approaching their limits of efficacy (Reutter & Reutter, 1996).”  A potential alternative 

to address these challenges is to reduce car use by either removing them from parts of the 

transportation system and/or by replacing car trips with more sustainable modes of 

transportation. 

2.1.1 Thinking Car-free 

There are many benefits to removing cars from a central business district (CBD) 

or other types of urban environments.  One of the most obvious benefits of car-free zones 

is the increase in pedestrian safety.  Without the presence of vehicles, the only accidents 

that could occur are between pedestrians and low-speed vehicles like bicycles.  These 

incidents are far less frequent and much less severe (Shaheen & Rodier, 2008).  With the 

creation of a walkable environment free from cars, the people living, working, or 

shopping in the car-free area walk more and children are safer in or near the street.  

Walkability, noise reduction, air quality improvements, and safe streets are some of the 

strongest attractions of car-free zones (Nobis, 2003). 

Reductions in road capacity and the implementation of car restrictions in 

neighborhoods have shown to be effective ways of reducing car trips and VMT 

(Goodwin, 1998; Nobis, 2003).  Reductions in VMT directly should increase energy 

security by decreasing reliance on foreign oil.  With fewer automobiles operating in 

urban centers, the local air quality would greatly improve.  VMT reductions typically 

result in carbon-dioxide and ozone reductions throughout the area influenced by the car-

free zone, and the reductions in fine particulate emissions immediately within the car-free 

zone would be substantial.  Also, car-free households have substantially lower 

environmental impacts from their ground transportation and energy use in general 

(Ornetzeder et al., 2008). 
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2.1.2 Getting Back to the Human Scale 

Until recent history, humans have never moved much faster than walking speed.  

Presently, cars have increased human mobility beyond the speed limits of human ability 

to perceive and react to the natural environment.  Therefore, complex structured human 

environments have been created around the car to safely accommodate increased human 

mobility.  Freeways, arterials, and their surrounding environment are made for drivers to 

navigate them at high-speed, often neglecting the pedestrian or cyclist (Vanderbilt, 2008). 

Mobility 

Even though most of our cities have been constructed around car use, the average 

vehicular speeds on these roads are often equal to or less than other alternative modes in 

heavily congested cities.  A study of a bike-share program in Lyon, France showed that 

the average origin to destination bicycle trip speed was 13.5 km/h (8 mph) while average 

car speeds in downtown European cities vary between 10 km/h (6 mph) and 15 km/h (9 

mph).  The Lyon study also found that bicycle trips were often shorter than car trips 

because bicyclists could take shorter routes using bicycle or pedestrian infrastructure 

(Jensen et al., 2010).  Previously, Liu and Parthasarathy (2003) analyzed regional travel-

household survey data from the New York Metropolitan Transportation Council and 

estimated that 27% of trips within Manhattan were suitable for Segway use based on trip 

lengths and travel time.  All of this means that a significant portion of urban car trips 

could be replaced by low-speed modes that are more energy and space efficient while 

maintaining a similar or better level of personal mobility, especially when appropriate 

infrastructure is available. 

Energy 

Vehicles are designed for a myriad trip purposes, but most vehicle trips are single-

occupant vehicle (SOV) trips with little or no cargo.  In 2000, over 75% of vehicle trips 
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were SOV trips and this figure has likely only rose since then (Pisarski, 2006).  The 

average automobile weighs over 4000 lbs and the average American person weighs 

approximately 180 lbs; hence, over 95% of the energy used during a SOV trip is used to 

move the automobile itself and less than 5% of the energy is used to move the actual 

person (EPA, 2009; Ogden et al., 2004).  This means that 95% of the energy of SOV trips 

is spent moving the vehicle weight rather that the person, in comparison to only 37% of 

the energy used in a Segway trip is spent moving the Segway.  Table 1 shows 

transportation vehicles, their average weight, and the percentage of wasted energy 

considering a single passenger weighting 180 lbs. 

Table 1. Wasted Energy per Mode 

Mode Weight[lbs] Dead Weight Source 

Car 4000 96% (EPA, 2009) 

Micro-vehicle 1000 85% (MIT, 2012) 

Scooter (50cc) 220 55% (Lance Powersports, 2012) 

Segway 105 37% (Segway, 2012) 

Bicycle 30 17% Estimate 

*Note: Each vehicle type is defined and discussed in Section 2.3 

Urban Space 

Many would agree that much of our nation’s urban space is occupied by parking 

and roadways, but little is actually known regarding the true percentage.  In 2005, 

Manville and Shoup, the author of the popular book “The High Cost of Free Parking,” 

analyzed the effects of parking and parking regulations on the urban form.  Using Los 

Angeles as their case study for a car-dependent urban area, Manville and Shoup traced 

claims about the amount of land in Los Angeles dedicated to the car back to a 1966 study 

prepared for a large number of urban areas in which the study concluded that 35% of land 

area was dedicated to streets and 24% was dedicated to parking (Wilbur Smith & 

Associates, 1966; Manville, 2005).  Southworth and Ben-Joseph (2003) subsequently 

concluded that the automobile consumes close to half of the land area of U.S. cities, and 
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in Los Angeles the figure may approach two-thirds.  Davis and her colleagues recently 

studied the parking lot footprint of the Great Lakes Region. Using a sample of 30 zip 

codes across four states, Davis estimated that there were more than 2.5 parking spaces per 

registered vehicle (Davis, Pijanowski, Robinson, & Kidwell, 2010). 

With all the urban space currently dedicated to vehicles, PMDs have a 

tremendous potential to reduce the footprint of the transportation system, especially 

through parking demands.  Researchers at MIT estimate that the savings in parking space 

for the MIT CityCar, a micro-vehicle (see Section 2.3.4), could free up entire blocks of 

parking (MIT, 2012).  Figure 1 shows a typical car parking lot and the space required for 

the same number of parking spaces for the MIT CityCar.  Other researchers have 

estimated that three Segways could travel side-by-side within a single car lane (Liu & 

Parthasarathy, 2003).  Therefore, using smaller, human-scaled modes of transportation 

would alleviate traffic congestion and improve urban spaces. 

 

Figure 1. A Typical Car Parking Lot (Left) vs.  

Parking for the MIT CityCar (right) (MIT, 2012) 
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2.2 Intelligent Mobility Systems 

Removing cars from the transportation system in favor of lighter, smaller, more 

efficient, human-scaled personal mobility devices (PMDs) powered by clean energy 

would provide the solution to many of the aforementioned problems caused by traditional 

automobiles.  Combining PMDs with mass transit (potentially capable of accommodating 

PMDs) or traditional vehicle-based facilities (for longer trips) would allow PMDs to 

provide a similar or better level of mobility to that of cars in many situations.  In order to 

provide society with a sustainable transportation system, this research envisions a future 

transportation system full of PMDs instead of traditional vehicles.  This system that 

researchers at Georgia Tech call an Intelligent Mobility System (IMS) would be a car-free 

zone where people travel by a shared system of autonomously operable PMDs.  IMS 

zones have four key elements as shown in Figure 2. 

 

 

Figure 2. An Overview of IMS Elements 
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The four key elements of IMS are Mobility, Operations, Modes, and Regional 

Connections.  They are described in more detail in the following: 

 Mobility – Human-scaled PMDs provide levels of mobility greater than walking 

but less than that of a car.  Low-speed, human-scaled mobility allows safer 

interaction between vehicles and pedestrians while still providing mobility and 

access necessary to meet travel demands within and around the IMS zone. 

 Operations – Automobiles and transit can make connections at the car-free IMS 

zone boundary.  PMDs with autonomous operation capability are interconnected 

via wireless communications allowing them to pick up system users at their 

location.  After completing the trip, the PMD can return to a station to await the 

next trip. 

 Modes – IMS zones will support only the use of PMDs within the car-free zone.  

PMDs could be bicycles, scooters, Segways, micro-vehicles, or any of the types 

of devices described in Section 2.3, and PMDs could operate in and around an 

IMS zone.  These PMDs can be a part of the automated shared-use system or 

individuals can use their own PMD devices not integrated into the automated 

shared-use system. 

 Regional Connections – Transit stations within or near the IMS zone boundary 

provide regional connections to home, work, airports, train stations, other IMS 

zones, or car parking. 

Ultimately this research effort focuses on the operational aspects of this future 

system.  Analysis of potential benefits requires an understanding of how an IMS zone 

would operate.  Eventually, a computer simulation model would be the best way to 

evaluate the operation of this proposed system.  In order to create this model, research is 

needed to analyze the performance characteristics of PMDs as model inputs. 
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2.3 Human-scaled Personal Mobility Devices 

Human-scaled personal mobility devices (PMDs) are transportation alternatives to 

the car that are designed to efficiently carry one or two humans with little or no cargo, 

provide increased mobility to that of a pedestrian, maneuver easily among other devices 

and pedestrians in an undefined traffic stream, and safely interact with a myriad of other 

transportation modes including pedestrians.  While the Segway is the current PMD most 

fitting of this IMS vision, this section discusses bicycles (Section 2.3.1), scooters (Section 

2.3.2), Segways (Section 2.3.3), micro-vehicles (Section 2.3.4), electric carts (Section 

2.3.5), and other PMDs (Section 2.3.6). 

2.3.1 Bicycles 

Other than walking, the bicycle is the most notable mobility alternative to the car.  

However, only 1% of all trips in the United States are made via bicycle, among the 

lowest rates in the industrialized world (Pucher, 2008).  Compared to some European 

countries where cycling rates are high (e.g. The Netherlands has 25% bicycle mode 

share), Americans see cycling as inconvenient, unprofessional, and an unsafe mode of 

transportation (Pucher, 2008).  Also, bicycles are often difficult if not impossible for the 

elderly, disabled, or small child to ride as a means of transportation.  If PMDs can 

provide similar mobility options to bicycles without their perceived inconvenience, the 

likelihood of IMS zones being a success in the United States would increase greatly. 

The American Association of State Highway Transportation Officials (AASHTO) 

publication, Guide to the Development of Bicycle Facilities, contains operational 

characteristics of bicycles for the purpose of infrastructure design.  AASHTO defines 

parameters for several Design Bicycles.  This research will focus on the most common, 

Design Bicycle A, which is the typical upright adult bicycle.  The bicycle is typically 70 

inches in length and requires a horizontal lane width of at least 48 inches (60 inches is 

preferred).  Cyclist speed varies based on age, skill, infrastructure, and weather 
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conditions.  Typical adult cyclist speeds range from 8-15 mph on paved level terrain 

while experienced physically fit riders can exceed speeds of 30 mph under ideal cycling 

conditions while travelling downhill.  AASHTO states that a design speed of at least 18 

mph should be sufficient for use on relatively level terrain.  AASHTO also specifies 

typical cyclist acceleration and deceleration rates of 1.5 - 5 ft/s
2
 (1 – 3.4 mph/s) and 16.0 

ft/s
2
 (11 mph/s), respectively.  Deceleration rates for wet conditions are 8.0 – 10.0 ft/s

2
 

(5.5 – 6.8 mph/s) (AASHTO, 2012) While the Guide to the Development of Bicycle 

Facilities devotes a chapter to shared use trails that are free from cars, much of the book 

is focused around orienting car-centric infrastructure around the bicycle as the exception. 

In 2004, the Federal Highway Administration (FHWA) studied the characteristics 

of emerging road and trail users.  Using 21 data collection stations at three shared-use 

paths across the United States, FHWA studied the physical dimensions and operational 

characteristics of non-motorized trail and roadway devices including: 

 Bicycles 

 Electric bicycles 

 In-line skates 

 Scooters 

 Skateboards 

 Segways 

This study found that only one percent of bicyclists actually exceeded the 20 mph design 

speed that is often used per AASHTO’s 1999 recommendation and that the 85
th

 percentile 

speed for bicyclists was 14 mph.  The study found that the mean and 85
th

 percentile 

deceleration rate to be 2.3 m/s
2
 (5.1 mph/s) and 3.3 m/s

2
 (7.4 mph/s) respectively (Landis 

et al., 2004). 
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2.3.2 Scooters 

The term scooter can refer to a number of two-wheeled devices ridden by one or 

two people, and steered using handlebars.  Scooters can be motorized or non-motorized, 

and even non-motorized scooters can have small motors added for propulsion. 

Non-motorized Scooters 

Non-motorized scooters, also called “kick scooters,” consist of a small platform 

on which the user stands between two small wheels.  The user then kicks one foot on the 

ground while keeping the other on the scooter to propel forward.  A vertical bar rising up 

from the front wheels to a pair of handle bars at the user’s waist is used for steering (see 

Figure 3). 

 

Figure 3. Non-motorized Scooters (Belize Bicycle, 2012) 

During the Emerging Trail Users Study, FHWA found the mean travel speed to be 

12 km/hr (7.5 mph) and the 85
th

 percentile and 15
th

 percentile speeds to be 15 km/h (9 

mph) and 9 km/h (5.5 mph) respectively.  The study also found kick scooters to have a 

mean deceleration rate of 2.4 m/s
2
 (5.4 mph/s) and an 85

th
 percentile deceleration rate of 

2.6 m/s
2
 (5.8 mph/s).  The mean and 85

th
 percentile braking distances were 4.9 m (16 ft) 

and 8.9 m (29 ft) respectively (Landis et al., 2004). 
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Motorized Scooters 

Motorized scooters are designed to have the driver sitting with their legs directly 

in front of them and feet flat on the floor of the scooter body rather than straddling like a 

motorcycle.  Scooters also have much smaller wheels than motorcycles.  Traditionally, 

mopeds are motorized bicycles that can be powered using either a motor or pedals for 

propulsion. 

Laws regarding the use of scooters are written and enforced at the state 

government level in the United States.  For most states, if the scooter has an engine less 

than 50 cc in size and travels no more than 30-35 mph, it is considered a “moped” by law.  

This means that no special license is required for operation and, often, vehicle 

registration is not necessary.  However, “moped” use is typically limited to roadways 

with speed limits of 35 mph or less.  Scooters with engines 50 cc or greater in size are 

usually subject to the same laws as motorcycles (DMV.org, 2012).  Figure 4 shows 

examples of a moped and a motor scooter. 

 

Figure 4. Examples of a Moped (left) and a Motor Scooter (right) 

(Lance Powersports, 2012; MRA, 2012) 

Scooters are essentially motorcycles with smaller wheels and a slightly different 

body.  Therefore, they operate similarly to motorcycles.  Scooters also operate in the 
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same traffic stream as automobiles.  Thus their operational characteristics are likely 

similar up to a certain speed.  Mopeds and small scooters may operate more like bicycles 

at low speeds, displaying similar maneuverability.  Unfortunately, this thesis was unable 

to collect speed or acceleration data from scooters.  However, scooters are worth 

mentioning here because they would likely have a large mode share in future IMS 

settings. 

2.3.3 The Segway 

Segway Personal Transporter (PT) is by far the most popular innovative PMD, 

excluding the traditional bicycle or scooter.  Invented by Dean Kamen, the Segway PT is 

designed to “look, act, and feel like a pedestrian” (Heilemann, 2001).  The original 

Segway Human Transporter (HT), introduced in 2001, has been replaced by the new 

model Segway PTs.  For simplicity, this paper will refer to both Segway HTs and 

Segway PTs as a “Segway.” 

The Segway is a two-wheeled, battery-powered device that is operated by the user 

who stands on a platform between the two wheels.  The Segway uses a sophisticated 

system of sensors and controls that self-balances the device.  While the user stands on the 

platform between the two wheels, the Segway balances itself by moving either forward or 

backward to compensate for the movement of the user.  This enables the user to control 

the device by shifting their body weight and leaning slightly forward or backward.  If the 

user leans forward, the device accelerates in the forward direction.  If the user leans 

backward, the device accelerates in the reverse direction.  To turn, the Segway has a set 

of handlebars that project upward in front of the user.  These handlebars pivot at the base 

of the platform on which the user stands.  The user simply shifts the handlebars to the left 

or right to turn in the desired direction. 

There are two product models offered by Segway, the i2 and the x2.  Each is 

customizable with accessories for various applications.  The i2 is the Segway designed 
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for the urban/suburban domain and meant to be driven primarily on paved surfaces.  The 

x2 has a more rugged frame with wider wheel base, larger tires and greater ground 

clearance since it is designed for off-road terrain.  Since this research focuses on IMS 

zones, the i2 is the most applicable Segway model for further discussion.  Figure 5 shows 

a rider on a Segway i2. 

 

Figure 5. Rider on a Segway i2 (Photo Credit: Lance Ballard) 

The i2 footprint is 19 inches by 25 inches, weighs 105 lbs, and has a zero-degree 

turning radius, meaning that it can turn in place.  The i2 can travel 24 miles or up to 480 

city blocks on a single charge with a total load capacity of 260 lbs.  It has a top speed of 
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12.5 mph, but has an additional setting that can limit speeds to 8 mph for beginner use 

(Segway, 2012). 

Currently, 44 states have passed legislation legalizing and defining the operation 

of Segways and similar devices while the other six states have no law addressing Segway 

use (GHSA, 2012).  Segways are used by hundreds of police forces and numerous 

warehouses and industrial sites.  Many tourism companies offer Segway tours of popular 

tour destinations across the globe.  While the use of Segways is still fairly novel, it is the 

current PMD which most fits the vision for this research and offers the mobility, range, 

and size necessary for the demands of this research.  Therefore, Segways are the primary 

PMD used in this study. 

Previous Studies 

There have been a number of previous studies about Segway operational 

characteristics and behavioral uses.  Liu and Parthasarathy (2003) explored the potential 

benefits and challenges to Segway use.   Due to the small size of the device relative to the 

car, they speculate that three Segway lanes could be built in a typical 12 ft traffic lane.  

This creates great potential to alleviate traffic congestion through mass Segway use.  Liu 

and Parthasarathy also state that Segway use would reduce the consumption of gasoline 

and decrease the amount of pollutants emitted into the atmosphere.  Liu and 

Parthasarathy go on to argue that Segways could provide a connectivity solution for 

intermodal transportation.  They also claim that if Segways were utilized to their full 

potential in the urban setting, the result will be an increase in mixed-use, high-density 

neighborhoods.  However, the cost of a Segway is significantly more than a bicycle 

(Segway PT retail price is over $6,000), making it an expensive alternative. 

Shaheen and Rodier (2008) studied the use of Segways as a “first and last mile 

connectivity solution” around a Bay Area Rapid Transit (BART) station in the San 

Francisco Bay area.  The project introduced shared-use electric bicycles, non-motorized 
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bicycles, and Segways to employment centers in and around BART stations.  

Unexpectedly, the Segways were used more often for short day trips (e.g. lunch, business 

meetings, errands) than as part of commutes, and of day trips.  Segways had the highest 

program mode share (52%) relative to the electric bicycle (36%) and bicycle (12%) 

modes.  The results of the study also indicated a net reduction in vehicle travel among 

participants.  The authors also conducted qualitative surveys of bystanders on a multi-use 

trail that often encountered the Segway users.  Of the 109 respondents, the greatest 

concern was accidents, but only 20% indicated they would use the trail less if the Segway 

or electric bike were commonly used on the trail.  When asked about what Segway users 

should be required to do, the most common response (25%) was that Segway users 

should be required to follow the same rules as bicycles.  Many respondents indicated that 

special lanes should be provided for the Segways (32%), and some also reported that 

these modes should be allowed on mixed-use trails (23%), streets (18%), and sidewalks 

(15%).  Overall, this study showed that Segways could provide a solution to transit’s 

“last-mile problem” and that the general public is open to the assimilation of Segways 

into the transportation system. 

As a part of the FHWA Characteristics of Emerging Road and Trail Users study, 

Segway riders were videotaped as they rode through a defined course.  The results of the 

Segway user performance are presented in Table 2.  Speed was defined as the normal 

cruising speed of users on a flat, smooth section of a shared-use facility.  The perception-

reaction time was defined as the duration between the researchers commencement of the 

stop signal until the initiation of the braking action by the user.  The study also found that 

the highest acceleration rates for Segways were 3 ft/s
2
 (2 mph/s) (Landis et al., 2004). 
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Table 2. Segway HT Characteristics (Landis et al., 2004) 

Characteristics Mean 85th Percentile 

Length (inches) 22.00 22.00 

Width (inches) 25.00 25.00 

Sweep width (ft) 3.44 3.49 

Three-point turn (inches) 38.70 39.40 

Eye height (inches) 73.90 70.60 

Speed (mph) 9.46 10.29 

Response time (seconds) 1.06 1.52 

Braking distance (ft) 8.80 10.20 

 

In June 2010, FHWA published a new report discussing the results of research 

conducted using the Segway HT, the predecessor to the i2, on a closed course under 

controlled conditions.  The researchers found the following results (Miller et al., 2010): 

 Experienced riders traveled at a mean speed of 7.71 mph and 11.2 mph for 

the 8 mph and 12 mph speed keys respectively. 

 Novice and experienced riders approached obstacles at speeds ranging 

from 2.7 mph to 6.8 mph with a mean of 4.5 mph. 

 Experienced riders passed obstacles faster than novice riders by an 

average of 1.9 mph. 

 Novice and experienced riders passed moving pedestrians at an average 

speed of 5 mph and average clearance of 36 inches. 

 Novice and experienced riders passed obstacles by 0.5 mph slower and 18 

inches closer on narrow sidewalks (4.4 ft wide) as opposed to wide 

sidewalks (10.2 ft wide). 

 Experienced riders made planned stops in a mean time of about 2.4 

seconds and a mean distance ranging from 6 ft to 15 ft with a mean of 10 

ft. 
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 Experienced riders’ mean response time for unplanned stops was 0.52 

seconds with a mean stopping sight distance of 14.5 ft, taking a total of 

2.31 seconds including response time. 

 Experienced riders stopped at a mean distance of 8.7 ft and 14.7 ft for each 

speed key. 

 Novice and experienced riders passed objects with a mean clearance of 

14.5 inches with a range from 3.3 to 43.2 inches. 

 

Unfortunately, there have been no studies about the operation of Segways within 

an unrestricted environment filled with pedestrians, bicycles, and other modes of 

transportation.  More research is needed to understand how Segways and their users 

interact with dynamic surroundings and Segway performance characteristics in a real-

world setting.  In part, this study aims to help fill this need in Chapter 4. 

2.3.4 Micro-Vehicles 

While cars create numerous problems for society, many of these problems are 

attributed to vehicle size, speed, fuel, and emissions.  Currently, alternatives to the 

traditional car are being developed to maintain the comfort and mobility of a car while 

making them smaller and safer to operate in a complex urban environment.  There are 

numerous types of small car alternatives in development and production.  For simplicity, 

this research refers to these PMDs as “micro-vehicles.” 

Micro-vehicles are usually electrically powered and designed to carry one or two 

passengers with small cargo (25-35 mile range and 20-30 mph top speeds).  These 

devices all have lower top speeds (10-20 mph) and ranges (20-30 miles) than that of a 

traditional automobile.  This section presents a few examples of the most prominent 

micro-vehicles currently in development. 
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GM EN-V 

In a joint venture, General Motors (GM) and Segway Inc. developed a project 

named PUMA (Personal Urban Mobility and Accessibility).  The PUMA project resulted 

in the creation of a prototype micro-vehicle that could carry two passengers using the 

Segway PT base and battery powered propulsion system.  Using the same self-balancing 

technology, this PUMA vehicle operates on two wheels.  It can travel between 25 and 35 

mph with a range of approximately 30 miles on one charge.  Progressing with this 

concept, GM unveiled the EN-V concept vehicle in 2010.  The GM EN-V (Electric 

Networked-Vehicle) uses the PUMA powertrain and chassis but boasts the capability of 

being operated at varying levels of autonomy using GPS, sophisticated sensory 

technology, vehicle-to-vehicle (V2V), and vehicle-to-infrastructure (V2I) communication 

(GM, 2010). 

 

Figure 6. Segway PUMA (left) and GM EN-V (right) 

(Segway, 2012; GM, 2010) 
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MIT CityCar 

In 2003, researchers at the Massachusetts Institute of Technology (MIT) began 

developing a new concept car designed for urban mobility, called the CityCar.  Designed 

around the idea of moving people efficiently within an urban environment, the CityCar is 

electrically powered, highly maneuverable, and folds up to save space when parked.  

Four independently controlled “Robot Wheels” give the CityCar a zero-degree turning-

radius.  When extended for driving, the CityCar is a little over 8 ft in length, but folds to a 

length of 5 ft when parked.  Considering the average parking space is 20 ft long in the 

United States, four CityCars could fit into the length of a single parking space.  The 

CityCar has a top speed of 50 km/hr (30 mph), a range of 120 km (75 miles), and can be 

fast-charged in 15 minutes (Clancy, 2010). 

 

Figure 7. MIT CityCar in Both Driving (left) and Parked (right) Configurations 

(MIT, 2012) 

In early 2012, Hikiro Driving Mobility, a Spanish company, announced the 

beginning of production on the Hikiro Fold, a small electric vehicle based on the MIT 

CityCar.  Scheduled to go on sale in 2013 for the price of $16,000, Hikiro plans to 

promote the cars in European car-sharing programs (MIT, 2012). 
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2.3.5 Electric Carts 

Electric carts are used for a variety of purposes.  The two most popular uses are as 

golf carts and small utility vehicles.  Electric carts can be designed to carry two to six 

people and can have a cargo bed allowing for the transport of equipment or other cargo.  

While some can be gasoline powered, this study will focus on electric carts because they 

operate at a lower speed and better fit this research’s vision of a PMD. 

Small electric carts are most commonly used for recreation and utility purposes.  

Golf courses use electric carts for the players to travel the course during play.  Electric 

carts are also used as utility vehicles to transport maintenance personnel, tools, and 

equipment around large properties and facilities.  Figure 8 shows an example of a 

common electric cart used for recreational use. 

 

Figure 8. A Common Electric Cart (Club Car, 2012) 

While small electric carts are typically not “street-legal,” recently, Global Electric 

Motors (GEM), a subsidiary of Polaris Industries, has produced a line of “street-legal” 

electric carts.  GEM makes numerous models of its electric carts for various purposes.  

The GEM e2 is designed to carry two passengers and can have a small cargo attachment 

in the rear (Figure 9).  The GEM e2 has two speed modes, low and high, with top speeds 



 23 

of 15 mph and 25 mph respectively.  With a wheel base of 72 inches, the GEM e2 has a 

turning radius of 12 feet.  The GEM batteries provide a range of up to 30 miles at 72°F.  

At lower temperatures, the range could be as low as 12-15 miles.  The actual range varies 

depending on road conditions, terrain, weather, and driving habits (GEM, 2011). 

 

Figure 9. GEM Car (GEM, 2012) 

Some communities use electric carts as a primary mode of transportation for short 

trips.  Peachtree City, Georgia is such an example.  Peachtree City has a large system of 

paved shared-use paths on which electric carts are permitted to operate.  Often running 

parallel to city streets, these paths allow community members to travel form home to 

school, work, stores, and other locations within the city using electric carts as opposed to 

a car (see Figure 10).  Peachtree City requires drivers of electric carts on to have an 

automobile driver’s license (Hollis, 2008). 
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Figure 10. Peachtree City Electric Cart on Separated Path (Hollis, 2008) 

There has been no research about electric cart performance characteristics, and 

GEM cars and other types of electric carts are the PMDs that most resemble micro-

vehicles.  Therefore, electric carts are included in this study.  While micro-vehicles will 

likely operate differently within an IMS zone than they do currently on roadways and 

shared-use paths, the speed and acceleration characteristics of electric carts in this study 

should closely resemble those expected of a micro-vehicle. 

2.3.6 Other PMDs 

There are many other human-scaled PMDs that are not mentioned or studied in 

this research.  Some notable exclusions are motorcycles and disability scooters/powered 

wheel-chairs.  Motorcycles travel at speeds exceeding the limitations for safe operation 

within IMS zones and would likely be restricted from the IMS zones along with cars.  

While components of any IMS zone disability scooters or powered wheel-chairs, 

extremely important and vital for the mobility of their users, these devices are unlikely 

candidates for mass scale IMS zone operations.  The following section describes a few of 

the other more notable PMDs that are currently in use. 
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T3 – Electric Stand-up Vehicle 

An alternative that is similar to the Segway PT is the T3 Electric Stand-up 

Vehicle.  Currently marketed exclusively to law enforcement, security, and government 

agencies, the T3 is a three wheeled vehicle that resembles a chariot.  The T3 has a 

capacity of 450 lbs, a top speed ranging from 12 mph to 25 mph, and a range of 15 – 75 

miles per charge depending on the battery option chosen.  It recharges in 3-4 hours.  

Compared to the Segway PT, the T3 is much larger, heavier, and more expensive 

(T3Motion, 2012). 

 

 

Figure 11. T3 Electric Stand-up Vehicle (T3Motion, 2012) 
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RYNO Micro-Cycle 

The RYNO Micro-Cycle is a one-wheeled motorcycle powered by battery.  It 

stabilizes itself during use, but does not stand upright under its own power when 

stationary.  The RYNO propulsion is very similar to a Segway™ but steers like a 

motorcycle with handlebars and lateral weight shift of the rider.  The RYNO can travel at 

speeds up to 20 mph for a range of 30 miles on one charge (RYNO Motors, 2012). 

 

 

Figure 12. RYNO Micro-cycle (RYNOmotors, 2012) 
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YikeBike 

In 2009, an inventor in New Zealand developed the YikeBike.  The YikeBike is 

an unconventional bicycle that is battery powered and can be folded down into a compact 

form that is easily carried.  Resembling the old penny farthing style bicycles with a large 

wheel in the front followed by a much smaller trailing wheel used for steering in the rear, 

the YikeBike is little like a conventional bicycle.  However, the YikeBike has a range 

varying from 6 to 18 miles depending on the battery pack and a top speed of nearly 15 

mph.  The YikeBike costs between $2,000 and $4,000 depending on model (YikeBike, 

2012). 

 

 

Figure 13. YikeBike (YikeBike, 2012) 
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2.4 Simulation Modeling of IMS 

The goal of this research is to provide the performance characteristics necessary 

to populate a simulation model with human-scaled personal mobility devices.  There are 

two types of simulation models commonly used in traffic operations: link-based models 

and agent-based models.  While link-based models are ideal for simulating automobile 

traffic, pedestrians are often better represented using agent-based models.  Without 

further analysis, it is unclear which, or if either, model is well suited for simulating 

human-scaled personal mobility device operations.  Therefore, both types of models are 

discussed in this section. 

2.4.1 Link-Based Models 

Most automobile traffic simulation models are essentially link-based models.  

VISSIM, Paramic, and SimTraffic are a few of the most commonly used traffic 

simulation models of this type.  Link-based models consist of a fixed-infrastructure 

environment (i.e. roadways, intersections, interchanges, etc.) where simulated vehicles 

can travel in pre-defined lanes and directions.  Vehicles are typically generated at the 

model boundaries or internal sources and sinks.  They travel through the model either 

according to assigned routing decisions or a decision process at each intersection.  Traffic 

flow models may be fairly simple to rather complicated algorithms attempting to 

accurately capture the car-following nature of vehicles.  In stochastic models vehicles are 

assigned values for characteristics such as, car following parameters, acceleration 

capabilities, desired speed, driver aggressiveness, desirable and max deceleration, etc.  

Models tend to have varying levels of calibration capabilities. 

For example, most simulation models use proprietary car-following models 

(Olstam & Tapani, 2004).  Generally, if there are no other vehicles immediately in front 

of a vehicle within the simulation, the simulated vehicle travels at its assigned desired 

speed.  Once the simulated vehicle approaches the rear of a slower traveling automobile, 
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it then travels differently according to a predefined car-following model.  The car-

following model specifies how the car reacts to the car it is following.  Taking into 

account reaction time, travel speed, and acceleration characteristics of each vehicle, the 

car-following model defines the distance and speed a car will travel when following 

another slower-moving car.   

One way to model an IMS zone may be to use a following-based model and 

populate it with human-scaled personal mobility devices as separate vehicle types.  By 

defining a new vehicle type for each type or class of PMD, the speed and acceleration 

characteristics can be changed to match those documented by this study.  Then, a 

simulation model could be populated with PMDs. 

However, PMDs do not currently, nor will they likely, operate under the same set 

of operational rules and standards as automobiles do today.  The strictly defined rules of 

the road allow for the simulation of automobile traffic using following-based models, but 

PMDs can accelerate quickly both in terms of speed and direction.  Also, PMDs are not 

confined to fixed routes or lanes like automobiles, and attempting to model the complex, 

dynamic proposed IMS environment using a network model would be difficult. 

2.4.2 Agent-Based Models 

Agent-based models may provide a better solution for simulating the operations 

of PMDs.  Agent-based models are a more directly capability of simulating an 

environment open for free maneuvering with user defined boundaries.  Each agent 

occupies a “cell” or block of space within the operating environment (Dijkstra et al., 

2000).  The agent then makes its own travel decisions to move to any adjacent cell based 

on user-defined agent characteristics and movement constraints.  This includes 

interactions with other pedestrians and obstacles within the simulated environment 

(Kukla et al., 2001; Ronald, 2007).  Agent-based models provide the flexibility to better 

simulate the complex movements and behaviors of pedestrians. 
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The PMD operating task is likely more similar to that of pedestrian wayfinding 

and behavior than that of the driving task because of the high maneuverability of PMDs 

and their dynamic interaction with a non-uniform environment.  In order to simulate 

PMDs within an agent-based model, among many areas, research is needed to define 

typical speed and acceleration distributions and how the range of possible accelerations 

and turning movements vary with speed. 

2.5 Vehicle Performance Characteristics 

A future simulation model of an IMS zone, regardless of being a link based or 

agent based nature, would require PMD operational constraints.  One of the main 

operational characteristics is possible speed and accelerations for each type of PMD.  

This range of possible speed and accelerations is easily obtained from manufacturer 

specifications or simple data collection procedures.  However, the simulation model 

would also require joint probability distributions of likely speeds and accelerations for 

each type of PMD.  Typically, vehicle performance characteristics are analyzed 

graphically using three-dimensional Watson plots (Milkins, 1983).  This thesis uses a 

modified two-dimensional representation of a Watson plot that allows for plotting 

multiple groups of data at the same time. 
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CHAPTER 3 

METHODOLOGY 

This chapter outlines the research objectives of this project and describes the 

methodology used to achieve those objectives.  To evaluate human-scaled PMD 

performance characteristics, the research team first validated the accuracy of the GPS 

recorders used to observe PMD operations.  GPS recorders were then used to collect 

speed and acceleration data from pedestrians, Segways, bicycles, and electric carts.  The 

research team also conducted a Segway test route to become more familiar with PMD 

operations and analyze the effect of external factors on PMD operation. 

3.1 Objective 

To enable future research about IMS, this research aimed to evaluate human-

scaled PMD performance characteristics.  More knowledge is needed about the 

operation of PMDs.  Acceleration characteristics, typical travel speeds, functional 

capabilities, ranges, and behavioral characteristics must be more completely understood 

to successfully model simulated PMD operations and to incorporate these devices into the 

transportation system.  Therefore, the objective of this research is to evaluate these 

performance characteristics with the goal of creating model inputs for simulating IMS 

environments.  This was accomplished by collecting speed and location data from PMD 

trips using GPS recorders. 

3.2 Data Collection Method 

A low-cost and accurate means of measuring PMD speed was required to collect 

PMD speed and acceleration data.  This section describes the data collection equipment 

used for this study and the data filtering process. 
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3.2.1 GPS Data Recorders 

Global Positioning Systems (GPS) use a combination of satellites and receivers to 

triangulate their location on the surface of the Earth.  When the GPS receiver is moving, 

it will read a slightly different signal frequency from the satellite due to the Doppler 

Effect.  This difference between the known satellite signal frequency and the frequency 

observed by the GPS receiver is known as Doppler shift, and it is directly proportional to 

the relative velocity between the signal source and receiver.  This same concept is used 

by RADAR and LIDAR guns to detect velocity of cars traveling down the road or a 

baseball pitch.  Using multiple satellites, the GPS receiver can estimate both its position, 

velocity and heading (Chalco, 2007). 

For this study, the research team used QSTARZ BT-Q100XT and BT-Q100EX 

data logging GPS receivers.  Both have similar technology, accuracy, and operation.  For 

simplicity, any data logging GPS receiver used in this study will be referred to as a “GPS 

recorder.”  Figure 14 shows a photograph of one of the GPS recorders used in this study.  

These small, low-cost GPS recorders are capable of logging data at user-specified time 

intervals.  They have a battery life of approximately 48 hours with a good signal-lock 

(QSTARZ, 2012). 

 

Figure 14. GPS Recorder (QSTARZ, 2012) 
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3.2.2 GPS Data Filtering and Smoothing 

GPS recorders are prone to errors like every instrument.  The manufacturer 

specifies the GPS recorders to be accurate within 3 m for location and 0.1 m/s for speed 

respectively (QSTARZ, 2012).  However, the GPS recorders are still prone to random 

errors due to poor satellite lock or coverage, obstruction of the satellite signal, or other 

factors.  So, the GPS recorders use proprietary algorithms to filter and smooth the data 

points that exceed expected variances based on past and current conditions (Ogle et al., 

2002; Ogle, 2005).  While this mechanism within the device works to correct the data, 

random errors still exist in the GPS recorder output. 

Previously, Jun & Guensler observed that the accuracy of GPS speed and location 

measurements were affected by the number of satellites (nSat) used for the measurement.  

This also affects the Positional Dilution of Precision (PDOP).  They found that 

measurements with nSat less than four and PDOP greater than eight were erroneous and 

needed to be filtered differently than other data with “good” GPS fix.  Jun & Guensler 

then developed a modified version of a popular mathematical filter to smooth GPS data 

(Jun et al., 2006).  This filter and the modified version of this filter are described in the 

following. 

The Kalman Filter 

The Kalman Filter was originally developed by Kalman in 1960.  The Kalman 

filter is a recursive mathematical process that estimates the state of a system or process in 

a way that minimizes the mean of the squared error (Welch & Bishop, 2001).  This 

method of filtering data involves two steps.  The first step, known as the Prediction 

Process, uses the current and previous measurements to predict the next measurement.  

The second step, the Correction Process, corrects this predicted measurement based on 

the actual observed measurement (Kalman, 1960).  This process is shown in Figure 15. 
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Figure 15. The Kalman Filter Cycle 

 

The time update equations for the Prediction Process are 

  
            

  
        

    

Where k is the time step, xk-1 and Pk-1 are the initial predictor and the initial error noise, 

respectively, uk is an additional known-input parameter, W is the prediction error 

variance, and A and B are the time transition matrices for the prediction process (Simon, 

2001; Welch & Bishop, 2001). 

The measurement update equations are 

     
       

         

     
           

   

            
  

Where K is the Kalman gain matrix, H is the time transition matrix for the observation 

process, z is the observed data, P is the modified error variance in the Kalman filter, and 

V is the measurement error variance (Simon, 2001; Welch & Bishop, 2001). 

The Modified Kalman Filter  

Previously, a research team at Georgia Tech developed a modified version of the 

Kalman Filter specifically for GPS speed and location data from automobile trips (Jun et 

al., 2006).  This Modified Kalman Filter was a Kalman Filter that smoothed “bad” GPS 
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data differently than “good” GPS data based on the number of satellites (nSat) and 

Position Dilution of Precision (PDOP).  Any data point with nSat less than four or PDOP 

greater than eight was considered “bad.”  The researchers modified the conventional 

discrete Kalman filter by using two measurement errors based on the GPS quality criteria, 

one for good GPS data and one for bad GPS data. 

In that previous study, the Georgia Tech research team compared three smoothing 

methods designed to minimize the impact of GPS random error on travel distance, speed, 

and acceleration profile estimates.  They found that the Modified Kalman Filter was the 

most effective smoothing method and recommended the use of the Modified Kalman 

Filter for smoothing GPS speed and location data (Jun et al., 2006). 

Previous studies suggest using the square of the mean error from the GPS 

recorder specifications for the Kalman filter measurement noise (Simon, 2001; Welch & 

Bishop, 2001).  Process noise is simply the data capture rate multiplied by the 

measurement noise.  Therefore, when data are collected at a rate of 1 Hz, the process 

noise is the same as the measurement noise (Jun et al., 2006). 

Filtering PMD Data 

All of the GPS data for this study were smoothed using the modified version of 

the Kalman Filter.  This filter was used to remove random errors that still exist in the data 

even after the proprietary GPS filter.   For this study, GPS location and speed data were 

collected at a rate of 1 Hz which is one measurement per second.  Therefore, the time 

transition matrix, A, is one second.  Also, this application of the Kalman filter is one 

dimensional since the location and speed data are filtered separately.  This means that uk 

becomes zero, simplifying the time update equations to 
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Similarly, the measurement update equations also reduce to: 

     
    

       

     
          

   

           
  

where K is the Kalman gain matrix, xk is the corrected measurement, zk is the original 

measurement, and Pk is the modified error variance used for the next step of the filter 

process. 

Previously, researchers at Georgia Tech using this modified Kalman filter derived 

a GPS measurement error of 0.25 mph based on previous mean delta speeds.  This 

research used the same value.  Since the data capture rate for the GPS recorder was 1 Hz, 

both the process noise and measurement noise were 0.5(1
2
 second x 0.5

2
 mph) (Jun et al., 

2006). 

Accelerations were not observed directly from the GPS recorders.  Rather, the 

acceleration for each second of the trips was calculated based on the filtered speeds for 

each device and the time difference between each filtered speed data point. 

Trip Parsing 

The software used with the GPS recorders (QTravel) automatically parsed each 

trip.  However, this research was not interested in the speed and acceleration data when 

the PMD was idle, even during the trip, because the goal was to analyze performance 

characteristics, specifically speed and acceleration.  Therefore, to separate the idle data 

from the mobile part of each trip, any segment of data where the speed was less than two 

miles per hour for at least 10 seconds was labeled as idle.  Two miles per hour was used 

in order to remove any residual GPS noise that was not removed during the Kalman 

filtering process.  The resulting datasets then contained only speed and acceleration data 

from when the PMD was moving so that speed and acceleration distributions were not 

skewed by observations that occurred while idling. 
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3.3 Data Collection Method Validation Testing 

This research used GPS recorders to collect location, speed, and heading data 

from PMD trips.  However, the low-cost GPS recorders used in this study needed to be 

verified for accuracy and reliability at low speeds.  An augmented data-logging 

cyclometer was used as ground truth to compare speeds and accelerations during low-

speed PMD trips observed by the GPS data recorders. 

Ideally, these tests would have been conducted on Segways.  However, due to 

limited Segway availability, the research team conducted three tests on a bicycle that 

recorded speed using both the cyclometer and a GPS recorder.  The first test (Lab Test) 

was conducted on a straight-line, marked path of a known length that is visible in aerial 

photography, thus visible to GPS satellites.  The second test (Field Test) consisted of five 

bicycle trips under real-world conditions.  Finally, the third test (Hard Acceleration Test) 

used hard accelerations and decelerations to observe the ability of the GPS recorders to 

accurately capture extreme acceleration events.  Each of the three validation tests used 

the same bicycle, cyclometer, and rider. 

3.3.1 Cyclometer 

A cyclometer is a device that most often is used to monitor the speed of a bicycle 

by measuring the time it takes per wheel revolution.  A cyclometer consists of three 

components: a computer, a reed switch, and a magnet.  The magnet is placed on the 

wheel of the bicycle and the reed switch is placed on the fork of the bicycle such that the 

magnet passes across the reed switch once every wheel revolution.  The computer sends a 

small direct current (DC) signal to the reed switch.  When there is no magnet present, the 

reed switch is open, and no current passes through the switch back to the computer.  

When the magnet passes in front of the reed switch, the reed switch closes allowing 

current to pass through the switch and back to the computer.  This change in current and 

voltage is recognized by the computer as the completion of one wheel revolution.  
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Knowing the circumference of the wheel, the computer can calculate the velocity of the 

device based on the time between two contact/switch closures.  Figure 16 shows the 

inside of a reed switch, and Figure 17 shows the reed switch and computer unit of the 

cyclometer used in this study, and Figure 18 shows a diagram of a cyclometer installed 

on a bicycle. 

 

 

 

Figure 16. A Reed Switch (Wikipedia, 2012) 

 

 

  

Figure 17. Cyclometer Reed Switch (left) and Computer Unit (right) 

(Sigma Sport, 2012) 



 39 

 

Figure 18. Diagram of Cyclometer Installed on a Bicycle (Credit: Lance Ballard) 

Previous Studies 

In 2004, Witte and Wilson used a cyclometer to analyze the accuracy of low-cost 

GPS recorders to record speed under real-world conditions.  Their research was interested 

in GPS recorders to observe the speed of horses as they traveled over ground.  For their 

study, they used a bicycle with a cyclometer and GPS recorder to record speed during 

trips around a cycle track and along a straight path.  The cyclist rode at speeds ranging 

from 15 – 35 km/h (9.3 – 21.7 mph). 

The low-cost GPS recorder used by Witte and Wilson was accurate within 0.2 m/s 

(0.45 mph) of the true speed measured for 45% of the values and within 0.4 m/s (0.9 

mph) for 64% of the values.  The effect of PDOP on speed accuracy was not significant.  

Although the speed error increased when the number of satellites used decreased, the 

median absolute error was less than 0.5 m/s (1.12 mph) even when only three satellites 

were used.  While the GPS data followed acceleration and deceleration reasonably well, 

it lagged behind during transitions from acceleration to deceleration, effectively 
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smoothing the acceleration curves.  The study concluded that low-cost GPS recorders 

were sufficiently accurate to record speed over ground even at lower speeds (Witte & 

Wilson, 2004). 

Bicycle and Augmented Data-Logging Cyclometer 

The bicycle used for this testing was a men’s mountain bike with 26 inch diameter 

wheels and tires (Figure 19).  With a top speed upwards of 25 mph, the maximum wheel 

revolutions per second that would need to be recorded by the cyclometer would be 2.5. 

 

Figure 19. Bicycle Used for Validation Testing (Trek, 2012) 

Unfortunately, there are no cyclometers on the market that will log each wheel 

turn or log speed at a rate adequate for this validation test (1 Hz).  Another option was to 

use a DC voltage event data logger in conjunction with the cyclometer to record the time 

of each wheel turn, but the team was unable to find a DC voltage event data logger that 

recorded at a rate sufficient to capture each wheel turn (2.5 Hz or more). 
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DC voltage event counter data loggers, however, are able to count DC voltage 

events at a higher rate than it can record time-stamps for each event (100 Hz vs. 1 Hz).  

Therefore, this research used a DC voltage event counter data logger to record the 

number of wheel revolutions each second.  Rather than recording the time of each wheel 

turn, the DC voltage event counter stored the number of voltage events that occur within 

a user-specified time increment.  By attaching multiple magnets equidistance around the 

wheel, each voltage event represented a certain degree of wheel rotation.  The number of 

DC voltage events per second then provided the degree of rotation that occurred within 

that second.  This was then translated into ground speed based on the circumference of 

the wheel.  By increasing the number of magnets on the wheel, the precision of each 

measurement was increased, provided that no magnet passes went undetected.  For this 

research, eight magnets were attached to the front wheel of the test bicycle adjacent to the 

reed switch such that they triggered the reed switch with each pass (see Figure 20). 

 

Figure 20. Magnets and Cyclometer Reed Switch Installation  

(Credit: Lance Ballard) 
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Before and after each trip, the cyclometer calibration was checked by rotating the 

bicycle wheel 10 times to ensure that the data logger counted 80 events (8 magnets/rev x 

10 rev = 80 events).  The data logger clock synchs with the computer clock every time it 

is connected to the computer.  The computer clock was set to the same UTM time that the 

GPS recorders use to match the times of data recording as closely as possible. 

During analysis, the team realized the clock within the augmented cyclometer 

produced time-stamp errors within the data.  These were corrected using a linear 

correction factor for each trip that was calibrated graphically.  The linear correction factor 

varied among trips.  Therefore, it was adjusted manually for each trip to match major trip 

events .  An example of the clock error for a test bicycle trip and the corrected data for 

the same trip are shown in Figure 21 and Figure 22, respectively.  All of the cyclometer 

data for the Data Collection Method Validation Testing was corrected in this fashion. 

 

Figure 21. Example of Cyclometer Speed with Clock Error 
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Figure 22. Example of Cyclometer Speed with Clock Corrected 

3.3.2 Lab Testing 

The first round of data collection method validation testing analyzed the speed 

and acceleration accuracy of the GPS recorders under controlled conditions.  The bicycle 

equipped with the augmented cyclometer and a GPS recorder traveled along a straight, 

flat path visible in aerial photographs and thus visible to GPS satellites.  The test route is 

shown in Figure 23.  The path was field measured and found to be a distance of 614 ft. 
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Figure 23. Data Collection Method Validation Test Route (Credit: Google Earth) 

The lab testing consisted of 30 trips, 10 at each of three speed categories: walking 

(4 mph), coasting (8 mph), and pedaling (15-25 mph).  After testing, the GPS speed and 

acceleration was compared to the cyclometer speed and acceleration on a second-by-

second basis. 

Results 

Figure 24, Figure 25, and Figure 26 show the speed and acceleration results for an 

example run from walk, coast, and pedal runs, respectively.  The bottom part of the graph 

shows the speed which is marked on the left axis.  The top part of the graph shows the 

acceleration for the trip using the axis on the right side of the graph.  The graphs for all 

thirty Lab Tests can be found in Appendix B. 
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Figure 24. Lab Test – Walking Speed – Run 5 

 

 

Figure 25. Lab Test – Coasting Speed – Run 5 

 



 46 

 

Figure 26. Lab Test – Pedal Speed – Run 5 

The GPS recorders appear to measure speed very similarly to the cyclometer for 

each of the three speed categories tested.  Differences between each concurrent speed 

observation were calculated by taking the absolute difference between the GPS recorded 

speed and the corrected cyclometer speed.  This absolute value difference was calculated 

for speed and acceleration for each second of each trip.  Table 3, Table 4, and Table 5 

report the mean and standard deviation for both absolute speed and absolute acceleration 

differences for each of the three Lab Test categories. 

Table 3. Lab Test GPS/Cyclometer Difference - Walking 

Walk 

Speed 

Difference 

[mph] 

Acceleration 

Difference 

[mph/s] 

Mean 0.14 0.12 

Std. Dev. 0.20 0.13 
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Table 4. Lab Test GPS/Cyclometer Difference - Coasting 

Coast 

Speed 

Difference 

[mph] 

Acceleration 

Difference 

[mph/s] 

Mean 0.46 0.22 

Std. Dev. 0.55 0.32 

 

Table 5. Lab Test GPS/Cyclometer Difference - Pedaling 

Pedal 

Speed 

Difference 

[mph] 

Acceleration 

Difference 

[mph/s] 

Mean 1.10 0.37 

Std. Dev. 1.03 0.41 

 

As the speed increases, the mean and standard deviations for absolute speed 

difference and absolute acceleration difference increase as well.  However, the largest 

mean speed difference is only 1.1 mph.   

3.3.3 Field Testing 

The field testing collected data from the GPS and cyclometer during five trips 

under real-world conditions.  These were bicycle commute trips in the City of Atlanta 

over a three day period on the bicycle equipped with the cyclometer.  The routes 

consisted of streets, bike lanes, sidewalks, and shared-use paths free from cars.  A map of 

the five trips can be seen in Figure 27. 
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Figure 27. Map of Validation Bicycle Field Test Trips (Credit: QTravel) 

The data from the field test trips were analyzed similarly to the lab test trips by 

comparing the GPS speed and acceleration to the cyclometer recorded speed and 

acceleration on a second-by-second basis. 

Results 

Figure 28 shows a speed and acceleration plot from one of these trips (see 

Appendix B for all five trips).  Table 6 shows the results of the statistical analysis for the 

five trips. 
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Figure 28. Data Collection Method Validation Field Test 1 Speed and Acceleration 

 

Table 6. Field Test GPS/Cyclometer Difference 

 

Speed 

Difference 

[mph] 

Acceleration 

Difference 

[mph/s] 

Mean 1.18 0.58 

Std. Dev. 1.48 0.99 

 

The Field Tests provide evidence that the GPS recorders are capable of accurately 

report speed and acceleration within the range of expected PMD operations.  The mean 

absolute speed and acceleration differences for the Field Tests are 1.18 mph and 0.58 

mph/s, respectively. 

3.3.4 Hard-Acceleration Test 

The final validation test consisted of a single bicycle trip.  During this trip, the 

rider accelerated and decelerated as quickly as possible while maintaining safety and 

making sure the front wheel equipped with the cyclometer did not skid or slip.  The 

purpose of this hard-acceleration test was to observe the ability of the GPS recorders to 
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accurately capture extreme acceleration events.  The test used two locations with sag 

vertical curves to increase the ability to accelerate and decelerate quickly on the downhill 

and uphill parts of the curve respectively.  Figure 29 shows the entire trip, and the two 

locations used for hard-acceleration testing. 

 

Figure 29. Hard Acceleration Validation Test Trip and Locations (Credit: QTravel) 

The Hard Acceleration Test was analyzed by comparing the GPS recorded speed 

and acceleration to the cyclometer speed and acceleration on a second-by-second basis, 

especially focusing on the most extreme acceleration events. 

Results 

Figure 30 shows both GPS and cyclometer Segway speed and acceleration for the 

entirety of the Hard Acceleration Test.  Figure 31 shows a smaller portion of the trip that 

is designated by the shaded box in Figure 30. 
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Figure 30. Hard Acceleration Test 1 

 

 

Figure 31. Hard Acceleration Test 2 
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Even under the most extreme accelerations capable by the bicycle rider, the GPS 

recorder adequately captured all the acceleration events and accurately recorded speed 

throughout the course of the trip.  Throughout the entirety of the trip, the mean absolute 

speed and acceleration difference is 1.3 mph and 0.61 mph/s, respectively.  This is 

slightly greater than the previous tests but still relatively small when considering the 

magnitude of speeds. 

Table 7. Hard Acceleration Test GPS/Cyclometer Difference 

 

Speed 

Difference 

[mph] 

Acceleration 

Difference 

[mph/s] 

Mean 1.30 0.61 

Std. Dev. 1.72 0.90 

 

3.3.5 Data Collection Method Validation Test Conclusion 

To validate the data collection method, second by second data collected 

simultaneously by both a cyclometer and a GPS recorder were compared.  This research 

used the cyclometer as a “ground truth” because the cyclometer is far less fallible than 

the GPS recorder and the cyclometer could be calibrated before and after each test run.  If 

the GPS recorder observed the same data as the cyclometer, the data collection method 

would be viewed as acceptable for this thesis.  For each second of the trip, the absolute 

difference between the cyclometer and GPS speed and acceleration were calculated and 

analyzed.  Although the cyclometer clock error made it difficult to pair the two datasets 

for each second of every trip, the statistical analysis shows that the average speed and 

acceleration differences between the cyclometer and GPS recorder data were 1.3 mph and 

0.61 mph/s in the worst cases.  However, the graphical comparison shows that the GPS 

recorders measured speed and acceleration practically the same as the cyclometer.  

Therefore, the GPS recorders are adequate for PMD speed and acceleration data 

collection. 
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3.4 PMD Data Collection 

To accomplish the objectives of this research, the research team collected 

location, speed, and heading data from PMD trips using GPS data recorders.  This section 

describes the data sources, the data collection procedures, and the expected results of the 

data collection effort. 

3.4.1 Data Sources 

PMDs are used by a variety of organizations and individuals.  For this data 

collection, the research team recruited public agencies, private companies, and other 

types of organizations that use fleets of PMDs.  Bicycle-share programs allow users to 

use bicycles without having to own and store one, and they are becoming increasingly 

popular in major cities.  Segways are often used by law enforcement for patrols, by 

tourism agencies for city and attraction tours, and by companies for transportation around 

large commercial or industrial sites.  Golf courses use electric carts for the players to 

travel the course during play.  Electric carts are also used as utility vehicles to transport 

maintenance personnel, tools, and equipment around large properties and facilities. 

Data were collected from four types of PMDs.  Data from pedestrian trips were 

collected from two students walking to, from, and within the Georgia Tech campus.  Bike 

trips from three Georgia Tech students and faculty members were also collected.  Segway 

data were collected from one Segway tour agency and two security agencies that use 

Segways for patrolling in addition to the data collected from the Segway test trips.  

Finally, the team collected data from electric carts used by various departments at 

Georgia Tech. 
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3.4.2 Data Collection Procedure 

After recruiting the participating agency or individual via phone or email, GPS 

recorders were installed on their devices by the research team using a plastic Zip-tie, 

Velcro, or tape.  Figure 32 shows one GPS recorder attachment configuration for a 

Segway.  The participant then turned on the GPS recorder for the duration of each trip to 

record location and speed at a rate of 1 Hz.  The participant recorded trips for one week 

or until the GPS battery or storage was exhausted.  Finally, the participants returned the 

GPS recorders and the Info Sheet to the research team for data processing (see Appendix 

C). 

 

Figure 32. GPS recorder Instrumented on Segway 

Once returned to the research team, the GPS data were retrieved using the QTravel 

software, and the raw data were exported to excel files coded by data source, mode, trip 

purpose, and trip number. 



 55 

3.5 Analysis of Performance Characteristics 

After filtering, the performance characteristics were analyzed for each PMD.  

Speed and acceleration data were compared across modes and also within each mode by 

participant, trip, trip purpose, conditions, and other factors.  The primary analysis was in 

the form of speed and acceleration scatter plots and density plots.  The speed and 

acceleration density plots were important because they can be used as simulation model 

inputs for each PMD. 

3.5.1 Statistical Analysis 

To analyze the differences between speeds and accelerations between modes or 

resulting from various factors, the research team used the Kolmogorov-Smirnov (KS) 

Test.  The KS Test is a non-parametric test that analyzes the difference between the 

distributions of two datasets.  The KS test measures the distance (D) between the 

cumulative distribution function (CDF) of each distribution and returns a p-value test 

statistic.  A small p-value of nearly zero means to reject the null hypothesis that the two 

distributions are the same.  This research used a p-value of 0.05 for selection criteria to 

accept or reject the null hypothesis. 

3.6 Segway Testing 

The final portion of this research was a first-hand Segway Test by the research 

team.  On August 10, 2012, the research team consisting of three Georgia Tech faculty 

and three graduate research students tested six Segways by traveling approximately eight 

miles in the City of Atlanta (see Figure 33).  The Segways were rented through City 

Segway Tours of Atlanta, and the group was accompanied by a trained Segway guide, 

making seven Segway trips in all.  The goal of the testing was, to travel as one would 

when commuting from one location to another, to observe interactions between Segways 

and pedestrians, and to experience Segway operations first hand.  Each of the seven 
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Segways was instrumented with a GPS recorder for the entirety of the trip recording at 

rate of 1 Hz.  The map of the trip route is shown in Figure 34. 

 

Figure 33. Research Team during Segway Testing (Credit: Lance Ballard) 
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Figure 34. Map of Segway Testing in Atlanta (Credit: QTravel) 

During the Segway Test trips, the participants noticed that their speed tended to 

vary in relation to infrastructure and the surrounding environment.  To examine how 

these factors influenced Segway operations, the Segway test route was separated into 

seven segments based on three criteria: Sidewalk Width, Surface Quality, and Pedestrian 

Density.  Each criterion consisted of a three-level categorical ranking system.  Sidewalk 

width was described as narrow, medium, or wide.  A segment was ranked as narrow if the 

majority of the segment had sidewalks of approximately four feet in width, medium for 

approximately six to eight feet in width, and wide if greater than 10 feet.  However, this 

ranking was made subjectively without quantitative measures for each segment.  Most of 

the route was on sidewalks, but the sections that were on a roadway or in a bike lane were 

rated as having a wide sidewalk width.  Surface quality described the quality of the 
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sidewalk or street and its roughness.  Surface quality was categorized as poor, medium, 

or excellent based on the number of cracks or seams in the pavement surface and on the 

roughness experienced by the Segway users during the trip.  Pedestrian density 

represented the amount of pedestrians that could potentially obstruct the Segway path 

within each segment, and it was rated as light, medium, or heavy.  This ranking was very 

subjective and difficult to make since pedestrian density is continually in flux and non-

uniform throughout the segments.  Figure 35 shows the map of each of the seven 

segments and Table 8 shows how each segment was rated.  Appendix A shows 

photographic examples of the rankings for each criterion. 

 

 

Figure 35. Segway Test Route Segments (Credit: Google Earth & Bing Maps) 
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Table 8. Segway Test Segment Characteristics 

Segment Color 
Sidewalk 

Width 

Surface 

Quality 

Pedestrian 

Density 

1 Green narrow bad heavy 

2 Blue narrow medium medium 

3 Red wide excellent medium 

4 Purple wide excellent heavy 

5 Yellow wide excellent light 

6 Pink wide excellent heavy 

7 Maroon medium medium medium 

 

Segment one started at the beginning of the route and continues through 

downtown Atlanta until reaching the intersection of North Avenue and Peachtree Street.  

However, the small period of time at the very beginning of the route where the team used 

the lowest speed key with a maximum speed of 8 mph was removed for analysis since it 

occurred using a different speed key, and the team was still familiarizing themselves with 

the Segways.  The first segment had the narrowest sidewalks, poor surface quality due to 

inconsistent pavement and construction in many areas, and heavy pedestrian traffic.  The 

second segment continued up Peachtree Street from North Avenue to 10
th

 Street where 

pavement conditions improved to medium, but the pedestrian density was still heavy.  

The third segment was also on Peachtree Street from 10
th

 Street to 17
th

 Street where the 

path turned west and traveled down 17
th

 Street to the Atlantic Station area.  This segment 

was ranked as having wide sidewalks, medium surface quality, and medium pedestrian 

density.  A small portion of this segment actually occurred on the roadway when crossing 

the 17
th

 Street Bridge where the team road in the bike lane to experience mixed traffic.  

Segment four was entirely within Atlantic Station, a high-density, mixed-use 

development with wide sidewalks, excellent surface quality, and heavy pedestrian traffic.  

From Atlantic Station, Segment five headed south on State Street from 17
th

 Street to Ferst 

Drive at the Georgia Tech campus.  The team operated on the street for the entirety of the 

fifth segment.  Therefore, the sidewalk width was rated as wide, surface quality as 
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excellent and pedestrian density as light.  The sixth segment was entirely within the 

Georgia Tech campus where sidewalk width was always wide and surface quality was 

excellent.  Pedestrian density varied throughout the time spent on campus travelling 

segment six, ranging from very dense to medium at times.  However, the segment was 

ranked as heavy pedestrian density because of the frequency of pedestrian encounters for 

the majority of the segment.  The final segment travelled down Centennial Olympic 

Parkway south away from campus and returned to the starting point.  This seventh 

segment had medium sidewalk widths, medium surface quality, and medium pedestrian 

density. 
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CHAPTER 4 

RESULTS & DISCUSSION 

This chapter reports the results of the analysis performed in Chapter 3 and 

discusses the implications of these analyses.  First, this section discusses the results for 

each type of PMD.  Then, speed and acceleration data from each mode are compared.  

Next, the results of the Segway Test are analyzed and discussed.  Finally, the effects of 

external factors on PMD speed and acceleration are analyzed. 

4.1 Data Collection Results 

After confirming the ability of the GPS recorders to accurately record PMD speed 

and acceleration, GPS recorders were used to observe pedestrian, Segway, bicycle, and 

electric cart trips.  Table 9 shows the results from the PMD data collection.  Observations 

were taken at one second intervals for all of the trips. 

 

Table 9. PMD Data Collection Results Summary by Mode 

Mode 
Total 

Participants 

Total 

Trips 

Trip Length [mi] Non-Idle  

Observations Min Max Avg 

Pedestrian 2 8 0.38 2.38 1.18 15,342 

Segway 3 agencies 48 0.69 12.25 6.92 249,284 

Bicycle 3 26 0.32 9.75 2.32 33,761 

Electric 

Cart 
3 3 1.75 5.32 3.75 3,158 

 

The vast majority of observations come from Segway trips because, as mentioned 

in Section 2.3, Segways are the PMD most representative of the vision for IMS 

operations.  A similar number of pedestrian and bicycle observations were recorded.  

Electric carts have the smallest amount of mobile observations.   

  



 62 

4.2 Speed and Acceleration Results by Mode 

4.2.1 Pedestrian 

The data collection resulted in a total of over 15,000 non-idle observations (4 

hours) of pedestrian trip speeds and acceleration.  Figure 36 shows a plot of the paired 

speed and acceleration data.  Each point in the bottom-left graph represents the speed and 

acceleration for one second of a pedestrian trip and shows the relationship between trip 

speed and acceleration events.  Each point is semi-transparent to show the point density 

for paired speeds and accelerations.  The top plot is the density plot of all of the non-idle 

speed data from pedestrian trips, and the plot on the far right shows the density plot for 

trip accelerations. 

 

Figure 36. Pedestrian Speed and Acceleration 
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The pedestrian trips are as expected with a max speed approaching 5 mph, a mean 

speed of 2.2 mph and a mode at approximately 2.9 mph.  The acceleration density plot 

also shows that the majority of pedestrian accelerations are less than 1 mph/s.  The 

pedestrian acceleration distribution is expected since even though pedestrians can 

accelerate from standing still to walking quickly, walking speed is relatively slow in 

comparison to other modes.  There are some observations above 5 mph that could be 

either the result of a pedestrian increasing speed for some reason, crossing the street for 

example, or the result of residual GPS errors. 

4.2.2 Segway 

Using almost 250,000 observations (almost 70 hours) of Segway speeds and 

accelerations, Figure 37 is the same combination plot for Segway trips.  The mean and 

mode for Segways are 4.6 mph & 2.4 mph, respectively.  The speed density plot is 

skewed with a strong tail to the right towards the upper end of the Segway speed 

threshold of 12.5 mph.  Almost all of the Segway accelerations fall within the bounds of  

-2 mph to 2 mph, and the largest accelerations occur when travelling between 3 and 8 

mph. 
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Figure 37. Segway Speed and Acceleration 

Although Segways have a top speed of 12.5 mph, Segways rarely achieved speeds 

greater than 10 mph, and the majority of speed observations were below 5 mph.  This 

could imply that Segways do not offer significantly increased mobility over walking.  

However, this is likely due to fact that the Segway trips observed during this study were 

from patrol or tour agencies, and these trips are not commute trips.  Commute trips on 

Segways would likely have faster speed distributions.  Later in this report, data will be 

presented for just the Segway test trips taken on August 10, 2012 as part of the data 

collection intended to be more representative of commute conditions. 
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4.2.3 Bicycle 

There were 33,761 observations over 9 hours of bicycle speeds and accelerations 

are shown in Figure 38.  While bicycle speeds reached upwards of 25 mph for brief 

periods, the majority of trips occur at a speed of 5 – 15 mph.  The mean speed was 9.7 

mph.  The distribution of bicycle accelerations is focused between -2 and 2 mph/s with 

the greatest accelerations extending to -5 and 5 mph/s. 

 

Figure 38. Bicycle Speed and Acceleration 

All of the data shown in Figure 38 are from bicycle commuter trips and show that 

bicycles offer a potential available speed advantage over pedestrians and Segways.  

However, the average speed for these bicycle commute trips was 9.7 mph, well within the 

range of Segway operations.  Unfortunately, these findings are based on only three 
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bicycle participants.  Data from a much larger group of cyclists and commute based 

Segway trips is necessary for a detailed mobility comparison between these PMDs. 

4.2.4 Electric Cart 

All of the electric cart data were collected from GEM cars.  GPS recorder 

limitations, infrequent and inconsistent electric car use, and time constraints limited the 

electric cart data to only three electric cart trips on the Georgia Tech campus.  However, 

the research team expects the data to be representative of future IMS zone electric car 

operation because the purpose of each trip was to travel from one location on the Georgia 

Tech campus to another and the trip occurred on campus in the midst of pedestrian, 

bicycle, and other modes of traffic. 

 

Figure 39. Electric Cart Speed and Acceleration 
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The average speed for electric car trips is 10.7 mph.  Figure 39 shows that the 

electric cart speed data is bi-modal with a mode of 3 mph and 14 mph and some 

observations of greater than 25 mph.  The first mode peak is likely due to parts of the 

electric cart trips that occurred on the sidewalk or other areas with pedestrian traffic.  

When electric carts travel on the sidewalk, there are no right-of-way rules, and often, 

electric carts are forced to travel at walking speed behind pedestrians until there is 

sufficient clearance to pass safely.  The second peak is likely from travel on sidewalks 

free of pedestrians or small campus streets with limited or restricted car access.  Under 

these conditions, electric carts are able to travel at higher speeds.  However, due to the 

level of pedestrian activity in the campus environment, it would still be unsafe for the 

electric carts to travel at full speed.  The electric carts are street legal and often operate on 

campus streets within car traffic.  Yet, even on the street, speed limits on campus are 

limited to 25 mph and cars often travel at even lower speeds due to the presence of many 

pedestrians and cyclists. 

4.3 Comparison of Modes 

Figure 40 compares the speed and accelerating distributions for each of the four 

modes observed in this research.  Pedestrians have the lowest mean speed and the 

smallest range of both speed and acceleration.  Segways have slightly greater speeds and 

a slightly greater range of speeds and accelerations than pedestrians.  Next, bikes have 

greater speeds than Segways (for those measured) and a greater range of speeds.  

However, bicycles and Segways seem to have similar acceleration distributions.  Electric 

carts have the highest speed and also the greatest range of speeds of all the PMDs 

observed.  Electric carts also have the greatest range of accelerations.  Table 10 shows 

basic statistics for the speed distributions for each mode. 
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Figure 40. Modal Comparison of Speed and Acceleration 

 

Table 10. Speed Distribution Statistics by Mode [mph] 

Mode Mean Peak Density Std Dev 

Pedestrian 2.23 2.89 1.03 

Segway 4.56 2.43 0.80 

Bicycle 9.66 9.67 4.27 

Electric Cart 10.72 3.02/14 6.45 

 

Each of these four modes spans four distinct levels of speed.  Bicycles were 

expected to have a speed range slower than electric carts.  However, the distribution of 

Segway speeds seems to fill the gap between pedestrians and bicycles.  Since mobility is 
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typically directly related to speed, this could mean that Segways provide a level of 

mobility that is greater than pedestrian mobility but less than bicycles. 

Pedestrians have the most dense acceleration distributions.  Segways and bicycles 

have very similar acceleration distributions, and electric carts have the widest range of 

accelerations of all the modes.  

Results from the KS tests were used to compare speed and acceleration 

distributions by mode are shown in Table 11 and Table 12.  A p-value of less than 0.05 

for the KS test indicates that there is evidence to suggest that the two distributions are not 

the same.  Conversely, if the p-value for either test is greater than 0.05, there is not 

sufficient evidence to say that the distributions are different.  In this chapter, these values, 

indicating there is not enough evidence to suggest that the distributions or means are 

different, are highlighted in red.  Please note that the lowest possible value reported by 

the ks.test() command within R is 2.2E-16.  Whenever “<2.2e-16” is reported, this means 

that the number is, for all practical purposes, nearly zero. 

Table 11. KS Test for Mode Speeds 

 

 

Table 12. KS Test for Mode Accelerations 

 

 

KS - p Pedestrian Segway Bicycle Electric Cart

Pedestrian < 2.2e-16 < 2.2e-16 < 2.2e-16

Segway < 2.2e-16 < 2.2e-16 < 2.2e-16

Bicycle < 2.2e-16 < 2.2e-16 < 2.2e-16

Electric Cart < 2.2e-16 < 2.2e-16 < 2.2e-16

KS - p Pedestrian Segway Bicycle Electric Cart

Pedestrian < 2.2e-16 < 2.2e-16 < 2.2e-16

Segway < 2.2e-16 4.656E-10 < 2.2e-16

Bicycle < 2.2e-16 4.656E-10 < 2.2e-16

Electric Cart < 2.2e-16 < 2.2e-16 < 2.2e-16
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The KS tests in Table 11 and Table 12 show that all of the modes have 

significantly different speed and acceleration distributions.  With such a large number of 

observations for each mode, the KS test could suggest significant differences between the 

distributions even if they were practically similar.  However, it is clear from Figure 40 

that the speed distributions for each mode are significantly different.  The acceleration 

distributions for bicycles and Segways are the only distributions that are not practically 

different.  The KS test for acceleration in Table 12 returned the highest p-value for the 

Segway to bicycle comparison.  However, it was still very small and resulted in a 

rejection of the null hypothesis that Segway and bicycle acceleration distributions are the 

same.  Therefore, this research concludes that each of the four modes have significantly 

different speed and acceleration distributions, but bicycle and Segway accelerations may 

be similar. 

4.3.1 IMS Implications of Modal Speed and Acceleration Comparison 

Many types of PMDs are expected to operate within IMS zones.  Therefore, it is 

important to not only understand the performance characteristics of each type of PMD 

but also how they compare in relation to one another.  This information will be valuable 

in future research predicting future mode share and trip capture of PMD types within IMS 

zones. 

One of the most interesting results of the modal comparison is the speed 

distribution for Segways.  In most instances, speed is directly related to mobility, greater 

speed equals greater mobility.  In an IMS environment, Segways may be able to fill a gap 

in mobility between walking and biking. 

Although electric carts and bicycles did not have significantly different mean 

speeds, their respective speed distributions show that electric carts can provide a level of 

mobility greater than bicycles.  However, the electric cart speed distribution also shows 

that electric cart operations are likely different (mainly slower) under heavy pedestrian 
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traffic conditions.  This hypothesis is partially explored in Section 4.5 by analyzing 

Segway speed in relation to pedestrian density and other external factors. 

Overall, given the proposed IMS environment described in Section 2.2, the results 

from the modal comparison imply that IMS zones could use a diverse population of 

PMDs to provide multiple levels of mobility to the public. 

4.4 Segway Test 

As described in Section 3.6, Segway operations were tested by the research team 

during an 8 mile Segway Test trip.  Analysis from the seven Segway Test trips shows 

little difference in the speed and acceleration distributions between participants (Figure 

41).  Each participant traveled the same path at the same time.  The Segway tour guide 

had slightly higher density of very low or zero accelerations.  This could be due to the 

guide’s experience with the Segway leading to more “smooth” travel with less extreme 

accelerations compounded by the possibility of slightly erratic use by the inexperienced 

participants due to the novelty of using a Segway for the first time. 
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Figure 41. Segway Test Speed and Acceleration 

A statistical comparison of the speed distributions for each participant reports that 

only a few of the speed distributions are actually statistically similar (Table 13).  In all 

practicality, however, all of the speed and acceleration distributions are similar (Table 

14). 



 73 

Table 13. KS Test for Segway Test Speed by Participant 

 

 

Table 14. KS Test for Segway Test Acceleration by Participant 

 

 

The data from the guide is the most different form the group.  This may suggest 

that Segway operational behavior varies based on user experience.  However, while there 

a many observations, there were only seven Segway Test trips.  A much broader study of 

Segway users is needed to confirm this theory. 

4.4.1 Observations from Segway Test 

During the Segway test, the research team observed a number of operational and 

behavioral characteristics of Segway use in urban areas.  It is important to note that all of 

these observations are anecdotal.  First, Segway operation is rather intuitive.  Brief 

instruction and only a few minutes of practice were needed to familiarize each participant 

with Segway controls and operations.  After that, little thought or effort is needed to steer 

KS - p Guide Guensler Suh Ballard Watkins Hunter Greenwood

Guide 0.000135 2.56E-11 0.001555 0.1439 1.56E-07 0.001969

Guensler 0.000135 6.50E-05 0.8509 1.14E-08 0.002421 0.613

Suh 2.56E-11 6.50E-05 1.56E-05 5.55E-16 3.28E-07 2.64E-06

Ballard 0.001555 0.8509 1.56E-05 2.78E-07 0.001359 0.3899

Watkins 0.1439 1.14E-08 5.55E-16 2.78E-07 6.73E-12 1.92E-07

Hunter 1.56E-07 0.002421 3.28E-07 0.001359 6.73E-12 0.003027

Greenwood 0.001969 0.613 2.64E-06 0.3899 1.92E-07 0.003027

KS - p Guide Guensler Suh Ballard Watkins Hunter Greenwood

Guide 1.79E-05 0.002172 0.00245 0.000902 3.47E-05 0.000161

Guensler 1.79E-05 0.2474 0.2739 0.118 0.6775 0.126

Suh 0.002172 0.2474 0.4732 0.4523 0.05028 0.1827

Ballard 0.00245 0.2739 0.4732 0.07093 0.4545 0.6867

Watkins 0.000902 0.118 0.4523 0.07093 0.00868 0.01929

Hunter 3.47E-05 0.6775 0.05028 0.4545 0.00868 0.414

Greenwood 0.000161 0.126 0.1827 0.6867 0.01929 0.414
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and control the device.  Second, Segways are extremely maneuverable.  They can turn, 

accelerate, and decelerate almost as quickly as a pedestrian.   

Portions of the trip utilized a bike lane next to car traffic or were on the street 

where car traffic volumes were small.  Due to the height at which one stands on a 

Segway, the vehicular traffic was not as intimidating as anticipated.  While the difference 

in speed could create safety concerns when mixing with car traffic, Segway users might 

be expected to comfortably operate their device within an IMS environment where micro-

cars were also operating. 

The team also noticed that when the Segways were in the large group, many 

pedestrians moved out of the path of the Segways voluntarily.  This could be due to the 

size of the group or the novelty of encountering a Segway.  At one point during the trip, 

the team split up on the Georgia Tech campus to see how pedestrians responded to a 

single Segway in their path.  While it seemed that pedestrians were less likely change 

their behavior due to a single Segway than a group of Segways, the Segway test did not 

provide enough experience or evidence to conclude if pedestrians responded to a single 

Segway differently than a group of Segways. 

When traveling on a Segway, maintaining constant speed is relatively easy and 

does not require much effort.  However, accelerating and decelerating seem to require 

more thought and physical exertion than when traveling at a constant speed.  This may 

suggest that Segway users have added incentive to smooth their Segway speeds and 

accelerations as to not accelerate or decelerate abruptly. 

An important observation from the Segway test was that Segway trip speed 

seemed to be influenced by a number of external factors, namely sidewalk or path width, 

surface quality, and pedestrian density.  When sidewalks were very narrow, the team 

seemed to travel slower in order to safely negotiate the path while when the sidewalk was 

wide or the Segways were on a roadway, the team tended to travel at top speed.  Surface 

quality and pedestrian density seemed to affect Segway speed similarly. 
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4.5 Effects of External Factors 

During the Segway Test trips, the participants noticed that their speed tended to 

vary in relation to infrastructure and the surrounding environment.  To examine how 

these factors influenced Segway operations, the team chose three factors for further 

analysis: sidewalk width, surface quality, and pedestrian density.  Each criterion 

consisted of a three-level categorical ranking system.  Sidewalk width was described as 

narrow, medium, or wide.  Surface quality described the quality of the sidewalk or street 

and its roughness.  Surface quality was categorized as poor, medium, or excellent.  

Pedestrian density represented the amount of pedestrians that could potentially obstruct 

the Segway path within each segment, and it was rated as light, medium, or heavy. 

For this analysis, the small portion of the Segway Test trip that occurred using the 

lower speed key was excluded.  Not only was this portion of the trip skewed due to speed 

limitations, it was also a “warm-up” period for the participants as they became familiar 

with Segway operations for the first time. 

4.5.1 Sidewalk Width 

Sidewalk width is ranked as narrow, typical, or wide.  Figure 42 is a spatial 

representation of trip speed for one of the Segway Test participants.  The width of the 

grey line represents the sidewalk width ranking of narrow, medium, and wide for each 

part of the route.  The colored points create the line of the actual Segway path, and the 

color of those points symbolizes the speed at that location with red being the slowest and 

green being the fastest. 
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Figure 42. Map of Segway Test Trip Speed by Sidewalk Width 

Since each section has periods with low and high Segway speeds, it is difficult to 

spatially distinguish how much sidewalk width truly affects Segway speed.  Figure 43 is 

a graphical representation of Segway speeds and accelerations for all of the Segway Test 

trips categorized by the sidewalk width rankings.  Narrow sidewalks have the slowest 

mean speed and the distribution with the smallest range.  Sections with typical sidewalk 
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widths have the next highest mean speed and a slightly wider distribution.  The wide 

sections of sidewalk have the greatest mean speed and the widest distribution of all.  The 

speed distribution of wide sidewalks is flat with no distinctive peak.  Figure 43 and Table 

15 also shows that while speed is clearly affected by sidewalk width, the distributions of 

accelerations for each ranking are very similar across all sidewalk widths. 

 

 

Figure 43. Effect of Sidewalk Width on Segway Speed and Acceleration 
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Table 15. Sidewalk Width Speed Statistics 

Sidewalk 

Width 

Mean 

[mph] 

Peak 

Density 

[mph] 

Standard 

Deviation 

[mph] 

narrow 4.28 4.15 1.54 

medium 5.21 5.34 1.83 

wide 5.75 4.25 2.46 

 

A KS test for differences among sidewalk width Segway speed distributions show 

that sidewalk width has a very significant effect on Segway speed between each ranking 

level since each of the p-values is less than 0.05 (Table 16). 

 

Table 16. KS Test for Segway Speed by Sidewalk Width 

 

 

Table 17 suggests that sidewalk width also has a significant effect on Segway 

acceleration.  However, while these differences may be statistically significant because of 

the very large sample size for each distribution, these differences do not appear to be 

practically different when viewing Figure 43.  Although statistically significant, sidewalk 

width doesn’t practically effect Segway accelerations. 

 

Table 17. KS Test for Segway Acceleration by Sidewalk Width 

 

 

KS - p narrow typical wide

narrow < 2.2e-16 < 2.2e-16

typical < 2.2e-16 < 2.2e-16

wide < 2.2e-16 < 2.2e-16

KS - p narrow typical wide

narrow 0.0002479 0.008265

typical 0.0002479 0.03092

wide 0.008265 0.03092
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4.5.2 Surface Quality 

Surface quality was the next factor analyzed.  Surface quality describes the 

“smoothness” or “roughness” of the paved surface for each segment.  Broken and cracked 

sidewalks were ranked poor, while road surfaces or sidewalks in exceptional condition 

were ranked excellent.  Similar to sidewalk width, the effect of surface quality on Segway 

speeds can be seen both spatially (Figure 44) and graphically (Figure 45). 
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Figure 44. Map of Segway Test Trip Speed by Surface Quality 
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Figure 45. Effect of Surface Quality on Segway Speed and Acceleration 

The effect of surface quality on Segway speed and acceleration is nearly identical 

to that of sidewalk width.  The poorest surface quality resulted in the slowest speed while 

the best surface quality has the greatest speed and widest distribution (Table 18).  Also, 

there is little visible difference between the acceleration distributions for each sidewalk 

quality rank. 
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Table 18. Surface Quality Speed Statistics 

Surface 

Quality 

Mean 

[mph] 

Peak 

Density 

[mph] 

Standard 

Deviation 

[mph] 

poor 4.21 4.06 1.50 

medium 5.00 5.13 1.81 

excellent 5.75 4.25 2.46 

 

The KS test (Table 19) for Segway speed reveals that the distribution for Segway 

speed differed significantly between the surface quality rankings, meaning that surface 

quality significantly affected Segway speed.  Also like sidewalk width, the KS test for 

acceleration distribution (Table 20) shows that there are statistical differences between 

each of the distributions.  However, Figure 45 shows that there is no practical difference 

between the acceleration distributions based on surface quality. 

 

Table 19. KS Test for Segway Speed by Surface Quality 

 

 

Table 20. KS Test for Segway Acceleration by Surface Quality 

 

 

Overall, there is evidence to suggest that surface quality may affect Segway speed 

but not acceleration.  Poor quality surfaces or pavements are likely to inhibit Segways 

from traveling at top speeds because the Segway device has no suspension and is very 

sensitive to disconformities in the pavement surface. 

KS - p poor typical excellent

poor < 2.2e-16 < 2.2e-16

typical < 2.2e-16 < 2.2e-16

excellent < 2.2e-16 < 2.2e-16

KS - p poor typical excellent

poor 1.10E-11 2.74E-06

typical 1.10E-11 0.001798

excellent 2.74E-06 0.001798
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4.5.3 Pedestrian Density 

The final category for Segway speed and acceleration analysis was pedestrian 

density.  Just like the two prior categories, Figure 46 and Figure 47 depict the spatial and 

graphical distribution of Segway speed and acceleration, respectively. 

 

Figure 46. Map of Segway Test Trip Speed by Pedestrian Density 
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Figure 47. Effect of Pedestrian Density on Segway Speed and Acceleration 

Pedestrian density appears to affect Segway speed slightly differently than the 

previous categories.  Heavy and medium pedestrian densities produce similar Segway 

speeds with means of approximately 5 mph.  Although the peak density for medium 

Pedestrian Density is 1 mph greater than that of heavy pedestrian density (Table 21), both 

speed distributions have similar densities for those peaks and similar tails for higher 

speeds.  Light pedestrian density has the greatest mean speed and a very different 

distribution.  The peak density speed is 8.5 mph (Table 21) and the distribution has a tail 

trailing to lower speeds rather than higher.  This suggests that in light pedestrian density, 

Segways are able to operate at a free-flow rate of speed. 
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Table 21. Pedestrian Density Speed Statistics 

Pedestrian 

Density 

Mean 

[mph] 

Peak 

Density 

[mph] 

Standard 

Deviation 

[mph] 

heavy 5.122 4.094 2.293 

medium 4.977 5.044 1.882 

light 6.721 8.515 2.224 

 

Again, the KS tests (Table 22 and Table 23) for Segway speed and acceleration 

show that there are significant differences between the distributions for each rank.  Also 

once again, the distributions of Segway accelerations were practically the same even 

though Table 23 shows that the KS test for acceleration resulted in statistical differences 

between the distributions. 

 

Table 22. KS Test for Segway Speed by Pedestrian Density 

 

 

Table 23. KS Test for Segway Acceleration by Pedestrian Density 

 

 

Sidewalk width and surface quality seem to affect Segway speed very similarly or 

may be correlated, and while the trend is similar for pedestrian density, the speed 

distribution for each of the pedestrian density ranks is very different from sidewalk width 

and surface quality.  As sidewalk width and surface quality conditions become more 

favorable for higher speeds, the speed distributions for each category become more 

KS - p heavy moderate light

heavy < 2.2e-16 < 2.2e-16

moderate < 2.2e-16 < 2.2e-16

light < 2.2e-16 < 2.2e-16

KS - p heavy moderate light

heavy 9.18E-05 0.03425

moderate 9.18E-05 5.54E-05

light 0.03425 5.54E-05
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flattened.  However, as pedestrian density becomes lighter, the speed distributions do not 

become more flat but retain a similar peak that is at a higher speed.  This may imply that 

pedestrian density has the greatest influence on Segway speed of these three categories. 

4.5.4 External Factors Interaction 

Given that there are three categories of external factors and three ranks for each 

category, a total of 27 combinations of external factor ranks are possible.  Unfortunately, 

the segment selection and ranking for the Segway Test were post hoc, and only six 

unique combinations of external factor rankings are available.  Therefore, only a small 

number of interaction scenarios can be tested.  Table 24 shows the external factor 

rankings for each segment of the Segway Test 

 

Table 24. Segway Test Segment External Factor Characteristics 

Segment Color 
Sidewalk 

Width 

Surface 

Quality 

Pedestrian 

Density 

1 Green narrow bad heavy 

2 Blue narrow medium medium 

3 Red wide excellent medium 

4 Purple wide excellent heavy 

5 Yellow wide excellent light 

6 Pink wide excellent heavy 

7 Maroon medium medium medium 

 

Unfortunately, most of the segments had wide sidewalk width and excellent 

surface quality.  However, across those segments, pedestrian density varied.  Figure 48 

shows the speed and acceleration plots for pedestrian density when sidewalk width is 

wide and surface quality is excellent.  Once again, acceleration is not affected.  Speed is 

affected by pedestrian density when on wide sidewalks with excellent pavement.  In this 

case, the speed distributions for heavy and medium pedestrian density are similar while 

the light pedestrian density has much higher speeds. 
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Figure 48. Segway Test Speed and Acceleration by Pedestrian Density on Wide 

Sidewalk with Excellent Surface Quality 

 

When sidewalks are narrow, there is little difference between speed distributions 

for heavy and medium pedestrian densities (Figure 49).  This is not surprising since just 

one pedestrian on a narrow sidewalk can block the path of a Segway, slowing it down 

significantly.  Unfortunately no data is available for light pedestrians on a narrow 

sidewalk, allow for not evaluate of the interaction between these parameters. 
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Figure 49. Segway Test Speed and Acceleration by Pedestrian Density 

on Narrow Sidewalk  

The final interaction analysis compares the speed and acceleration distributions 

for sidewalk width when pedestrian density is heavy.  Figure 50 shows that the 

combination of many pedestrians and narrow sidewalks results in low speeds while wide 

sidewalks produce a wide range of speeds when many pedestrians are present.  This 

suggests that where the sidewalk or path is wide enough, Segways can maneuver around 

crowds and maintain higher speeds in places but may still be slowed by very large 

crowds. 
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Figure 50. Segway Test Speed and Acceleration by Sidewalk Width 

with Heavy Pedestrian Density 

4.5.5 IMS Implications of External Factors  

Each of the categories appears to significantly influence Segway speed.  Wide 

sidewalks, excellent pavements, and light pedestrian densities result in the highest 

Segway speeds.  While there is likely some interaction between these three factors, this 

research was unable to test for all of them.  However, the research team suspects that 

even if there is ample sidewalk space and the surface is of excellent quality, speeds will 

likely still be low if there are heavy pedestrian densities.  Similarly, if there are no 

pedestrians but the surface is very rough, Segway speeds will likely be constrained.  The 
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researchers suspect that surface quality is likely an independent constraint for Segway 

speed and that sidewalk width and pedestrian density interact to limit Segway speeds 

under certain conditions although additional data is clearly necessary to fully explore 

these parameters. 

Segway acceleration characteristics appear independent of external factors.  This 

means that Segway users accelerate and decelerate similarly despite these external factors 

and that Segway users experience a similar number of acceleration events regardless of 

the external situation.  Segway users likely smooth their speed to a desirable level given 

the external factors so that they are required to accelerate or decelerate as infrequently as 

possible.  For example, if a surface is rough with many bumps or cracks, the Segway user 

may slow to a speed sufficiently slow for the surface characteristics rather than travel 

faster between bumps or cracks and then slow abruptly at each of them.  Similarly, when 

in a large crowd of pedestrians, Segway users may travel at speeds similar to pedestrians 

to avoid speeding up and slowing down excessively when navigating through the crowd.  

Sidewalk Width seems to affect Segway speed, but the speed reduction may be related to 

obstructions along the path.  Theoretically, narrow sidewalks with no obstructions should 

not greatly impede Segway speed.  However, when encountering an obstruction such as a 

large pavement crack or some pedestrians, a narrow sidewalk would force the Segway to 

slow down or even stop to navigate around or over the obstruction.  Similarly, wide 

sidewalks or paths provide greater space to maneuver, requiring a greater number of 

obstructions to significantly influence Segway speed. 



 91 

CHAPTER 5 

CONCLUSIONS, LIMITATIONS, & FUTURE RESEARCH 

5.1 Conclusions 

The purpose of this study was to explore PMD operations and analyze PMD 

performance characteristics for use as inputs in future simulation modeling.  GPS 

recorders were used to observe speed and acceleration data from four transportation 

modes that would likely be used in an IMS system: pedestrians, Segways, bicycles, and 

electric carts.  The data were then filtered to smooth the data and remove random GPS 

errors.  Idle observations were excluded so as to analyze only the performance 

characteristics during mobile operations. 

Pedestrians had the lowest mean speed and the most narrow speed distribution.  

Segways had the next lowest mean speed followed by bicycles and then electric carts.  As 

the mean speed increased with each mode, so did the range and standard deviation.  

Electric carts had a bimodal speed distribution that likely occurred due to a large number 

of both unobstructed free flow speeds when driving on a roadway and other observations 

from parts of the trips that occurred on mixed-use paths among a large number of 

pedestrians that exhibited much slower speeds.  Pedestrians had the smallest range of 

accelerations while electric carts had the widest.  Segways and bicycles had very similar 

acceleration distributions. 

Another important finding from the modal comparison is that Segways seem to 

provide a level of speed and mobility between that of pedestrians and cyclists.  During 

the Segway testing, the research team also found that Segways are maneuverable and 

easy to use.  All of this could mean that Segways could capture new users by providing a 

level of mobility and convenience previously unseen. 
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The Segway trip speed seemed to be influenced by a number of external factors, 

namely sidewalk width, surface quality, and pedestrian density.  Analysis showed that 

each of these factors appear to influence Segway speed.  Narrow sidewalk widths, poor 

sidewalk quality, and heavy pedestrian density all decreased Segway speeds.  

Unfortunately, the segments of the Segway Test were ranked by these three categories 

after the test was completed and only six of 27 possible ranking combinations were 

analyzed.  However, the research team suspects that even if there is ample sidewalk space 

and the surface is of excellent quality, speeds will likely still be low if there are heavy 

pedestrian densities.  Similarly, if there are no pedestrians but the surface is very rough, 

Segway speeds may be constrained.  The researchers suspect that surface quality is likely 

an independent constraint for Segway speed and that sidewalk width and pedestrian 

density interact to limit Segway speeds under certain conditions.  There may also be 

interaction between sidewalk width and surface quality. 

Ultimately, this research will help create a simulation model of PMDs in an IMS 

environment.  The speed and acceleration distributions for each PMD mode can be used 

to create probability density functions for desired speed and acceleration assignment 

within agent-based models.  However, more study will be needed to create new behavior 

models for each type of PMD. 

5.2 Limitations 

Since there are currently no IMS zones in existence, none of the data collected is a 

perfect representation of PMD operations within the IMS context.  PMDs and pedestrians 

may behave and operate differently under IMS conditions than in the observations from 

this research.  However, since much of the PMD speed and acceleration data were 

collected on or near the Georgia Tech Campus or dense urban areas in Atlanta, it is likely 

many of the results are transferrable. 
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Another limitation of this research is that there are a limited number of PMD trips 

and users for all modes, especially electric cart.  Since it is unclear if PMD operational 

behavior is uniform across the user population, a larger sample of users is necessary to 

validate the findings in this research.  Also, although there are a large number of Segway 

observations, they are all from tour or patrol trips.  Segway commute trips, especially in 

dense urban areas, would be more representative of the vision of IMS zone operations in 

this research. 

The external factor testing is limited by three things: 1) the segments were 

selected and ranked after the trips were already completed, 2) the segments were ranked 

qualitatively and subjectively rather than quantitatively, and 3) only six of the 27 possible 

combinations of external factor rankings were tested, greatly reducing the ability to test 

for interactions between the factors.  Despite these limitations, the analysis shows that the 

three external factors examined here, sidewalk width, surface quality, and pedestrian 

density, may impact PMD operations and performance.  Additional data for a more 

varied range of conditions and individuals and more quantitative approach to studying the 

effect of external factors on PMD operations is important to better understand these 

relationships in the future.  

Other factors, such as weight and weather conditions, were not considered in this 

analysis although they may also be important factors influencing PMD operation.  More 

importantly, PMD use was not studied from a behavioral perspective.  Although PMD 

use and IMS zones may be feasible in terms of operation, this research did not study user 

behavior. 

5.3 Future Research 

Ultimately, the success of IMS zones will rely on their ability to provide society 

with a level of mobility for short and medium range trips equal to or greater than that 

currently achieved by cars.  Therefore, it is imperative that researchers and transportation 
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planners understand PMD operations and performance characteristics, PMD user 

behavior, and the effects that external factors have on PMD speed and mobility. 

First, more PMDs need to be studied to analyze the differences in their operations 

and performance characteristics.  IMS zones will support a variety of transportation, and 

to operate such a complex system will require very detailed and very accurate 

information about the operational capabilities of each device. 

There are few ways to further study how external factors influence PMD 

operations.  First, PMDs need to be tested under more controlled and quantitatively 

documented circumstances.  For this study, external factors were selected and ranked 

qualitatively for large segments.  More analysis is needed at a finer resolution.  Also, 

multiple types of PMDs need to be tested as well.  Finally, testing more combinations of 

external factors should provide analysis for all of the possible interactions between these 

factors.  All of this would help researchers better understand how external factors will 

impact PMD operations, mobility, and user behavior, thus yielding more substantive 

expectations about IMS feasibility in the future. 

Since many of the PMDs expected for use in IMS zones are still novel or rarely 

used for personal commutes, further research is needed about user behavior.  Two studies 

could achieve this goal.  First, a detailed study of PMD operational behavior within an 

IMS type of environment would document PMD following behavior, turning movements, 

and navigation in a dynamic environment.  This research could then be the basis for the 

development of new PMD operational behavior models for simulation purposes.   

Lastly, another study would analyze PMD user trip behavior.  A Segway or other 

type of PMD could be given to a participant for their use over a number of weeks.  The 

user could complete a trip journal about their PMD trips.  This would give researchers 

valuable information about when and why people would use PMDs instead of other 

modes.  All of this information, in conjunction with the other recommended research, 

could be used to create a simulation model of an IMS environment. 
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Ultimately, this thesis serves as a starting point for IMS research.  IMS 

environments may one day provide a sustainable transportation system.  Much more 

research and knowledge will be required to achieve successful PMD integration and IMS 

implementation.  Maybe one day people will leave their homes and travel to work via 

micro-vehicles or some PMD yet to be invented.  May this be a small step towards a 

more sustainable future in human mobility. 
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APPENDIX A 

EXAMPLES OF EXTERNAL FACTORS INFLUENCING 

SEGWAY OPERATIONS 

 

Figure 51. Heavy Pedestrian Density, Wide Sidewalk, and Excellent Surface Quality 
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Figure 52. Medium Pedestrian Density, Wide Sidewalk, and Excellent Surface 

Quality 
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Figure 53. Light Pedestrian Density, Excellent Surface Quality 
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Figure 54. Medium Pedestrian Density, Narrow Sidewalk Width, Medium Surface 

Quality 
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Figure 55. Medium Pedestrian Density, Narrow Sidewalk Width 
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Figure 56. Poor Sidewalk Quality 
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APPENDIX B 

RESULTS OF DATA COLLECTION METHOD  

VALIDATION TESTING 

B.1 Lab Test 

Walk 

 

Figure 57. Lab Test Speed and Acceleration – Walk 1 
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Figure 58. Lab Test Speed and Acceleration – Walk 2 

 

 

Figure 59. Lab Test Speed and Acceleration – Walk 2 
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Figure 60. Lab Test Speed and Acceleration – Walk 4 

 

 

Figure 61. Lab Test Speed and Acceleration – Walk 5 
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Figure 62. Lab Test Speed and Acceleration – Walk 6 

 

 

Figure 63. Lab Test Speed and Acceleration – Walk 7 
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Figure 64. Lab Test Speed and Acceleration – Walk 8 

 

 

Figure 65. Lab Test Speed and Acceleration – Walk 9 
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Figure 66. Lab Test Speed and Acceleration – Walk 10 
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Coast 

 

Figure 67. Lab Test Speed and Acceleration – Coast 1 

 

 

Figure 68. Lab Test Speed and Acceleration – Coast 2 
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Figure 69. Lab Test Speed and Acceleration – Coast 3 

 

 

Figure 70. Lab Test Speed and Acceleration – Coast 4 
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Figure 71. Lab Test Speed and Acceleration – Coast 5 

 

 

Figure 72. Lab Test Speed and Acceleration – Coast 6 
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Figure 73 Lab Test Speed and Acceleration – Coast 7 

 

 

Figure 74. Lab Test Speed and Acceleration – Coast 8 
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Figure 75. Lab Test Speed and Acceleration – Coast 9 

 

 

Figure 76. Lab Test Speed and Acceleration – Coast 10 
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Pedal 

 

Figure 77. Lab Test Speed and Acceleration – Pedal 1 

 

 

Figure 78. Lab Test Speed and Acceleration – Pedal 2 
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Figure 79. Lab Test Speed and Acceleration – Pedal 3 

 

 

Figure 80. Lab Test Speed and Acceleration – Pedal 4 
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Figure 81. Lab Test Speed and Acceleration – Pedal 5 

 

 

Figure 82. Lab Test Speed and Acceleration – Pedal 6 
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Figure 83. Lab Test Speed and Acceleration – Pedal 7 

 

 

Figure 84. Lab Test Speed and Acceleration – Pedal 8 
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Figure 85. Lab Test Speed and Acceleration – Pedal 9 

 

 

Figure 86. Lab Test Speed and Acceleration – Pedal 10 
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B.2 Field Test 

 

Figure 87. Field Test Speed and Acceleration 1 

 

 

Figure 88. Field Test Speed and Acceleration 2 
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Figure 89. Field Test Speed and Acceleration 3 

 

 

Figure 90. Field Test Speed and Acceleration 4 
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Figure 91. Field Test Speed and Acceleration 5 
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B.3 Hard Acceleration Test 

 

Figure 92. Hard Acceleration Test 1 

 

 

Figure 93. Hard Acceleration Test 1 
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APPENDIX C 

DATA COLLECTION SHEETS 
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APPENDIX D 

CODES AND SCRIPTS USED FOR ANALYSIS 

Modified Kalman Filter – MATLAB 

%Kalman Filter  - GPS 

 

%This script takes the standard QSTARZ GPS log output and runs the speed, 

acceleration 

%and coordinate data through the Kalman filter and smoothing algorithm 

%below.  This consists of a forward pass predicting the next value and then 

%correcting the prediction based on the actual recorded value for the next 

%time step. 

%This program reads from an .xls file, calculates the corrected data, and 

%then populates new columns in the same .xls file with the corrected data. 

 

clear 

%file and sheet names! 

rawfile = 'C:\rawfile.xlsx';  

sheetname = 'sheetname'; 

newfile = 'C:\newfile.xlsx'; 

 

%read GPS data from .xls file and define vectors 

a=xlsread(rawfile,sheetname); 

GPS_time = a(:,7); 

GPS_dT = a(:,8); 

X_coor_raw = a(:,27); 

Y_coor_raw = a(:,26); 

Speed_raw = a(:,28); 

Acc_raw = a(:,29); 

nSat = a(:,30); 

PDOP = a(:,20); 

heading = a(:,17); 

 

%INITIAL INPUTS 

Speed_PN = 0.5^2; %GPS speed error 0.1 m/s = 0.224 mph (Process noise) 

Speed_MN = 0.5^2; %GPS speed error 0.1 m/s = 0.224 mph (Measurement noise) 

Bad_GPS_Speed_MN = 3^2; %Max variation (threshold) of GPS speed for poor GPS 

signal condition 

X_PN = 0.00295; %GPS X coordinates error: 0.00295 degree = 100 m (Process noise) 

Y_PN = 0.00352; %GPS Y coordinates error: 0.00352 degree = 100 m (Process noise) 

X_MN = 0.00295; %GPS X coordinates error: 0.00295 degree = 100 m (Measurement 

noise) 
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Y_MN = 0.00352; %GPS Y coordinates error: 0.00352 degree = 100 m (Measurement 

noise) 

Bad_GPS_X_MN = 10^2; %set up max variation (threshold of X for poor GPS signal 

points: 10 degree) 

Bad_GPS_Y_MN = 10^2; %set up max variation (threshold of Y for poor GPS signal 

points: 10 degree) 

Speed_init_Pmin = 5; %Initial variance of speed error for the first speed point: 5 mph 

X_init_Pmin = 0.000002; %Initial variance of X error for the first X point 

Y_init_Pmin = 0.000002; %Initial variance of Y error for the first Y point 

 

%SPEED - first calc 

Speed_Xhat_min(1,1) = Speed_raw(1,1); %Speed(1,1) indicates the first real GPS speed. 

After reading this value, put it to the Speed_Xhat_min for the first prediciton process in 

the Kalman filter. 

Speed_Pmin(1,1) = Speed_init_Pmin + Speed_PN; %Create the Kalman error variance 

matrix 

Speed_K_Gain(1,1) = Speed_Pmin(1,1)/(Speed_Pmin(1,1) + Speed_MN); %Create the 

Kalman gain matrix 

Speed_Xhat(1) = Speed_Xhat_min(1,1) + Speed_K_Gain(1,1)*(Speed_raw(1,1) - 

Speed_Xhat_min(1,1)); %Correct the speed with the Kalman gain matrix and the 

difference between the estimated and the measured speeds.  At this time, we will get hte 

filtered GPS speed 

Speed_P(1,1) = (1-Speed_K_Gain(1,1))*Speed_Pmin(1,1); %Update the Kalman error 

variacne matrix for the next second speed 

 

%COORDINATES - first calc 

X_Xhat_min(1,1) = X_coor_raw(1,1); %X_coor(1,1) is the first real GPS X coordinates 

point collected from our box. 

X_Pmin(1,1) = X_init_Pmin + X_PN; 

X_K_Gain(1,1) = X_Pmin(1,1)/(X_Pmin(1,1) + X_MN); 

X_Xhat(1) = X_Xhat_min(1,1) + X_K_Gain(1,1)*(X_coor_raw(1,1) - 

X_Xhat_min(1,1)); %At this time, we will get the filtered GPS X coordinates 

X_P(1,1) = (1-X_K_Gain(1,1))*X_Pmin(1,1); %Update the Kalman error variance 

matrix for the next X value 

 

Y_Xhat_min(1,1) = Y_coor_raw(1,1);  

Y_Pmin(1,1) = Y_init_Pmin  + Y_PN; 

Y_K_Gain(1,1) = Y_Pmin(1,1)/(Y_Pmin(1,1) + Y_MN); 

Y_Xhat(1) = Y_Xhat_min(1,1) + Y_K_Gain(1,1)*(Y_coor_raw(1,1) - 

Y_Xhat_min(1,1)); %At this time, we will get the filtered GPS Y coordinates  

Y_P(1,1) = (1-Y_K_Gain(1,1))*Y_Pmin(1,1); %Update the Kalman error variance 

matrix for the next Y value 

 

 

%SPEED LOOP 

for i=2:length(Speed_raw) 
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    if nSat(i,1) > 4 && PDOP(i,1) < 8  %GPS signal is good (nsat>4,PDOP<9) 

        Speed_Xhat_min(i,1) = Speed_Xhat(i-1,1); %This is the second speed value, so “i” 

is 2, then Speed_Xhat(i-1,1) is Speed_Xhat(2-1,1) = Speed_Xhat(1,1), which we already 

had as the first filtered speed value.Thus, we don’t have to worry about the number of 

“i”. You can just use the previous speed value filtered by Kalman for the 

“Speed_Xhat_min(i,1)”. Ignore the “i” here 

        Speed_Pmin(i,1) = Speed_P(i-1,1) + Speed_PN; %The “Speed_PN” is the initial 

set-up value that we already know. The “Speed_P(i-1,1)” is also the value that we know 

for the previous filtering process. We can easily calculate the “Speed_Pmin(i,1)” 

        Speed_K_Gain(i,1) = Speed_Pmin(i,1)/(Speed_Pmin(i,1) + Speed_MN); %You will 

use the GPS signal condition at this time. Based on the signal condition, you will choose 

one from two speed measurement error values, which we initially set up before. 

        Speed_Xhat(i,1) = Speed_Xhat_min(i,1) + Speed_K_Gain(i,1)*(Speed_raw(i,1) - 

Speed_Xhat_min(i,1)); %Based on the equation above, you will have the second filtered 

speed data. 

        Speed_P(i,1) = (1-Speed_K_Gain(i,1))*Speed_Pmin(i,1); %Update the kalman error 

matrix for the next GPS speed 

    else  % When GPS signal is bad 

        Speed_Xhat_min(i,1) = Speed_Xhat(i-1,1); 

        Speed_Pmin(i,1) = Speed_P(i-1,1) + Speed_PN; 

        Speed_K_Gain(i,1) = Speed_Pmin(i,1)/(Speed_Pmin(i,1) + Bad_GPS_Speed_MN); 

        Speed_Xhat(i,1) = Speed_Xhat_min(i,1) + Speed_K_Gain(i,1)*(Speed_raw(i,1) - 

Speed_Xhat_min(i,1)); 

        Speed_P(i,1) = (1-Speed_K_Gain(i,1))*Speed_Pmin(i,1); 

    end 

end 

 

%ACCELERATION LOOP 

for i=2:length(Speed_raw) 

    Acc_smooth(i,1) = (Speed_Xhat(i,1)-Speed_Xhat(i-1,1)) / GPS_dT(i,1); 

end 

 

 

%COORDINATES LOOP 

for i=2:length(X_coor_raw) 

    if nSat(i,1) > 4 && PDOP(i,1) < 8  %GPS signal is good (nsat>4,PDOP<9) 

        X_Xhat_min(i,1) = X_Xhat(i-1,1); % For X coordinates 

        X_Pmin(i,1) = X_P(i-1,1) + X_PN ; 

        X_K_Gain(i,1) = X_Pmin(i,1)/(X_Pmin(i,1) + Bad_GPS_X_MN); 

        X_Xhat(i,1) = X_Xhat_min(i,1) + X_K_Gain(i,1)*(X_coor_raw(i,1) - 

X_Xhat_min(i,1)); 

        X_P(i,1) = (1-X_K_Gain(i,1))*X_Pmin(i,1); 

        Y_Xhat_min(i,1) = Y_Xhat(i-1,1); % For Y coordinates 

        Y_Pmin(i,1) = Y_P(i-1,1) + Y_PN ; 

        Y_K_Gain(i,1) = Y_Pmin(i,1)/(Y_Pmin(i,1) + Bad_GPS_Y_MN); 
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        Y_Xhat(i,1) = Y_Xhat_min(i,1) + Y_K_Gain(i,1)*(Y_coor_raw(i,1) - 

Y_Xhat_min(i,1)); 

        Y_P(i,1) = (1-Y_K_Gain(i,1))*Y_Pmin(i,1); 

    else %GPS signal is bad 

        X_Xhat_min(i,1) = X_Xhat(i-1,1); % For X coordinates 

        X_Pmin(i,1) = X_P(i-1,1) + X_PN ; 

        X_K_Gain(i,1) = X_Pmin(i,1)/(X_Pmin(i,1) + X_MN); 

        X_Xhat(i,1) = X_Xhat_min(i,1) + X_K_Gain(i,1)*(X_coor_raw(i,1) - 

X_Xhat_min(i,1)); 

        X_P(i,1) = (1-X_K_Gain(i,1))*X_Pmin(i,1); 

        Y_Xhat_min(i,1) = Y_Xhat(i-1,1); % For Y coordinates 

        Y_Pmin(i,1) = Y_P(i-1,1) + Y_PN ; 

        Y_K_Gain(i,1) = Y_Pmin(i,1)/(Y_Pmin(i,1) + Y_MN); 

        Y_Xhat(i,1) = Y_Xhat_min(i,1) + Y_K_Gain(i,1)*(Y_coor_raw(i,1) - 

Y_Xhat_min(i,1)); 

        Y_P(i,1) = (1-Y_K_Gain(i,1))*Y_Pmin(i,1); 

    end 

end 

 

%write filtered data to new excel file 

headers = {'GPS Time','GPS dT','Heading','nSat','PDOP','Lat','Lon','Speed','Acc'}; 

xlswrite(newfile,headers,sheetname,'A1:I1'); 

xlswrite(newfile,GPS_time,sheetname,'A2'); 

xlswrite(newfile,GPS_dT,sheetname,'B2'); 

xlswrite(newfile,heading,sheetname,'C2'); 

xlswrite(newfile,nSat,sheetname,'D2'); 

xlswrite(newfile,PDOP,sheetname,'E2'); 

xlswrite(newfile,X_Xhat,sheetname,'F2'); 

xlswrite(newfile,Y_Xhat,sheetname,'G2'); 

xlswrite(newfile,Speed_Xhat,sheetname,'H2'); 

xlswrite(newfile,Acc_smooth,sheetname,'I2'); 

 

clear 
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Typical Speed and Acceleration Plot – R (ggplot2) 

###MODAL COMPARISON### 

rm(list=ls(all=TRUE)) 

 

#Load Required Packages 

setwd("folder_path/") 

library("gdata") 

library("rJava") 

library("gplots") 

library("ggplot2") 

library("aws") 

library("rgl") 

library("xts") 

library("lattice") 

library("foreign") 

library(gridExtra) 

library(sqldf) 

 

#READ DATA 

mode <- read.dbf("MODE2.dbf") 

bymode <- sqldf('SELECT * FROM mode ORDER BY MODE desc') 

 

#PLOT 

p <- ggplot(bymode,aes(x=SPEED,y=ACC,colour=MODE))+ 

  scale_x_continuous(limits=c(0,25)) +  

  scale_y_continuous(limits=c(-5,5),breaks=c(-5:5)) + 

  xlab("Speed [mph]")+ylab("Acceleration [mph/s]")+ 

  geom_point(alpha="0.01") + 

  scale_fill_manual(values=c("#F8766D","#990099","#619CFF","#00BA38")) + 

  scale_colour_manual(values=c("#F8766D","#990099","#619CFF","#00BA38")) 

 

p1 <- p + theme(legend.position = "None") 

 

g_legend<-function(a.gplot){ 

  tmp <- ggplot_gtable(ggplot_build(a.gplot)) 

  leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") 

  legend <- tmp$grobs[[leg]] 

  legend 

} 

p_legend <- ggplot(bymode,aes(x=SPEED,colour=MODE,fill=MODE))+ 

  

geom_bar()+scale_fill_manual(values=c("#F8766D","#990099","#619CFF","#00BA38")

, 

                               labels=c("Bike  n=33761", 
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                                        "Electric Cart  n=3158", 

                                        "Ped   n=15342", 

                                        "Seg  n=249284")) + 

  scale_colour_manual(values=c("#F8766D","#990099","#619CFF","#00BA38"), 

                      labels=c("Bike  n=33761", 

                               "Electric Cart  n=3158", 

                               "Ped   n=15342", 

                               "Seg  n=249284")) 

legend <- g_legend(p_legend) 

 

p2 <- ggplot(bymode,aes(x=SPEED,colour=MODE)) + 

  geom_density(aes(fill=MODE),alpha=0.3) + xlim(range=c(0,25)) + 

  theme(legend.position = "none", axis.title.x=element_blank()) + 

  scale_colour_manual(values=c("#F8766D","#990099","#619CFF","#00BA38")) + 

  scale_fill_manual(values=c("#F8766D","#990099","#619CFF","#00BA38")) 

 

 

p3 <- ggplot(bymode,aes(x=ACC,colour=MODE)) + 

  geom_density() + coord_flip() + 

  theme(legend.position ="none", axis.title.y=element_blank()) + 

  scale_colour_manual(values=c("#F8766D","#990099","#619CFF","#00BA38")) + 

  scale_x_continuous(limits=c(-5,5),breaks=c(-5:5)) 

 

#Print & Save Plots 

png("mode2.png") 

grid.arrange(p2,legend,p1,p3,ncol=2, nrow=2, 

             widths=c(2,1), heights=c(1,2)) 

dev.off() 

 

pdf("mode2.pdf") 

grid.arrange(p2,legend,p1,p3,ncol=2, nrow=2, 

             widths=c(2,1), heights=c(1,2)) 

dev.off() 
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