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SUMMARY 

 

As a consequence of increased domestic competition, U.S. legacy carriers have 

experienced increasing pressure to incorporate customer-oriented applications into their 

traditional revenue management (RM) system.  In this context, the main objective of this 

thesis is to explore the use of time-to-event methods for an important aspect of 

passengers’ behavior, namely their cancellation behavior. Compared with similar 

customer-oriented applications, this research has two unique characteristics.  

First, with respect to air travel behavior, it is the first study of airline passengers’ 

cancellation behavior based on survival methods. A discrete time proportional odds 

model with a prospective time scale is estimated based on the occurrence of cancellations 

(defined as refund and exchange events) in a sample of tickets provided by the Airline 

Reporting Corporation (ARC).  Empirical results based on 2004 data from eight domestic 

U.S. markets indicate cancellations are strongly influenced by both the time from ticket 

purchase and the time before flight departure.  Higher cancellations are generally 

observed for recently purchased tickets, and for tickets whose associated flight departure 

dates are near.  Cancellations are also influenced by several other covariates, including 

departure day of week, market, and group size.   

Second, with respect to the data used, it is the first published study based on 

ticketing data.  The use of ticketing data is motivated by the need to analyze passengers’ 

cancellation behavior from a financial perspective.  Although cancellation percentages in 

ticketing data are much lower (1-8%) than cancellation percentages reported in booking 

data (30%), they are also less volatile.  In this context, we hypothesize that cancellation 

forecasts determined using ticketing datasets result in additional revenue when compared 

to current state of practice.  To prove this hypothesis, this dissertation simulates and 

contrasts the revenue streams of a single resource capacity control under time-to-event 

and state of practice cancellation forecasts.  
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Chapter 1: MOTIVATION STATEMENT  

The Airline Deregulation Act of 1978 marked the end of Civil Aeronautics Board (CAB) 

control over airline activities and the beginning of two decades of intense transformation. 

The U.S. airline deregulation was favored by (1) evidence on the viability of discount 

fares (e.g., Skytrain’s transatlantic flights), and (2) public support on the matter (support 

formally advocated by the head of CAB at that time Alfred Kahn).  Once implemented, 

deregulation shifted dramatically airline industry realities both in terms of carriers’ 

competition and passengers’ opportunities.   

Nowadays, legacy carriers are experiencing tremendous pressure to control costs 

while competing in a low-fare market that is being overtaken by low cost carriers (e.g., 

small or regional carriers capacity grew from 150 planes in 1997 to more than 2,000 

planes in 2006 (Bennett 2005)).  Multiple factors have contributed to the fact that since 

2001, more than 50% of the U.S. airline capacity entered into bankruptcy.  While some of 

the factors leading to bankruptcy are well-recognized and include high fuel costs, high 

labor costs, and increased market penetration of low-cost carriers, other factors are less 

understood (i.e., passengers’ willingness to pay for travel or to pay for service amenities, 

passengers cancellation and no-show behavior, and passengers’ purchasing behavior in e-

markets).  In this context, developing a better understanding of customer behavior and 

demand is seen as critical to the next generation of revenue management
1
, pricing and 

scheduling models.  Perhaps this urgency is best summarized by Suresh Achara, a 

director of Manugistics, who states that “there is a lot of focus on very, very sophisticated 

                                                 
1
 In the airline industry most of the revenue management applications are yield oriented. In this dissertation 

revenue management and yield management terminology will be used interchangeably. 
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and fancy optimization models, and that’s great, but frankly, if you don’t have the right 

demand model, if you just assume that you have the right demand value, then you’re 

making the wrong assumption” (Achara 2005).   

Currently, there is renewed interest in the airline industry in integrating discrete 

choice models of passenger behavior with traditional revenue management, scheduling, 

and other applications.  This interest is renewed, not new, in the sense that as early as the 

1980’s several attempts were made to use discrete choice models in revenue 

management.  However, with a few exceptions, these initial discrete choice modeling 

efforts were abandoned in favor of more simplistic probability models (e.g., demand for 

booking classes on a flight arrives according to a Poisson process, cancellations are 

binomially distributed, etc.) and/or time-series methodologies based on historical 

averages (e.g., the no show rate for a flight is a weighted average of no show rates for 

previous two months, etc.).  While these probability and time-series models were easier 

to implement, they did not capture or explain how individual airline passengers made 

decisions.  Moreover, many of the models currently used in practice make strong 

independence assumptions; e.g., it is common to assume the demand associated with 

booking class on a flight is independent of the demand for all other booking classes on 

that (and surrounding) flights.   

Over the last several years, these and other assumptions embedded in traditional 

revenue management algorithms begin to be more openly challenged (Liberman and 

Yechiali 1978; Ratliff 1998; Oliveira 2003; Boyd 2004; Boyd and Kallesen 2004; 

Hornick 2004; Talluri and van Ryzin 2004b; Dunleavy and Westermann 2005), forcing a 

re-examination of how one can model individual airline passengers’ behavior using 
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discrete choice or other models grounded in behavioral theory.  Recent work using 

discrete choice methods for revenue management include that by Garrow and Koppelman 

(2004a; 2004b) for no show applications,  Ratliff (1998) for demand unconstraining and 

recapture applications, and Talluri and van Ryzin (2004b) who explore the use of a 

simple multinomial logit (MNL) embedded in a optimization model to determine seat 

allocation levels. 

In the general context of revenue management practice, this research is motivated 

by three aspects.  First, from a methodological perspective, this dissertation introduces 

customer-based models to the cancellation forecasting practice.  Indeed, despite the fact 

that small improvements in forecasting accuracy of demand models can translate to 

millions of dollars in annual revenue for an airline (Neuling, Riedel et al. 2004), the 

cancellation models used in practice are still fairly simplistic. Based on a review of the 

academic literature and practitioner conference proceedings, it was determined that most, 

if not all, cancellation models are based on historical averages that consider the influence 

of a small number of covariates associated with an itinerary (e.g., day of week, departure 

time, origin and destination, etc.) or with a booking (e.g., booking class and group size).  

Second, from a data perspective, this dissertation updates cancellation models 

state-of-practice with empirical findings derived from ticketing data.  Indeed, given 

cancellation forecasting was one of the earliest revenue management practices,  adopted 

properties associated with the cancellation process (i.e., memoryless, group 

independence) were empirically derived using pre-deregulation data (Thompson 1961; 

Martinez and Sanchez. 1970).  While tractable, these findings are questionable in the 

context of an increasingly commoditized air-travel service and different reservation rules. 
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Third, from a business perspective, this thesis adheres to the “competitive airline 

markets research” (Belobaba and Wilson 1997) introduced by Boeing Commercial 

Airplanes (BCA).  Specifically, BCA has been engaged in a research effort to advance its 

models of passenger behavior.  These models are a central part of the tools used by its 

marketing department to help potential airline customers estimate how much market 

share and revenue can be gained via the introduction of new service and equipment in a 

market.   

One of the core components of the passenger behavior models under development 

is the Universal Market Simulator (UMS) shown in Figure 1-1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: Boeing’s Universal Market Simulator  

 

The UMS is a Monte Carlo micro-simulation of airline revenue generation whose 

primary output is the revenue to an airline that results from the individual choices of 
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thousands of passengers moving over a world-wide airline network.  The UMS uses 

several models to represent different aspects of passenger behavior and airline 

competitive responses including models for synthetic population generation, induced 

demand, booking and ticketing curves, ticket cancellations, passenger itinerary choice, 

and airline revenue management models (Parker, Lonsdale et al. 2005). 

To conclude, as a novelty to previous research in the field of cancellation models 

this research focuses on quantifying the intensity of the cancellation process with respect 

to departure and/or issue date. Its methodological details and findings come to support the 

transition from an inventory driven (i.e. traditional) revenue management to a customer 

centric revenue management.  Primarily designed for the general UMS context, this 

dissertation is the first to use a data source that permits the analysis of the passengers’ 

cancellation behavior from a financial perspective. As such, its applicability extends to 

ticketing clearinghouses, airlines or travel agents in need of a better control of their 

revenue stream.   

 Following the research motivation, this dissertation has six chapters. Chapter 2 

identifies main characteristics of current state of practice of cancellation models and 

defines the scope of research. Chapter 3 frames the literature review of cancellation 

models in the more general context of yield management. Chapter 4 selects and describes 

the data source used in current dissertation.  Chapter 5 formulates the methodological 

details of the two areas of research: (1) time-to-event analysis of cancellation process 

and, (2) revenue management implementation of time-to-event forecasts.  Chapter 6 

presents research results.  Finally, Chapter 7 points out the contributions of 

thisdissertation and identifies areas of future research.    
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Chapter 2: PROBLEM DEFINITION 

This dissertation focuses on updating the state of practice of cancellation models in two 

areas: (1) the type of data used for analysis, and, (2) the way in which the intensity of the 

cancellation process is estimated. 

 With respect to the first category, this dissertation is the first to explore properties 

of the intensity of cancellation process using ticketing data. While traditional cancellation 

models mandate the use of booking information, revenue estimation procedures 

recommend the use of ticketing information.  Since the intensity of the cancellation 

process is analyzed in the context of unearned revenue or Air Traffic Liability (ATL), 

findings from this thesis can be used to adjust revenue opportunity measures associated 

with inventory and overbooking control policies. 

 The second area in which this thesis adds to the state of practice is the way in 

which cancellation behavior is modeled.  While the importance of forecasting timing 

effects to overboooking algorithms has been overwhelmingly acknowledged by the yield 

management community
2
, there have been no studies which focus on analyzing the true 

transitional properties of the cancellation process.  Typically, the intensity of the 

cancellation process is assumed to be stationary (Thompson 1961) or forwardly anchored 

(i.e., depends only on departure date).  In contrast, this dissertation studies the combined 

effects of the issue date and departure date on the conditional intensity of the cancellation 

process. 

                                                 
2
 Used primarily for overbooking methods cancellation estimators influence capacity allocation decisions 

as well.  
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 To underline differences between this approach and previous work in this area, 

the following sections present a short description of the state of practice for cancellation 

models, define methodological updates, and discusses areas of applicability. 

2.1. Cancellation Models – The State of Practice 

 Airlines use seat inventory control to decide how many seats (associated with a 

set of prices) to make available for sale to customers.  However, since not all customers 

who request seats actually travel, airlines overbook to reduce the expected number of 

empty seats on flights when there is demand for those seats. Although, the importance of 

optimal seat inventory control and overbooking decisions in obtaining revenue gains is 

well-known (Smith, Leimkuhler et al. 1992), theoretical formulations in which the two 

yield management decisions are addressed simultaneously (i.e., the general yield 

management problem) are scarce. Also, due to the complexity of legacy carriers (LC) 

inventory operations, these few exceptions are generally
3
 not implementable.   

 Challenges associated with the implementation of exact solutions for the general 

yield management problem in practice are overwhelmingly acknowledged by the revenue 

management community.  Philips (2005) states that “the combined overbooking and 

capacity allocation problem is extremely difficult to solve in general” because  of “the 

fact that not only are different booking classes likely to have different fares, they are also 

likely to have different cancellation and no-show rates.”  Talluri and Van Ryzin (2004a) 

point out the difficulties associated with overbooking algorithms in the presence of 

customer class mix noting that such approaches need to keep “track of the inventory of 

                                                 
3
 To best of the author’s knowledge, the only exception is the EMSR heuristic (Belobaba 1989) where the 

seat allocation controls are adjusted with overbooking factors. 
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each class as a separate state variable and then make overbooking decisions based on this 

complete vector of state variables.” 

In the general framework of airline inventory operations, forecasts of cancellation 

and no-show rates are used to set up controls for overbooking levels, i.e., the number of 

seats authorized for sale that exceed the capacity of the flight (see Figure 2-1).  The 

difference between cancellation and no show forecast models relates to when the airline 

knows passengers do not intend to travel.  Cancellation models predict how many 

passengers inform the airline they do not intend to travel prior to the departure of their 

flights while no show models estimate the number of remaining booked passengers, i.e., 

passengers who have not cancelled, but fail to show for their flights.   

 

Figure 2-1: Legacy Airlines Inventory Operations 

 

As seen in Figure 2-1, legacy carriers’ inventory is made available through 

several distribution channels: Global Distribution Systems (GDS
4
), travel agencies (direct 

or internet sales), and airline proprietary distribution systems (typically the airline web-

site).  As a forefront of the revenue management “black-box” reservation systems are a 

                                                 
4
 GDS’s have the competitive advantage of seamless availability (i.e., high look-to-book ratio from 

different sources in real-time) 
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collection of integrated solutions specifically designed to communicate and update the 

availability of airlines inventory in real-time.  Accept/reject decisions are highly 

automatized, request queries being directed towards an availability table which consists 

of a collection of market/fare buckets with the latest information on seat-inventory and 

overbooking controls at the time of booking.  Finally, as an off-line mechanism of 

revenue management forecasting and optimization procedures, seat-inventory and 

overbooking controls take into account fluctuations in characteristics of demand and are 

periodically updated.  

In the context of inventory operations, the state of practice for cancellation 

forecasts is to estimate the intensity of the cancellation process with respect to forward 

time periods.  Although different types of cancellation models are discussed in the 

literature, for the purpose of this discussion two categories
5
 are worth mentioning: static 

(proportions) or dynamic (rates). 

Static cancellation models estimate the probability of current bookings surviving 

until departure date, i.e., survival proportion. In contrast, dynamic cancellation models 

estimate the probability of current bookings surviving until the next period, i.e., survival 

rate (see Figure 2-2).  In practice, estimators of these two probabilities are determined as 

non-parametric ratios: proportions – as a ratio of show demand to current bookings 

(Talluri and Van Ryzin 2004a) and rates - as ratio of total cancellation in a time period to 

the number of bookings at the beginning of that time period (Subramanian, Stidham et al. 

1999). 

                                                 
5
 Other cancellation models not reported in the literature are also used in practice.  For example, some 

cancellation models estimate (1) the number of currently active bookings at time t that will survive until 

departure, and (2) the number of future bookings that will arrive (and survive) between time t and flight 

departure. 
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Figure 2-2: Cancellation Models: (a) Surviving Proportions; (b) Survival Rates 

 

For the first category of estimators, Talluri and van Ryzin (2004a) note that it is 

common to use the probability of bookings surviving until departure (qt) as an input to a 

binomial distribution which is used to set up overbooking controls.  For the second 

category, Subramanian, et al. (1999) use non-parametric estimators of cancellation rates 

as descriptors of transitional probabilities for a mixed dynamic programming (MDP) 

formulation of a general yield management problem.  

The main problem associated with incorporating more realistic behavioral 

assumptions into cancellations estimation procedures is the fact that they need to be 

implemented in existing revenue management systems.  For example, the intensity of the 

cancellation process is determined by the frequency of cancellations from bookings on 

hand and does not take into account the effect of time of booking (i.e., is anchored in 

future times of booking horizon).  Nevertheless, this memoryless assumption makes 
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dynamic formulations more tractable.  Since the cancellation process is assumed to be 

stationary (i.e., independent of the time of booking) changes in cancellation probability 

are straightforward to incorporate into the value function of a MDP formulation
6
.   

2.2. Methodological Updates  

When compared to current industry practice of determining “cancellation rates” estimates 

differ in two aspects: (1) the way in which population at risk of cancelling is considered 

and, (2) the influence of time from booking on the cancellation process. Industry 

cancellation rates use as the population at risk the total number of bookings on hand and 

assume that the cancellation process is independent of the time from booking 

(memoryless property).  In contrast, time-to-event cancellation rates use the number of 

current and future bookings “alive” at a certain day from issue as population at risk and 

assume cancellation process depends on the time from booking.  

 If we define di,( i=1...3) - demand with time of booking i ,  cij,( i=1…3, j=1…3) -

cancellations at time period j for bookings with time of booking i,  and sj (j=1...3)  – number 

of bookings lost in time periods j, the set of Equations 2-1 and 2-2 present the sample 

estimators of  cancellation rates (ri,( i=0...3)) and cancellation hazards (hi,( i=0...3)).  The set of 

Equations 2-1 points out that cancellation rates are determined using only past bookings 

(i.e., time of booking is before current time).  In contrast, cancellation hazards are 

determined using past and future bookings. 

   

Figure 2-3: Cancellation Rates and Cancellation Hazards – Sample Estimators 

 

                                                 
6
 The probability of a cancellation is directly linked to the state variable vector, i.e., qn(x) – probability of a 

cancellation in period n given that the current number of bookings on hand is x 
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   (2.1)                                                        (2.2) 

 The second difference between the two categories of estimates relates to the way 

in which timing effects are considered.  Estimates of cancellation hazards depend on days 

from issue (i.e., backwardly anchored).  In contrast estimates of cancellation rates depend 

on days from departure (i.e., forwardly anchored).  Also, since the life-span of bookings 

is known (equal with time of booking minus departure date), the estimates of cancellation 

hazards which take into account only the effect of days from issue (i.e., survival time) are 

not uniquely defined.   

 To account for differential chances of being at risk of cancelling, the influence of 

days from departure has to be considered as well.  Studied simultaneously, effects of 

these two covariates (days from issue and days from departure) allow the analysis of the 

intensity of the cancelation process from a new perspective: new bookings with respect to 

future periods in the booking horizon.  In this case, days from departure (DFD) acts as a 

“treatment variable” which, in combination with days from issue, permits the estimation 

of cancellation proportions of new bookings for different times of booking. 

 presents differences between the two approaches using sample estimators of cancellation 

rates and hazards and a booking horizon equal to three time periods. If we define di,( i=1...3) 

- demand with time of booking i ,  cij,( i=1…3, j=1…3) -cancellations at time period j for 

bookings with time of booking i,  and sj (j=1...3)  – number of bookings lost in time periods 

j, the set of Equations 2-1 and 2-2 present the sample estimators of  cancellation rates (ri,( 
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i=0...3)) and cancellation hazards (hi,( i=0...3)).  The set of Equations 2-1 points out that 

cancellation rates are determined using only past bookings (i.e., time of booking is before 

current time).  In contrast, cancellation hazards are determined using past and future 

bookings. 

   

Figure 2-3: Cancellation Rates and Cancellation Hazards – Sample Estimators 
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   (2.1)                                                        (2.2) 

 The second difference between the two categories of estimates relates to the way 

in which timing effects are considered.  Estimates of cancellation hazards depend on days 

from issue (i.e., backwardly anchored).  In contrast estimates of cancellation rates depend 

on days from departure (i.e., forwardly anchored).  Also, since the life-span of bookings 

is known (equal with time of booking minus departure date), the estimates of cancellation 

hazards which take into account only the effect of days from issue (i.e., survival time) are 

not uniquely defined.   

 To account for differential chances of being at risk of cancelling, the influence of 

days from departure has to be considered as well.  Studied simultaneously, effects of 

these two covariates (days from issue and days from departure) allow the analysis of the 

intensity of the cancelation process from a new perspective: new bookings with respect to 

future periods in the booking horizon.  In this case, days from departure (DFD) acts as a 

“treatment variable” which, in combination with days from issue, permits the estimation 

of cancellation proportions of new bookings for different times of booking. 

2.3. Area of Applicability for Time-to-Event Forecasts  

 Using ticketing datasets, one of the objectives of this dissertation is to explore the 

intensity of the cancellation process from a more complete transitional perspective. All 

tickets are “born” on the issue date and have a predetermined and known life-span. Time-

to-event rates result as conditional intensities of a cancellation event happening, 

intensities are adjusted to take into account differential chances of being at risk in the first 

place. In contrast to the current state of practice which estimates cancellation 

rates/proportions for bookings on hand and assumes the memoryless property, estimates 
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focus on determining the combined effect of days-from-issue and days from departure for 

new bookings.    

 Our hypothesis is that in the early stages of a ticket life-span, time from issue is 

one of the most important drivers of passengers’ (i.e., tickets) cancellation behavior. As 

tickets become older, the effect of days from issue decreases and the effect of days from 

departure increases.  Provided this holds true, this dissertation quantifies the extent to 

which a time-to-event forecast of cancellation rates/ proportions applied to a general 

revenue management context results in revenue gains.  To assess the value of this 

forecasting exercise, the impact of the “hazard-determined” overbooking controls on the 

revenue stream is estimated.  

 To determine the revenue impact of methodological updates this dissertation 

simulates and compares revenue streams for a single resource capacity control under 

time-to-event cancellation forecasts and state of practice forecasts.  As an alternative to 

the current state of practice of estimating the intensity of the cancellation process as a 

function of bookings on hand and days from departure, we propose estimating the 

intensity of the cancellation process as a function of new bookings, days from issue and 

days from departure.   

 The second objective of this dissertation is to prove that traditional yield 

management methods can be improved by a better understanding of cancellation timing 

effects.  Similar in spirit with discrete choice revenue management, this dissertation 

focuses on incorporating survival analysis results into the state of practice of yield 

management. In this context the main limitation of this research resides in the fact that is 

does not provide an exact solution to the “time-to-event yield management problem.”   
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 There are several reasons why this dissertation does not incorporate a general 

non-stationary dynamic programming formulation.  First, as already referenced, adding a 

new dimension to the combined overbooking and capacity allocation problem will 

exponentially increase computational requirements of revenue management systems.  

Second, since the primary focus of current thesis is on forecasting cancellations using a 

novel approach, i.e., time-to-event models, we wanted to make sure that this type of 

forecast is likely to generate revenue increases for the worst case scenario
7
.  Finally, 

given limitations of available data sources (i.e., missing control and socio-demographic 

information) we wanted to keep the set of assumptions which might influence the 

reliability of revenue estimation procedures to a minimum.      

 To better understand the challenges associated with the general yield management 

problem and the way in which cancellation forecasts help solve it, the next chapter 

presents a literature review.  

  

                                                 
7
 Revenue increases of exact algorithms are higher when compared with their heuristics counterparts. In 

this context current dissertation aims to provide a lower bound on the possible revenue increase generated 

by time-to-event forecasts of cancellations  
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Chapter 3: LITERATURE REVIEW 

Despite its importance, the literature on cancellation models is relatively scarce.  With the 

exceptions of a few stand-alone empirical studies, methodological advances related to the 

cancellation area are generally found in yield management papers.  In this context, our 

literature review focuses on describing cancellation models in the context of yield 

management practice. Section 3.1 presents an historical perspective on the yield 

management practice and points out differences in the airline industry before and after 

deregulation.  In the context of the general yield management problem, Section 3.2 

identifies cancellation research advances.  Section 3.3 concludes the chapter by 

summarizing main findings of the literature review. 

3.1. The Airline Deregulation Act – Promoter of the Yield Management Practice 

Despite 20
th

 century technological advances, the airline industry did not present a 

competitive alternative to well-established long-distance modes (trains and ocean liners) 

until the introduction of commercial jet aircrafts (1958).  With the rapid increase of air 

traffic the need for regulatory structures capable to address conflicting needs of 

passengers, airlines and governmental structures becomes stringent.  In the U.S., the Civil 

Aeronautics Board (CAB), a governmental entity created by the Civil Aeronautic Act of 

1938, was the first to promote commercial air travel and to protect interests of air 

passengers.  CAB legislative activities were complimented by the Federal Aviation 

Administration (FAA) which handled regulations related to airline maintenance and 
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safety and the Air Traffic Conference (ATC) which handled procedures related to 

interlining
8
.  

With CAB supervising airlines’ new routes and ticket prices, true competition 

among carriers was inhibited and incentives to address customer needs diminished 

(Bennett 2005).  As a result, by the end of 1960s, public criticisms directed towards the 

CAB “regulatory failure” started to be more vehement and pressures to liberalize airline 

industry increased.  Although public expectations were partially fulfilled
9
 during the Ford 

administration, the deregulation movement reached critical momentum during Carter 

administration with the inauguration of Alfred Kahn
10

 as chairman of the Civil 

Aeronautics Board (CAB).  In a series of legislative acts culminating with the Airline 

Deregulation Act of 1978, Kahn liberalized airlines entry and pricing structure and 

abolished the CAB regulatory authority.  

 The impact of deregulation on the airline industry was fourfold.  First, in what 

Poole and Butler (1999) identified as a three-wave process the market penetration of 

airline service increased dramatically.  At the expense of multiple stops, the new hub-

and-spoke route system promoted by legacy carriers permitted passengers’ access to 

multiple destinations.  The negative effects of traffic increase at hubs were capitalized by 

low cost carriers (LCC) which offered alternative point-to-point routes at lower fares then 

the legacy arriers (LC) carriers.  Finally, regional jets carriers provided access to airline 

service to passengers from smaller cities. 

                                                 
8
 Interlining refers to transfer baggage and reservations across multiple carriers. Today, interlining covers 

regulations with respect to partnership between airlines and travel agents, global airline alliances and code-

sharing agreements. 
9
 Air cargo is deregulated and discount fares are permitted for the first time. 

10
 An economics professor, from Cornell University, Alfred Kahn was well known for his critiques directed 

towards the traditional CAB regulation.  
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 Second, domestic competition between LC and LCC airlines increased.  Although 

initial attempts such as PEOPLE Express seemed to indicate that in the long run low-cost 

carriers could not compete with legacy carriers, LCC such as Southwest, JetBlue and 

AirTran proved the contrary.  Their success was not only due to the “low-fare, no frills 

and point-to-point service” mantra, but also resulted from clear operational advantages.  

For example, Southwest avoided hub competition by serving secondary airports (e.g., 

Providence, Rhode Island instead of Boston, Massachusetts) and promoted an employee 

oriented culture.  Similarly, in early 1999 JetBlue started with startup capitalization ($130 

million dollars) and preferential access to 75 slots at John F. Kennedy (JFK) 

International.   

 Third, to better address the challenges of the newly created competitive market, 

airlines invested heavily in their distribution systems.  The practice of “sell and record 

and wait lists” (Beckman 1958) was gradually replaced by mainframes capable of 

handling seat inventory distribution in real-time. Started as Computer Reservation 

Systems (CRS) and later transformed into Global Distribution Systems (GDS), the new 

distribution systems ensured quick and reliable access to unbiased travel content (i.e., 

available inventory and fares across multiple providers) to travel agents all around the 

world.    

Fourth, with carriers understanding that differences in various streams of demand 

can provide “opportunities to adjust for imperfections in the airline’s schedule design” 

(Belobaba 1987), premises of revenue management practice were initiated.  Started as a 

broad concept with the objective of “maximizing passenger revenue by selling the right 

seats to the right customers at the right time” (American Airlines 2005) the revenue 
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management practice was gradually refined to a collection of demand models, forecasting 

methods, and optimization algorithms which addressed two categories of tactical 

demand-management decisions
11

 - price and quantity based (Talluri and Van Ryzin 

2004a).  In the general RM practice, methodological advances of both categories of 

decisions were equally important. In the airline RM practice most revenue gains were 

attributed to methodologies developed to address quantity based decisions such as seat 

inventory control and overbooking.   

As a “tactical component of the revenue management that is entirely under the 

control of each individual airline” (Belobaba 1989),  seat inventory control focused on 

determining capacity allocation policies which maximizes revenue or yield across 

carrier’s network.  Although, in its most general form, a seat inventory control can be 

schematized as a collection of A1-B1-C1-D1-E(1/2/…i)-F4-G3-H3-I2-J2-K2-L5-M2-N3 

set of elements
12

, previous research in this field addressed only simplifying versions 

(Beckman 1958; Littlewood 1972; Pfeifer 1989; Curry 1990; Smith, Leimkuhler et al. 

1992; Weatherford and Bodily 1992; Brumelle and McGill 1993; Lee and Hersh 1993).  

In contrast to seat inventory control, overbooking focused on reducing the expected 

number of empty seats due to cancellations or no-shows.  Despite being the oldest of the 

RM practices, overbooking success was hard to predict given its clandestine
13

 start 

(Rothstein 1985).  Still, after Ralph Nader won a law-suit against Allegany Airlines the 

importance of overbooking in maintaining satisfactory yield levels
14

 was openly admitted 

                                                 
11

 Structural decisions such as which selling format to use or how to bundle services/ products are also part 

of the RM practice. Still, due to their strategic character they are less frequent.  
12

 Defined according to the taxonomy of perishable assets (Weatherford and Bodily 1992).  
13

 At start the practice of overbooking was not acknowledged by airlines. Rothstein talks in great detail 

about this and arguments it with his personal experience within the industry 
14

 Empirical reports indicate that 40% to 50% of reservations result either in cancellations or no-shows - 

Thomson (1961). 
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by carriers and favorable premises for future methodological advances were set 

(Rothstein 1971; Shifler and Yardi 1975; Bodily and Pfeifer 1992; Smith, Leimkuhler et 

al. 1992; Chatwin 1998; Karaesmen and Van Ryzin 2004).  

Due to the complexity of the yield management environment
15

, most of the 

previous RM research addressed seat inventory control and overbooking problems 

separately.  Despite this methodological divide, their commonality was overwhelmingly 

acknowledged and research efforts to address the general yield management problem 

increased over the time.  While a comprehensive literature review on the airlines yield 

management practice is beyond the scope of this thesis, identifying areas of applicability 

for current cancellations models proves to be extremely relevant.  In the context of the 

general yield management problem, the following section presents cancellation and no-

shows methodological advances and addresses their limitations. 

3.2. The General Yield Management Problem and Cancellation Research 

With cancellation percentages averaging 30% (Talluri and Van Ryzin 2004a) and 

exhibiting high volatility across the booking horizon, the cancellation effect cannot be 

ignored when forecasting the future net demand or when deciding on how to allocate 

inventory or set up overbooking controls.  Despite its importance, the cancellation 

literature is relatively scarce and empirical examples of implemented cancellation models 

are few.  Understandably, this situation is maintained by airlines which are “reluctant to 

share information about their forecasting methodologies because their revenue 

management activities are so heavily dependent on accurate forecasting” (Talluri and 

                                                 
15

 “Yield management problem is best described as a nonlinear, stochastic, mixed-integer mathematical 

program that requires data, such as passenger demand, cancellations, and other estimates of passenger 

behavior, that are subject to frequent changes” (Smith, Leimkuhler and Darrow, 1992). 
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Van Ryzin 1999).  Still, cancellation research pertains to several revenue management 

(RM) practices. The literature on overbooking, combined overbooking and seat inventory 

control, and demand forecasting can be used to establish the state of practice for 

cancellations models. 

 After deregulation, airlines introduce hub-and-spoke operations and discount fare 

classes to optimize network operations and increase revenue. As a consequence, the 

complexity of yield management (YM) environment increased tremendously.   

Although, most of RM applications address capacity control and overbooking in 

isolation, the “problems of optimizing demand mix and volume are quite related” (Talluri 

and Van Ryzin 2004a).  Despite their connection, exact solutions for the combined 

capacity control and overbooking problem are difficult to implement in practice. For 

example, in dynamic programming algorithms the presence of cancellations and no-

shows complicates the computation of booking limits to a point where exact methods, 

although theoretically tractable, become computationally infeasible
16

 for industry 

applications.  As an alternative, the industry practice associates a set of simplifying 

assumptions
17

  to heuristics and addresses overbooking and capacity allocation decisions 

in a sequential manner.  

 Since the majority of YM literature addressed seat allocation or overbooking 

decisions in isolation, the research directed towards “the general” YM approach are 

                                                 
16

 “To solve the system-wide yield management problem would require approximately 250 million 

decisions variables” Smith, B., J. Leimkuhler, et al. (1992). "Yield management at American Airlines." 

Interfaces 22(1): 8-31. 

  
17

 The inventory assumptions of a flight are traffic related, i.e., whether to consider multiple-flight 

connecting markets versus single-flight markets and policy related, i.e., whether to consider 

refunds/penalties for no-shows and cancellations or not. In contrast, the demand assumptions of a flight are 

process related, i.e., whether arrival and cancellation patterns are time-dependent or not and distribution 

related, i.e., whether there exists stochastic dependence between full fare and discount customers or not   
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scarce.  In an effort to simplify methodological challenges associated with the general 

YM problem, Belobaba (1989) proposes a version of the Expected Marginal Seat 

Revenue (EMSR) heuristic in which seat inventory control rules
18

 are periodically 

adjusted by overbooking factors.   

 Subramanian, Stidham et al. (1999) suggest a more sophisticated approach for 

associating the seat allocation problem to a dynamic programming model which allows 

for cancellations, no-shows and overbooking.  Their experimental findings are 

particularly important in quantifying the impact of exact overbooking solutions to 

airlines’ revenue streams.  Using a small example (i.e., capacity equal with 4 an 

overbooking pad equal with 2) and class depended cancellation and no-show rates, 

Subramanian et al. compute percentages of revenue “sacrificed” for different 

cancellations scenarios.   

 Their results indicate that incorporating class-dependent cancellations into exact 

solutions for yield management problem can result in a 9.39% revenue increase.  

Interestingly, the revenue impact varies significantly with the way in which cancellations 

are incorporated.  If only fares are adjusted (i.e., “effects of cancellations on state 

variables are omitted from MDP optimality equations”) or all cancellation rates are 

assumed to match cancellation rates of highest fare class, incorporating cancellation 

effect results in revenue decreases of 2.28% and 17.34% when compared with the no-

cancellation case.  If cancellation rates are introduced as averages of cancellation rates of 

two or more classes or are determined as class-independent cancellation rates which 

                                                 
18

 In the EMSR framework the seat inventory control decision was defined as accept or not accept the 

discount unit. The decision rule was nothing more but an adaptation of the popular news-vendor model and 

it said that discount units should be accepted as long as the probability of a spill (i.e. the probability that the 

current discount demand plus the full-price demand will exceed capacity) is less or equal then the ratio of 

the discount fare to the full-fare.  
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“approximate as closely as possible” the exact solutions, incorporating cancellation 

effects results in revenue increases of 6.34% and 8.92% when compared with the no-

cancellation case.  

 Although notable exceptions from the overall state of practice of addressing the 

two categories of controls in isolation, the two papers only reinforce the idea that 

cancellation forecasts are process rather than customer oriented.  In that perspective, the 

following paragraphs track methodological and conceptual advances of cancellation 

models during pre-deregulation and post-deregulation eras.     

Before pre-deregulation, with airlines activity regulated and monitored by Civil 

Aeronautics Board (CAB), the incentive to invest in sophisticated inventory control 

systems was limited.  As a consequence, reservation systems were highly simplified with 

reservation agents maintaining “sell and record” and “wait” lists on the available space.  

Accumulated sales were monitored by airlines headquarters, which upon observing a 

certain level of occupancy, would issue a stop sales message to reservation agents.  

Between the time of a stop sales message and until departure, monitoring activities were 

deferred to reservation agents which, in cases of unexpected loss of passengers (e.g., 

failure to purchase ticket or cancellations), could accept passengers from wait lists.  

Finally, a “departure control” list containing updates on losses such as late cancellations, 

no-shows or misconnections and adds such as errors, standbys or removals was provided 

a few hours before departure to the airport stations (Beckman 1958).  

As a result of reservation operations being highly fragmented, the percentage of 

no-shows and cancellations was extremely high. With one out of ten passenger not 

showing up (CAB 1961) and 40% of reservations being cancelled (Thompson 1961) 
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economic challenges of the “sell and record” and “wait” list system were more than 

obvious. Well aware of this problem, the Civil Aeronautics Board tried to curb the no-

show phenomenon and proposed as solution the no-show penalty (CAB 1961).  Although 

CAB initiative has “partially met its objectives” (CAB 1964), difficulties in identifying 

true no-shows
19

 and apprehensiveness of airline executives in implementing the penalty 

made this success short lived (Rothstein 1985).   

With respect to methodological advances of cancellation models during pre-

deregulation, the work of Beckman (1958), Thompson (1961) and Littlewood (1972) are 

worth noticing.  In the context of optimal communication between “space control” and 

travel agents, Beckman (1958) determines the optimal sales values (i.e., the overbooking 

limits) by fitting a gamma distribution to “the demand and loss distributions.”  

Exploring challenges associated with yield values in the pre-deregulation 

reservation control, Thompson (1961) is the first to propose a non-parametric estimation 

of cancellation rates and to test the validity of a binomial distribution for cancellations 

(i.e., given a fixed number of confirmed bookings - N, cancellations are assumed to be 

Bernoulli trials with a probability of success - p).  Another important assumption 

introduced by Thompson is the stationarity of the cancellation process.  Similar to a 

Poisson process, the intensity of the cancellation process, i.e., the probability of an event 

happening, is considered constant for “all intervals of the same length and independent of 

the past history of the system” (Thompson 1961).  Thompson states the independence of 

cancellations across different bookings and points out possible departures from this 

assumption in the case of groups.  

                                                 
19

 Passengers with late connecting flights were mistakenly identified as authentic no-shows   
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Finally, in the first paper to introduce the newsvendor model to the overbooking 

practice, Littlewood (1972) forecasts passenger cancellation rates using a simple 

exponential smoothing procedure.  While his empirical findings state that both 

seasonality and trend effects of the day of the week are negligible, the accuracy of 

forecast is mentioned as a possible source of concern.  

After deregulation to efficiently accommodate the hub-and-spoke operations and 

increase coordination with the newly created global distribution systems (GDS)
20

, legacy 

carriers’ research departments redesigned their seat inventory systems.  The old “sell and 

record” and “wait” list routine was replaced by sophisticated operation research models 

capable of addressing complex demand-management decisions in real time. While this 

revamp of distribution operation resulted in significant revenue gains
21

, reports on 

cancellations and no-show percentages remained high.  For example, one of the early 

promoters of YM practice, American Airlines quotes that “on average, about half of all 

reservations made for a flight are cancelled or become no-shows. American estimates that 

about 15 percent of seats on sold-out flights would be unused if reservation sales were 

limited to aircraft capacity” (Smith, Leimkuhler et al. 1992).  

Despite the high percentage of cancellations and no-shows, the interest in 

cancellation methodological updates remains secondary to airline researchers and 

practitioners.  The pre-deregulation empirical findings of Thomson (1961) and Martinez 

and Sanchez (1970) are frequently referenced.  Starting in the late 1990’s this situation 

changed as pre-deregulation findings related to cancellation were contested by the 

                                                 
20

 Nowadays, at the expense of booking fee supported by participating airlines four major GDS systems 

(Amadeus, Galileo, Sabre and Wordspan) ensure a complete automation of the reservation process for 

travel agents. 
21

 Typically in the airline industry revenue management systems have been credited with gains of 2 to 5 % 

(Belobaba and Wilson, 1997) 
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empirical evidence provided by two AGIFORS
22

 presentations (Westerhof 1997; 

Chatterjee 2001).  

Using a sample data from KLM sample data, Westerhof computes the 

probabilities pT of bookings surviving from one booking period T to the next booking 

period T-1 to prove that the memoryless property of cancellation probabilities is violated. 

His findings on cancellation rates/ proportions are reinforced by Chatterjee who points 

out that another important assumption on cancellation probabilities, the independence 

assumption, does not hold for groups.  

3.3. Overview of the Literature Review  

To conclude, the literature review of cancellation models reveals that the most of 

the studies in this field dates prior to deregulation.  After deregulation, despite the 

importance of cancellation forecasts to airlines revenue streams, methodological updates 

of cancellation models have been scarce.  As a results, the current state of practice for 

cancellation models uses the same set of assumptions defined by the seminal work of 

Thompson (1961).   

Another important finding of the literature review is that incorporating results of 

cancellation models in a way in which exact solutions for the general yield management 

practice are computationally feasible remains a challenging task (Talluri and Van Ryzin 

2004a; Philips 2005).  In this context, the majority of yield management solutions which 

aim to simultaneously solve overbooking and capacity allocation problems use heuristics.  

For exact solutions, experimental results of Subramanian, Stidham et al. (1999) point out 

                                                 
22

 AGIFORS – “the Airline Group of the International Federation of Operational Research Societies is a 

professional society dedicated to the advancement and application of Operation Research within the airline 

industry”( http://www.agifors.org/index.jsp , retrieved September 10
th

 2007)  
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the revenue impact of using class-dependent cancellation rates. Their findings mention 

that “close to optimal” approximation of class-dependent cancellation rates are bound to 

generate close-to-optimal solutions.     

In contrast to the state of practice, findings of Chatterjee (2001) and Westerhof 

(1997) shed new light to the area of cancellation models.  Their empirical evidence on the 

violation of the memoryless property of cancellation probabilities and the influence of 

group effects on cancelation probabilities are the starting point of current dissertation.  As 

such, current dissertation aims to analyze combined effects of days from departure and 

days from issue on the intensity of the cancellation process.  The revenue impact of this 

forecasting exercise will be quantified using a single leg capacity control simulation.   

In order to analyze time-to-event properties of the cancellation process from a 

financial perspective current dissertation uses ticketing data.  The following chapter 

describes the data selection process and the main characteristics of the Airline Reporting 

Corporation (ARC) dataset. 
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Chapter 4: DATA SOURCES  

The data sample used to analyze the intensity of the cancellation process is unique from 

other studies in that it captures a mix of different markets and carriers from a ticketing 

perspective. Supported by Boeing Commercial Aircraft (BCA), the data collection efforts 

focused on choosing a disaggregate data source that fit the competitive market research 

objective and minimized data collection costs. The following sections motivate the use of 

Airline Reporting Corporation (ARC) data, contrast the available ticketing and booking 

data sources, and present main characteristics of the ARC data sample.  

4.1. Ticketing versus Booking Data Sources  

While both tickets and bookings can result in cancellations, the way in which 

cancellations events are recorded and the way in which data reflects real-world inventory 

operations are different.  As a subset of booking data, ticketing data is a consolidated 

output of a ticketing clearing house which captures financial triggered events (i.e., 

purchases, refunds and exchanges).  In contrast, booking data captures events triggered 

by airline reservation systems (i.e., bookings and cancellations). 

In order to select a data source that matches the scope of current research, several 

options were explored: (1) the Market Information Data Transfer (MIDT) data generated 

by global distribution systems (GDS), (2) the ticketing clearing houses data generated by 

Airline Reporting Corporation (ARC), and (3) the Origin-Destination Data Bank (DB 1A 

or 1B) generated by the United States Department of Transportation (U.S.- DOT).  

Available data sources were compared across five dimensions: data unit, granularity, 

masked information, revenue stream resolution, and presence of control policies (see 

Table 4-1).  



 30 

Table 4-1: Characteristics of the Available Data Sources 

Data Set Data unit Granularity  
Masked 

Information 

Revenue Stream 

Resolution 

Control 

Policies 

MIDT  Bookings Disaggregated 
Fare; Carrier; 

Passenger Identity 
NA NA 

ARC  Tickets  Disaggregated 
Carrier; Passenger 

Identity 

Unearned Revenue 

or Air Traffic 

Liability (ATL) 

NA 

DB 

1A/1B  

10 % of Flight 

Used Coupons  
Aggregated None 

10% of Earned 

Revenue 
NA 

 

With respect to the data unit, the MIDT dataset is the most complete
23

 dataset 

capturing customers’ requests through different channels at a reservation level.  In 

contrast, the DB 1A/1B dataset is the least complete, capturing only 10% of the flight 

coupons. Although MIDT and ARC datasets are disaggregated, the available information 

and the resolution of the revenue stream are richer in the DB1A/1B dataset. Finally, 

information about the type and the frequency of inventory and overbooking controls is 

missing in all datasets. 

Since this research focuses on analyzing airline passenger behavior from a 

financial perspective the ARC dataset is desirable to use.  Still, with carrier information 

masked and sales reporting procedures subject to settlement systems agreements, the 

connection between ticketing data and revenue management algorithms and heuristics 

remains to be explored. Specifically, the equivalence between cancelled bookings and 

refunded and exchanged tickets needs to be defined. 

As shown in Figure 4-1, the set of collectively exhaustive and mutually exclusive 

booking states is defined by churn bookings, cancellations, no-shows, standbys, and 

                                                 
23

 Here we refer to the MIDT ability to capture booking events trough different distribution channels. 

However current evidence from Coldren, G. M., F. S. Koppelman, et al. (2003) points out that internet sales 

through GDS are declining 
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shows.  Depending on the type of ticketing event, ticketed bookings are associated with a 

one of the following booking states: cancellation, no-show, standby, and show.   

 

Figure 4-1: Relationships among Bookings, Tickets and Cancellations, No-Shows 

  

The four booking states are equivalent to ARC ticketing events (refunds, 

exchanges and voids) and are triggered by financial transactions.  For example, when a 

passenger informs the airline prior to departure that she/he does not intend to take the 

ticketed flight the original booking associated with the ticket is cancelled from the RM 

system and a new booking (and ticket transaction) is created for the new flight(s) 

purchases.  These transactions appear in the ARC dataset.   
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There are some cancelled ticketed transactions that will not appear in the ARC 

dataset.  For example, some airlines use automated data processes that cancel the inbound 

segments of an itinerary if the passenger no-shows on the outbound segments.  In this 

case, the outbound segments that were never used or exchanged prior to departure 

become no-shows and the carrier automatically cancels in the inbound segments (without 

generating an automatic refund / exchange transaction).   

Similar to cancellations, there are two ways in which a ticketed booking can 

become a no-show and only one of these cases appears in the ARC data.  No-shows that 

occur due to exchanges or refunds requested after the flight departure are captured in 

ARC ticketing data.  No-shows that occur when an individual purchases a ticket yet never 

uses it or purchases a ticket and requests a refund after the outbound departure date are 

not captured in the ARC data.  

In contrast to no-shows and cancellations, a show occurs when a ticket is used 

exactly as purchased.  This “snapshot” of tickets is what is captured in the lifted tickets 

collected in the DB 1A dataset.  Finally, it is important to note that changes to tickets that 

occur on day of departure for the flight are not captured in the ARC data, but rather are 

part of an individual airline’s check-in processing. 

 

4.2. The Airline Reporting Corporation (ARC) Ticketing Data 

It is important to reiterate that the ticketing dataset used for this study is distinct from the 

industry default source, i.e., the Origin and Destination Data Bank 1A or Data Bank 1B 

(commonly referred to as DB 1A).   
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 Collected from passengers as they board aircraft operated by U.S. airlines
24

 the 

DB 1A dataset is based on a 10 percent sample of flown tickets.  Supported by the U.S. 

DOT, the dataset provides demand information on the number of passengers transported 

between origin-destination pairs, itinerary information (marketing carrier, operating 

carrier, class of service, etc.), and price information (quarterly fare charged by each 

airline for an origin-destination pair that is averaged across all classes of service).  While 

raw DB datasets are commonly used in academic publications (after going through some 

cleaning to remove frequent flyer fares, travel by airline employees and crew, etc.), 

airlines generally purchase Superset
25

 data from Data Base Products.  

In contrast to DB 1A, the ARC dataset captures ticketing transactions such as 

purchases, refunds, and exchanges across multiple airlines and multiple markets. To 

support research objectives while protecting airline confidentiality each individual ticket 

used in current analysis had the airline codes replaced by a randomly assigned number 

and the flight information (including flight numbers, departure and arrival times, number 

of stops, etc.) suppressed. A complete description of the data fields present in the ARC 

data set is presented in Appendix A.  

 From a modeling perspective, it is generally believed that cancellation rates differ 

for business and leisure passengers.  For example, business passengers who are more 

time-sensitive and require more travel flexibility may be more likely to modify their 

                                                 
24

 “The raw materials for the Origin-Destination survey are provided by all U.S. certificated route air 

carriers, except for a) helicopter carriers, b) intra-Alaska carriers, and c) domestic carriers who have been 

granted waivers because they operate only small aircraft with 60 or fewer seats.” Data Base Products 

(2006). "The origin-destination survey of airline passenger traffic." Retrieved April 30, 2006, from 

http://www.airlinedata.com/Documents/O&DSURV.htm. 

  
25

 Superset is a cleaned version of the DB data that is cross-validated against other data-sources to provide a 

more accurate estimate of the market size.  See the Bureau of Transportation Statistics website at 

www.bts.gov or the Data Base Products, Inc. website at www.airlinedata.com for additional information 

http://www.bts.gov/
http://www.airlinedata.com/
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itineraries than leisure passengers, leading to higher cancellation and no show rates.  

While airlines do not explicitly collect information about trip purpose, trip purpose can be 

inferred from several other booking, non-directional itinerary, and directional itinerary 

variables.  An itinerary is defined as a flight or sequence of flights that connects an origin 

and destination.  Non-directional itinerary information does not distinguish whether 

passengers on a flight from MIA-SEA are traveling outbound from MIA to SEA or 

inbound from SEA to MIA.  While non-directional information is predominately used in 

airline’s RM systems, directional itinerary information provides a much richer set of 

variables from which trip purpose can be inferred.  For example, business passengers are 

more likely to depart early in the week, stay a few nights, and return home later in the 

week (and thus not stay over a Saturday night).  In contrast, leisure passengers are more 

likely to depart later in the week, stay more nights than a business passenger.   

 The ARC dataset contains directional
26

 one-way and round-trip tickets with the 

outbound departure date on 2004.  To capture a mix of business and leisure markets and a 

mix of round trip and one ways a total of eight directional markets are included in the 

analysis.  Each market is served by at least three airlines and contains non-stop and 

connecting itineraries.  The markets include travel in origin destination pairs involving 

Miami, Seattle, or Boston (specifically, MIA-SEA, SEA-MIA, MIA-BOS, BOS-MIA, 

BOS-SEA, SEA-BOS) in addition to travel between Chicago O’Hare airport and 

Honolulu (ORD-HNL, HNL-ORD).   

 Overall, 1.3% of the tickets are refunded and 1.2% exchanged, but there are large 

differences across markets (see, Table 4-2  

                                                 
26

 A “simple” ORD-HNL one-way itinerary is one in which the trip starts in ORD and ends in HNL.  The 

passenger is embarks at ORD (i.e., there are no flight segments before ORD) and disembarks at HNL (i.e., 

there are no flight segments after HNL).  Similar logic applies to round-trip itineraries.  
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).  While carrier confidentially considerations restrict the amount of flight-level 

information available for analysis, the ARC sample data is unique in its ability to capture 

information about the time until exchange and refund events across multiple markets and 

multiple carriers. 

Table 4-2: Refund and Exchanges by Market and Trip Type 

Market # tickets # (%) 

Refunded 

# (%) 

Exchanged 

# (%) 

One Ways 

# (%) 

Round Trips 

MIA-SEA 8,599 623   (7.2%) 84       (1.0%) 4,095   (48%) 4,504      (52%) 

SEA-MIA 18,059 210   (1.2%) 198     (1.1%) 3,433   (19%) 14,626    (81%) 

BOS-MIA 84,752 858   (1.0%) 1,248  (1.5%) 9,013   (11%) 75,739    (89%) 

MIA-BOS 23,800 106   (0.4%) 318     (1.3%) 9,778   (41%) 14,022    (59%) 

BOS-SEA 35,204 374   (1.1%) 423     (1.2%) 6,337   (18%) 28,867    (82%) 

SEA-BOS 34,564 288   (0.8%) 442     (1.3%) 6,178   (18%) 28,386    (82%) 

HNL-ORD 5,261 62     (1.2%) 51       (1.0%) 1,715   (33%) 3,546      (67%) 

ORD-HNL 24,131 416   (1.7%) 138     (0.6%) 1,664    (7%) 22,467    (93%) 

TOTAL 234,370 2,937 (1.3%) 2,902  (1.2%) 42,213 (18%) 192,157  (82%) 
  

   

Besides market and carrier information, the ARC dataset includes several other 

ticketing characteristics: the issue date (or date the ticket was purchased), the outbound 

and inbound departure dates, outbound and inbound ticketing class (i.e., first letter of the 

fare basis code), ticketing cabin code (i.e., first, business, coach, other/unknown), net fare 

(i.e., fare that does not include taxes and fees), and total tax and fees.  Also, tickets that 

are refunded or exchanged contain the refund or exchange date and the exchange fee/fare 

difference from the original ticket.  Furthermore, indicator variables which show the 

reason for which that ticket was exchanged are also populated. Specifically, indicators are 

used to know whether the customer requested (1) a new outbound and/or inbound 

departure date, (2) a new outbound and/or inbound ticketing class and cabin code, and/or 

(3) a new outbound and/or inbound itinerary.  Characteristics related to trip purpose (i.e., 
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Saturday night indicator), week seasonality (outbound departure day of the week) and 

carrier were inferred from the available data.   

 In addition, using the outbound and the inbound departure dates several 

segmentation variables were derived.  Table 4-3 presents the percentage of refunds and 

exchanges across different advance purchase periods.  For tickets purchased 8 to 360 

days from the outbound departure date, exchanges exhibit a “tub” shape, characterized by 

a higher propensity of tickets purchase well in advance from departure or in the 2 to 3 

weeks from departure to be exchanged.  

Table 4-3: Refund and Exchanges by Advance Purchase 
 

Advance 

Purchase 

Exchanges Refunds Exchange & 

Refunds 

Total 

Tickets 

0-3  33       0.151% 267     1.223% 300     1.375% 21,825 

4-7 245     1.155% 483     2.278% 728     3.433% 21,205 

8-14 478     1.731% 430     1.558% 908     3.289% 27,607 

15-21 426     1.593% 312     1.167% 738     2.760% 26,738 

22-30 410     1.323% 370     1.194% 780     2.517% 30,988 

31-40 333     1.175% 445     1.570% 778     2.745% 28,344 

41-50 236     1.077% 259     1.182% 495     2.260% 21,904 

51-90 421     1.397% 197     0.654% 618     2.051% 30,126 

91-180 259     1.559% 118     0.710% 377     2.269% 16,618 

181+ 61       1.921% 56     1.763% 117      3.684%   3,176 

 

 Also, is worth noticing that exchanges drop dramatically one week from 

departure.  In contrast, refunds tend to increase as the advance purchase decreases, that is, 

tickets purchased closer to the outbound departure date are more likely to be refunded.  

However, at 31-40 days from departure, there is a slight increase in the percentage of 

refunds which may be attributed to consolidator bookings (such as air travel associated 

with cruise lines that are present in the Miami and Seattle markets). Also, similar to 

exchanges, the percent of refunds drops very close to departure, or 0-3 days from the 

outbound departure date. 
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 Table 4-4 presents the refund and exchanges rates across a popular proxy for 

business-leisure segmentation, i.e., the Saturday night stay.  As expected, round trip 

tickets with a Saturday stay (that tend to be associated with leisure travel) are less likely 

to be exchanged or refunded than round trip tickets without a Saturday stay (that tend to 

be associated with business travel).   

Table 4-4: Refund and Exchanges by Saturday Night Stays (Round Trip Tickets) 
 

Saturday Stay Exchanges Refunds Exchange & 

Refunds 

Total RT 

Tickets 

Saturday Stay 1,401    1.092% 1,263    0.984% 2,664   2.076% 128,333 

No Saturday Stay 1,476    2.313% 1,147    1.797% 2,623   4.110% 63,824 
 

 

 Differences in exchange and refund rates between business and leisure travelers 

are also seen in Table 4-5 - the effect of outbound departure dates.  Exchanges are more 

likely to occur on Sunday, Monday, and Tuesday outbound departures and Wednesday, 

Thursday, and Friday inbound returns.  Refunds exhibit a similar pattern, but also show a 

relative high rate on Saturday outbound departures. 

Table 4-5: Refund and Exchanges by Outbound Day of the Week 

Day of 

Week 

Exchanges Refunds Exchange & 

Refunds 

Total RT 

Tickets 

Sunday  390    1.219% 564    1.763% 954    2.982% 31,989 

Monday 515    1.684% 494    1.616% 1,009 3.300% 30,575 

Tuesday 461    1.790% 337    1.308% 798    3.098% 25,759 

Wednesday 477    1.548% 342    1.110% 819    2.659% 30,806 

Thursday 416    1.066% 316    0.810% 732    1.876% 39,017 

Friday 375    0.922% 390    0.959% 765    1.882% 40,653 

Saturday 268    0.753% 494    1.389% 762    2.142% 35,571 
 

 Finally, Table 4-6 shows the exchange and refund rates by month of the outbound 

departure date and refunds and exchanges.  No clear pattern can be detected, suggesting 

the effects of seasonality may be limited. In addition to the variables described above, 

tickets that are refunded or exchanged also contain the date the refund or exchange was 
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processed.  In addition, when one ticket is exchanged for another ticket, information on 

the exchange fee and fare difference from the original ticket is available.  Indicator 

variables are also populated to show the reason for the exchanged ticket.  Specifically, 

indicators are used to know whether the customer requested (1) a new outbound and/or 

inbound departure date, (2) a new outbound and/or inbound ticketing class and cabin 

code, and/or (3) a new outbound and/or inbound itinerary.   

Table 4-6: Refund and Exchanges by Month of Departure Date  

Departure 

Month 

Exchanges Refunds Exchange & 

Refunds 

Total RT 

Tickets 

January 245    1.412% 266    1.53% 511    2.94%        17,357  

February 233    1.041% 306    1.37% 539    2.41%        22,384  

March 237    0.983% 277    1.15% 514    2.13%        24,108  

April 226    0.966% 264    1.13% 490    2.09%        23,402  

May 244    1.262% 199    1.03% 443    2.29%        19,332  

June 251    1.325% 239    1.26% 490    2.59%        18,946  

July 204    1.136% 244    1.36% 448    2.49%        17,961  

August 186    1.029% 202    1.12% 388    2.15%        18,071  

September 273    1.693% 325    2.02% 598    3.71%        16,124  

October 279    1.532% 224    1.23% 503    2.76%        18,209  

November 293    1.604% 167    0.91% 460    2.52%        18,267  

December 231    1.143% 224    1.11% 455    2.25%        20,209  

 

To summarize, unlike DB 1A ticketing data or booking data from a single airline, 

ARC ticketing data provides an opportunity to develop no-show and cancellation models 

for multiple airlines and/or markets.  Most important, the no-show and cancellation rates 

derived from ARC ticketing data directly tie to the revenue generation stream of an 

airline, which is one of the most important metrics to an airline considering aircraft 

purchases.   
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Chapter 5: RESEARCH METHOLOGY 

The main focus of this dissertation is to explore the use of discrete oriented methods for 

airline “cancellation” models.  Based on the occurrence of refund, exchange events in a 

ticketing dataset (i.e., the ARC dataset), conditional probabilities (hazard probabilities) of 

purchased tickets experiencing the event of interest are predicted.  Survival analysis 

methods are used to explore the pattern of cancellation probabilities over time and to 

determine the extent in which the observed heterogeneity of tickets (i.e., predictors) 

changes that pattern.  

This section contains several parts.  First the research objectives are stated.  

Second, an overview of the key concepts of time-to-event modeling is provided and the 

use of a Discrete Time Proportional Odds (DTPO) model to forecast airline passenger 

cancellations is motivated.  Third, a simulation exercise to assess the impact of time-to-

event forecasts on revenue streams is presented.  

 

5.1. Research Objectives 

This research contributes to the literature in three distinct ways.  First, with 

respect to air travel behavior, it is the first study of airline passengers’ cancellation 

behavior based on survival methods. In comparison to cancellation models reported in the 

literature or used in practice, the proposed framework is more “customer-focused” in the 

sense that it captures the underlying behavior of passengers.  In that perspective, the 

impact of time from purchase, time until departure, and directional itinerary and booking 

covariates on the intensity of cancellation process is explored.  
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 Second, with respect to the data used, this research introduces a different 

ticketing data source that the industry’ default (i.e., the origin and destination Data Bank 

1A.  In contrast to the DB 1A dataset, the ARC dataset captures cash triggered 

transactions (refunds, exchanges and voids) across multiple carriers and multiple markets, 

providing unique opportunities to analyze the ticketing process from a financial 

perspective.  

Finally, with respect to revenue management methodological advances, the 

current research addresses the validity of some of the common assumptions associated 

with previous cancellation research and tests the applicability of present cancellation 

models in the context of the general seat inventory control problem.   

5.2. Airline Passenger Cancellation Behavior and Time-to-Event Analysis 

 In the context of current state of practice for cancellation models, the following 

sections motivate and describe the time-to-event procedures of current research.  Section 

5.2.1 presents the general concepts of time to event analysis.  Section 5.2.2 presents time 

to event model selection procedures.  Finally, Section 5.2.3 describes the estimation of a 

Discrete Time Proportional Odds model.  

5.2.1. General Taxonomy of Survival Analysis Models 

 Survival models are designed to analyze data for which the response variable is 

defined as a time to an event(s).  In contrast to classical linear regression methods, 

survival models exhibit two notable features: (1) the presence of censored data, and (2) 

the possibility of time-varying covariates (McCullagh and Nedler 1989).  Both aspects 

are governed by a “time at risk” mechanism in which the dynamics of conditional 
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probabilities of an event happening (i.e., the transition intensity) are assessed as a 

function of the elapsed time since the entry time.
27

    

 Statistical methods for survival data were developed to support epidemiological 

applications (that capture the time-to-occurrence of an event given exposure to an 

infection) or clinical applications (that capture the time-to-occurrence of an event given 

exposure to treatment).  The fundamental difference between the two categories of 

studies consists in the way survival time is considered – either in retrospective or 

prospective (Kim and Lagakos 1990). In retrospective studies, investigators analyze the 

disease incidence for exposed individuals “in hindsight” based only the prevalence of 

disease at the time the data is collected (Shiboski 1998).  In contrast, in prospective 

studies investigators use a “forward looking” approach to analyze the evolution of disease 

for individuals exposed to various treatments (Hosmer and Lemeshow 1999).   

Although, survival analysis concepts were first tested and validated by the 

medical field their applicability to demography, econometrics, travel demand, and other 

areas was immediate.  Today, a multitude of methodological “add-ons” are testimonial to 

the degree of generalization that survival analysis concepts have reached and 

comprehensive reviews are provided by several authors (Kiefer 1988; Jain and Vilcassim 

1991; Hensher and Mannering 1994; Bhat 2000; Wu 2003).  

Since survival “methods are so similar in their underlying philosophy that they 

usually give similar results” (Allison 1995) the choice of “the right” survival model 

depends on several substantive assumptions regarding the population at risk, the 

                                                 
27

 In the case when entry time is the same as the time when the subject becomes at risk. This might not 

always be the case (e.g. delayed entry). 
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beginning and end of an observation, the censoring mechanism, the distributional 

assumptions about the time-to-event process, and the choice of the dependent variable.  

The population at risk is defined as independent “subjects” under observation 

during parts or the entire period of a survival study.  The beginning of an observation is 

identified by the time at which the subject becomes at risk of “dying.”  The end of an 

observation is identified by the time at which the event is observed (non-censored) or by 

the time at which the follow-up process ends (censored). With respect to the 

distributional assumptions, survival models are categorized as continuous time semi-

parametric, continuous time parametric, discrete time, and non-parametric.  Finally, the 

choice of the dependent variable, i.e., survival time S(t) vs. hazard rate h(t),  influences 

the way in which covariates effects
28

 are interpreted. For accelerated failure time (AFT) 

models a base survival time is accelerated. In contrast, for proportional hazard (PH) 

models a base hazard rate is multiplied.    

5.2.2. Model Selection  

In the context of survival analysis, ARC ticketed transactions represent n independent 

“subjects at risk” of a cancellation
29

 event.  The time until the occurrence of a 

cancellation event or the time until departure (t) is a continuous or discrete non-negative 

random variable which represents the “observed life” of a ticket. If f(t) is the probability 

distribution function or probability mass function associated with the time-to-event 

process, the intensity of the cancellation process can be described by the survival time 

                                                 
28

 For AFT models coefficients  of covariates represent changes in survival time due to a unit change in a 

given covariate while for PH models coefficients represents changes in the hazard rates due to a unit 

change in a given covariate 
29

 Identified by refund of exchange events.   
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S(t) or the hazard rate h(t) (see Equation 5-1 for the continuous time case and  Equation 

5-2 for the discrete time case 
30

). 
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In selecting the most appropriate time-to-event specification to model the 

intensity of the cancellation process, two topics are particularly relevant.  The first topic 

relates to how to “appropriately” specify models when multiple time dimensions are 

present.  This problem is not new and is frequently encountered in life course 

demographic studies based on cohort datasets.  Specifically, an underlying identification 

problem exists because given knowledge of the respondents’ age and duration in the 

study, their cohort (or entry in the study) is uniquely determined (Wu 2003).   In the 

context of cancellation models, this issue is relevant when testing for the validity of the 

memoryless property (i.e., how to simultaneous consider both the days from departure 

and days from issue).  The second topic relates to using the most appropriate assumptions 

to capture the specific characteristics of the time-to-event data.  Two categories of 

assumptions characterize the time-to-event models: (1) distributional assumptions about 

                                                 
30

 Note that if in the case of the continuous time the hazard rate represents an instantaneous rate of 

occurrence, in the case of discrete time is a conditional probability.  
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the dependent variable, and (2) assumptions about the influence of the vector of 

covariates on the time-to-event process.   

Table 5-1 presents the main categories of models considered for model selection.  

If time from issue effect is ignored, cancellation probabilities of bookings on hand can be 

determined by estimating a series of binary logits.  Although similar in spirit with current 

state of practice
31

, this approach has two caveats.  First, it does not capture the 

transitional properties of the cancellation process.  In a very dynamic environment such 

as airline industry, one might be interested not only to know the proportion of passengers 

to cancel by departure date but also the daily rate of this phenomenon.  Second it requires 

the maintenance and estimation of multiple logit models, which increases the 

computational burden of yield management system.    

Table 5-1: Time-to-event Models and Distributional Assumptions 

 

As an alternative to a series of binary logit models, time-to-event models focus on 

analyzing cancellation process as a function of time from issue.  To determine the most 

appropriate model, current research contrasts several time-to-event formulations (rows 

two to five from Table 5-1).  The first two categories of models, i.e., the accelerated 

failure time and the proportional hazard identify the variables of interest used in time-to-

event analysis: survival time and hazard rate.   

                                                 
31

 Cancellation probabilities are equivalent with cancellation  rates presented in Chapter 2 

Distributional Assumptions  

Binary Logit

Exponential , Weibull, Log-logistic, Log-normal

Exponential , Weibull , Gompertz

COX Proportional Hazards,  Piece-wise exponential

Binary Logit, Complementary Log-log 5.Time-scale as a Covariate 

Time-to-Event Models 

2. Accelerated Failure Time (AFT) Class 

3. Proportional Hazard (PH) Class

4. Semi-Parametric Class 

1. No Time Scale
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Accelerated failure time models are a special case of generalized linear models 

which focus on analyzing time-to-event processes from a survival time perspective.  If t 

is a random variable to describe the observed/ unobserved survival time or time until 

failure, than, the effect of exponential values of covariates on t is multiplicative, i.e., base 

survival time is either accelerated or decelerated (see Equation 5-3).  In the context of 

model selection procedures, several distributions were used to describe the random 

disturbance term: standard extreme value (exponential model), extreme value two 

parameters (Weibull model), logistic (log-logistic model), and normal (log-normal 

model).  

                                                                           (5-3) 

In contrast to AFT models, proportional hazard models focus on analyzing time-

to-event processes from a conditional intensity (hazard) perspective.  When compared to 

a baseline hazard, the effects of covariates are multiplicative. Also, the heterogeneity 

across observation is considered to be fully described by hazard variation, i.e., two 

observations with identical values of covariates have identical values of hazards (see 

Equation 5-4).  In the context of PH models, several shapes were used to describe the 

base-line hazard: constant (exponential model), linear (Gompertz model), and linear in 

the logarithm of time (Weibull model).   

                                                             (5-4)                     

The third category of time-to-event models considered for model selection is the 

semi-parametric class.  As one of the most popular time-to-event models, the COX 

proportional hazard model estimates the relative risk of an event happening.  In this 

context, the effect of baseline hazard is clearly separated from the effects of covariates.  
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The COX model can be interpreted as a proportional hazard model or an additive model 

in the log of hazards (see Equation 5-5).  The piece-wise exponential model constraints 

the proportionality assumption of COX model across segments of time.  Instead, the 

unconstrained base-line hazard of the COX model is replaced by a succession of piece-

wise constant baseline hazards (see Equation 5-6)    

                                                                                   (5-5) 

                                                                 (5-6)      

The models from the last category of time-to-events models represent 

“equivalent” formulation of COX proportional hazard model which use maximum 

likelihood estimation instead of GLM methods.  In the context of events happening at 

discrete point in times or continuously, hazard estimates of discrete time proportional 

odds (DTPO) model and the complementary log-log model (CLL) represent good 

approximation of the proportional hazards scenario.  

For this research, two arguments favor the use of the DTPO model as the 

appropriate formulation to estimate the pattern of tickets’ cancellation probabilities. The 

first refers to the computational efficiency of the maximum likelihood (ML) estimators 

when compared to the partial likelihood (Kaplan and Meier 1958) estimators. Indeed, 

since the ARC sample dataset is a “consolidated” dataset, with tickets aggregated from 

eight different markets, the presence of a large number of ties is inevitable, a fact that 

eliminates the alternative of an exact Cox model estimation.  

The second refers to an on-going debate in the revenue management field as to 

which is the most appropriate model to describe how cancellation probabilities evolve 

over time. Although several authors indicate that the value of cancellation probability is 
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constant over time (Littlewood 1972) and independent of the time of booking (Talluri and 

Van Ryzin 2004a), empirical evidence suggests otherwise (Westerhof 1997; Chatterjee 

2001).  

To conclude, the DTPO model offers the flexibility of testing different scenarios 

with minor adjustments.  In view of these advantages, the next section describes the 

DTPO model as an alternative way to estimate cancellation probabilities for the sample 

of ARC airline tickets. 

5.2.3. The Discrete Time Proportional Odds (DTPO) Model and ARC data 

As mentioned before, the study of cancellation determinants in the framework of 

ticketing data is a new research area and comes to give further insights on findings of 

Garrow and Koppelman (2004a; 2004b) in the field of no-shows and standby behavior.  

The relevance of such a study is motivated by challenges that customers booking 

behavior pose on present airline carrier’s financial stability.   

 The DTPO model extends previous research on the distribution of cancellation 

rates/proportions
32

 in four aspects.  First, it relaxes the general assumption of population 

homogeneity and tests the influence of observed heterogeneity on cancellation 

rates/proportions by considering different segmentations/covariates (Saturday night stay, 

outbound departure day of week, market, carrier, group size, pro-rated fare).  Second, it 

assumes that heterogeneity across tickets is fully captured by these covariates and its 

effect is distinct from that of time (changes in covariates values produce only vertical 

shifts and no distortions in a “baseline” cancellation rate line, i.e., the proportional hazard 

                                                 
32

 Chatterjee (2001) defines a cancellation rate at time t as the proportion of those booked at t which cancel 

by t-1 and a cancellation proportion at time t as the proportion of those booked at t which cancel by 

departure day. In contrast, Thomson (1961) and Taluri and Van Ryzin (2004a) define the cancellation rate 

as a the proportion of those booked at t which cancel by departure day. 
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assumption).  Third, by construction, the DPTO model accommodates time-varying 

covariates, thus permitting the presence of multiple time scales (i.e., days from issue and 

days from departure).  Finally, since the time-scale is discrete, the DTPO model has 

sufficient flexibility to test different distributional shapes for the baseline cancellation 

rate. 

It is important to note that compared to the typical time-to-event datasets, the 

ARC sample ticketing data has three unique characteristics.  The first characteristic is that 

the tickets “lifetimes” are completely determined, and end either in a cancellation 

(exchange/refund date) or in certain non-cancellation (outbound departure date). As a 

result, a unique set of possible life-times is known for each ticket; that is, the set of 

possible lifetimes for a ticket is bounded between one and the difference between its 

departure and issue dates. While infrequently encountered in the context of survival 

analysis, this particularity of the data proves to be extremely useful in exploring whether 

the memoryless property of cancellation rates holds.  

   The second characteristic is that the assumption of independence between 

observations is undoubtedly violated by the presence of groups.  Therefore, the ARC 

dataset was transformed from an individual ticket level database to a group level 

database. More specific, observations determined to have the same values on the entire 

set of covariates with the same scrambled passenger name record (PNR)
33

 were 

eliminated and a variable indicating the group size added to the set of covariates.  Also, 

taking into account that the majority of tickets are booked in the 0 to 90 days from 

departure (DFD) time interval (95% of total number of tickets) and cancellation events 

                                                 
33

 To ensure carrier and passenger confidentiality, ARC provided “scrambled” PNR information and 

ensured that these records were unique within a specific market.  The PNR records provide information on 

how many passengers are traveling together on the same reservation. 
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for the rest of tickets are relatively scarce (5% out of total number of events), the ARC 

dataset was reduced to tickets booked 90 days from departure or earlier.  

The third characteristic of ARC ticketing data that influences the application of 

survival methodology is that only refund and exchange events occurring prior to the 

outbound departure date are considered
34

.   

 

 

Figure 5-1 illustrates the distinction between the outbound and inbound portions 

of a simple round-trip itinerary.  In this example, the passenger purchases a ticket to 

travel outbound – or to depart Boston for Seattle – on June 1.  The same passenger plans 

to travel inbound – or to return from Seattle home to Boston – on June 4.  The outbound 

itinerary includes a single flight leg while the inbound itinerary includes two flight legs to 

represent the connection at Chicago O’Hare airport (SEA-ORD and ORD-BOS).   

 

                                                 
34

 The methodology applied for outbound itineraries can be extended to inbound itineraries, albeit the 

“behavioral analysis” becomes slightly more complicated, as many airlines automatically cancel inbound 

itineraries once they know that the passenger has “no-showed” for the outbound itinerary. 
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Figure 5-1: Outbound and Inbound Itineraries 

 

For the purposes of this analysis, only refund and exchange events (assimilated 

into a single “cancellation event”) that occur on the BOS-SEA outbound itinerary prior to 

June 1 are considered.  This is because the primary interest of this study is to model 

cancellation behavior; refund and exchange events that occur to the BOS-SEA itinerary 

on or after June 1 appear as “no shows” within the current revenue management 

framework, since the airline does not know prior to the outbound flight departure that the 

passenger does not intend to travel.  To give a general idea on the magnitude of the two 

problems Table 5-2 shows the distribution of total population refund and exchange events 

with respect to the outbound departure date.   

Table 5-2: Percentage of Refund and Exchange Events 

Type of event  Percentage 

(out of total tickets) 

Percentage 

( out of total events) 

Refund event before or on ODT 0.82% 27.08% 

Exchange event before or on ODT 1.40% 46.28% 

Exchange or refund event on ODT 0.19% 6.23% 

Refund event after ODT 0.62% 20.61% 

Exchange event after ODT 0.18% 6.03% 

 

SEA 

ORD 

BOS 

Outbound  

June 1 

Inbound Leg 1 

June 4 

Inbound Leg 2 

June 4 
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Given all of the above characteristics, the ARC time-to-event application can be 

viewed as a ticketing cancellation model on the outbound legs of simple round-trip 

airline itineraries for groups for a ticketing horizon of 90 days from departure.  After this 

data reduction process, the original ARC dataset of 234,370 tickets (1.3% Refunds; 1.2% 

Exchanges) was transformed to 151,401 unique groups (2.22% Cancellations). 

Using the transformed ARC data, the DTPO model partitions the time-to-event of 

the i
th

 ticket (Ti) into a number of k disjoint time intervals (t0, t1], (t1, t2],(t2, t3], …,(tk-1, 

tk].  The bounds of the time intervals (t0,t1,…,tk) identify the days from issue (DFI) where 

t0 represents the issue date and tk represents either the time of departure (non-cancelled 

tickets) or the time of ticket refund/exchange (cancelled tickets).  In this context, the 

discrete hazard of a cancellation event for the i
th

 ticket in the k
th

 interval is defined as the 

conditional probability that ticket i will experience the cancellation event in the k
th

 

interval given survival up to that point (Equation 5-6). Using conditional probability 

theory, it follows that the probability that a cancelled ticket will experience the event in 

the k
th

 interval is equal to the product between the non-event conditional probabilities of 

1 to k-1 time intervals and the event conditional probability of k time interval (Equation 

5-7). Similarly, the probability that a non-cancelled ticket will experience the cancellation 

after the k
th

 interval is equal with the product of non-event conditional probabilities of all 

k time intervals (Equation 5-8). 

 

            
( | )ik i ih P T k T k

                       (5-6)                      

          

( 1) ( 2) 1

( ) P( | ) P( 1| 1)...P( 1| 1)

( ) (1 ) (1 )...(1 )

i i i i i i i

i ik i k i k i

P T k T k T k T k T k T T

P T k h h h h
                (5-7)                       
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( 1) ( 2) 1

( ) P( | ) P( 1| 1)...P( 1| 1)

( ) (1 ) (1 ) (1 )...(1 )

i i i i i i i

i ik i k i k i

P T k T k T k T k T k T T

P T k h h h h
               (5-8) 

As a result, the likelihood contribution for cancelled and non-cancelled tickets can be 

expressed using Equations 5-9 and 5-10 and further detailed as the product of all the 

individual likelihoods (Equation 5-11) in which ci is an indicator variable equal to 0 for 

cancelled tickets and 1 for non-cancelled tickets (Cox 1972).   

1

1

(1 )
k

i ik ij

j

L h h                       (5-9) 
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i ij

j

L h                      (5-10) 

1
1

1 1 1

(1 ) (1 )

i ic c
n k k

ik ij ij

i j j

L h h h                             (5-11) 

Since the exact time of tickets transition from the state of not-cancelled to 

cancelled can be captured using a binary variable yij equal with 1 if ticket is cancelled in 

the j
th

 day from issue and 0 otherwise, it follows that Equation 5-12 is an alternative form 

to express the log-likelihood function. Moreover, the likelihood function for the entire 

sample (Equation 5-13) is equivalent with the likelihood function of a binary logistic 

regression model for which yij are assumed to be a collection of independent variables 

and whose data structure is expanded
35

 to represent an unbalanced panel dataset (i.e., 

each ticket observation is replicated multiple times, one time for each day from issue of 

the ticket lifetime).  

                                                 
35

 The creation of the expanded dataset process has several steps: (1) duplicating the set of time-invariant 

covariates over the entire life-time of a ticket, (2) filling in the time-variant covariates (if present) and (3) 

creating the binary indicators of the cancellation status yij. 
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The equivalence between the two likelihood formulations (Equations 5-11 and 5-

13) defines the rationale behind the DTPO model, a model introduced by Cox (1972) and 

further detailed by several authors (Brown 1975; Thompson 1977). For a general set of 

covariates Xi, Equation 5-14 presents the general formulation of the DPTO model, while 

Equations 5-15 and 5-16 present the estimation of hazard and survival probabilities.   

1 1 2 2log ....
1

ij

ij ij ij l ijl

ij

h
X X X

h
                              (5-14) 

Where Ψij - baseline hazard function, j = 1,2,…,k  time intervals, i = 1,2,…,n 

observations and l = number of covariates. 

1

1 1 2 2[1 exp( ( .... )]ij ij ij ij l ijlh X X X                (5-15) 

1 2

1

(1 )(1 )...(1 ) (1 )
k

ij i i ik ij

j

S h h h h                  (5-16) 

Before addressing the choice of functional form for the baseline hazard and the 

choice of covariates included in current analysis, it is important to note that the DTPO 

model is constructed on two fundamental assumptions.  First, a linear relation between 

the covariates and the logistic transformation of ticket cancellation hazard is assumed 

(linearity assumption).  Second, the effect of covariates over the odds of cancellation is 

considered to be constant over time (proportionality assumption).  In view of these 

assumptions, the DTPO model formulation can be conceptualized as the multiplicative 

effect of the covariates’ log-linear function on a baseline odds function (Equation 5-17).  
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Also, when the magnitude of conditional probabilities is small (as is the case with the 

ARC data), Equation 5-17 indicates that the DTPO model is a close approximation of the 

proportional hazard (PH) model
36

.   

1 1 2 2

0

....

01 1

ij ij l ijlX X Xij ij

ij ij

h h
e

h h
                   (5-17) 

In the context of DTPO model the effects of days from issue (DFI), days from 

departure (DFD), itinerary characteristics, and fare on ticket cancellation rates are 

explored.  The time from issue and days from departure covariates are used to test if the 

memoryless property of cancellation rates holds. To assess the most appropriate shape for 

the baseline hazard (i.e., DFI) non-parametric estimators of survival probability (Kaplan-

Meier), cumulative hazard (Nelson-Aalen) and hazard rate (Cox-Oaks) are used (Hosmer 

and Lemeshow 1999). Once decided on the best DTPO fit, the DFD covariate is added to 

indirectly
37

 isolate the effect of time of ticketing. As shown in Figure 5-2 the 

simultaneous presence of the two covariates permits the reconstruction of cancellation 

rates for each DFD and different times of ticketing.  Finally, divided on three main 

categories: (1) group size, (2) outbound departure day of week, Saturday night Stay and, 

(3) carrier, market and, pro-rated fare the covariates describing the observed 

heterogeneity are added.  

                                                 
36

 The odds of a cancellation event will be approximately equal to the conditional probability of 

cancellation (i.e., hij ≈ hij / (1- hij)). 
37

 Since from a RM perspective the focus is on determining cancellation rates for DFD given different 

times of ticketing we decided to use DFD instead of time of ticketing. 



 55 

  

 

Figure 5-2: The Memoryless Property of Cancellation Rates- Conceptual Framework 

 

To determine how ticket cancellations rates are influenced by proposed covariates 

several hypotheses are tested.  First, with respect to the group and DFD effect, the results 

of Thomson (1961) indicate that cancellation proportions (defined as rates) decrease with 

group size and as the departure date approaches.  Second, with respect to the business-

leisure segmentation, one can hypothesize that variables associated with leisure 

passengers (Saturday night stay and Thursday, Friday and Saturday as outbound day of 

departure) result in a decrease of cancellation and no-show rates (i.e., business passengers 

are more time-sensitive and experience frequent itinerary changes while leisure 

passengers are more price-sensitive and experience limited to none itinerary changes).  

Third, with respect to carrier information major carriers
38

 (defined as those with market 

                                                 
38

 Due to confidentiality characteristics of the ARC dataset, the effects of market, carrier and pro-rated fare 

on cancellation rates are less clear.  

 

h21 h20 h2 h3 

DFI = 21days 

DFI = 14days 

DFI = 7days 

DFD = 7days 

h1 

Example: DFD=7 days and Time of ticketing = 28 days  Q21=(1-h1)(1-h2)(1-h3)…(1-h20)(1-h21) 
 

H21=(1-Q21) 

… 

Legend 

     hi – hazard rate at ith DFI; Qi – survival proportion at ith DFI ;  Hi – cancellation proportion at ith DFI 
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shares greater than 10%) are expected to exhibit higher exchange and cancellation 

probabilities then smaller carriers (defined as those with market shares less than 10%). 

Finally, it is hypothesized that as fares increase, so too does the cancellation behavior.  

Intuitively, this is because business travelers, who tend to need more scheduling 

flexibility, are less price sensitive than leisure travelers. 

5.3. Revenue Management Implementation of Time-to-Event Forecasts 

To assess the value of estimation results to current revenue management (RM) 

state of practice, this research quantifies the impact of time-to-event overbooking controls 

on revenue streams.  In this context, time-to-event forecasts of cancellations (based on 

new bookings) and classical forecasts of cancellations (based on bookings on hand) are 

successively applied to a simulation of a single resource capacity control and revenues 

are assessed.  The difference between the two revenues streams is used to define the 

revenue opportunity of the time-to-event cancellation forecast.   

Since exact solutions of the general yield management problem are rarely applied 

to real-world airline operations, the simulation exercise is designed as a collection of best 

industry practices (heuristics).  Although not optimal, the current set of revenue 

estimation procedures adds to yield management state of practice by implementing time-

to-event forecasts for cancellations.  

In practice, a combined capacity allocation and overbooking heuristic consists of 

a set of sequential procedures applied iteratively over the entire length of booking 

horizon  (Philips 2005): 

 Forecast of the gross demand and cancellations 

 Determine adjusted authorization levels using overbooking controls  



 57 

 Determine capacity allocation controls (protection levels, booking limits or bid 

prices) 

 Adjust capacity allocation control to match authorization levels  

 Update the gross demand forecast and cancellation forecast over time and adjust 

overbooking limits and protection levels.  

In the context of a dynamic capacity allocation and overbooking heuristic used in 

practice Table 5-3 presents the set of assumption used for current simulation. With 

simulation procedures covering forecasting, seat inventory, and overbooking areas, the 

set of assumptions was defined such it will closely match the current state of practice for 

a single resource capacity control.  

With respect to forecasting assumptions Table 5-3 presents the distributional 

assumptions on the categories of demand and the types of forecasts used for each demand 

category.  Fare class demand is normally distributed and results as a combination of 

independent Poisson processes.  Constrained demand is uncensored with a Holt-Winters 

double exponential smoothing.  Finally, future demand forecasts result from historical 

averages while future cancellation forecasts result from forecasts of the cancellation 

intensity (determined as a cancellation over bookings on hand ratio or as a hazard rate).   

With respect to seat inventory control assumption, the Expected Marginal Seat 

Revenue (EMSRb) heuristic is used.  Buy-ups and no-shows are not allowed.  To 

determine overbooking limits, the Littewood algorithm (critical ratio) is used.  

Table 5-3: The Set of Assumptions for Simulation 
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To motivate the use of current set of assumptions, the following sections present an 

overview of the main revenue management methodologies used in the simulation.  

Section 5.3.1 describes the heuristic used to allocate available capacity: Expected 

Marginal Seat Revenue (EMSR).  Section 5.3.2 presents the risk-based overbooking 

algorithm used to determine overbooking controls.  Finally, Section 5.3.2 presents the 

simulation used to assess the impact of time-to-event forecasts on airlines revenue 

streams. 

5.3.1. Expected Marginal Seat Revenue (EMSR) Heuristics 

 Build on Littlewood’s two-class model and refined by Belobaba (1989) the 

Expected Marginal Seat Revenue (EMSR) and its variants (EMSR-a, EMSR-b and 

EMSR-b with buy-up probabilities) represent one of the most popular heuristics used to 

Model for demand Normal distribution

Model for arrivals processes Poisson distribution 

Model for uncensoring Holt-Winters DES

Forecasting Method for Demand Aggregate (Historical Averages)

Forecasting Method for Cancellations (a) Cancel/Bookings on Hand Ratio

Forecasting Method for Cancellations (b) Hazard rates 

Algorithm/ Heuristic EMSRb (nested fares)

Update of booking limits Dynamic 

Scale Single-leg Inventory Control 

Buy-up behavior No

Arrival of fares Low-before-high(LBH) fare 

Independece of demand for classes Yes

Cancellations and no-shows Only cancellations

Model for cancellation Poisson

Overbooking algorithm Littlewood rule (critical ratio)

Cost of overage Highest Fare

Cost of underage Lowest Fare

Forecasting Assumptions

Seat Inventory Control Assumptions

Overbooking  Control Assumptions
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determine seat-inventory controls (i.e., protection levels) for static and dynamic n-class 

single-resource models. 

 Although not optimal, EMSR heuristics are popular among revenue management 

practitioners.  The main idea of expected marginal analysis is to control the n-class 

inventory in such a way that prices of lower fare classes do not exceed expected marginal 

values of higher classes.  For two classes with fares p1 and p2 (highest to lowest index), 

D1 the demand for the highest class and x the remaining capacity, the allocation problem 

reduces to the classic newsvendor problem or Littlewood’s rule (see Equation 5-18).  

                      (5-18) 

 As a first extension of the newsvendor problem, the EMSR-a heuristics 

determines protection levels by “applying Littlewood’s rule to successive pairs of 

classes” (Talluri and Van Ryzin 2004a).  For n-classes with fares  (lowest to 

high arrival order), Di the demand for the class i, and x the remaining capacity, the 

EMSR-a formulation is described by the Equation 5-19: 

        (5-19) 

 To determine protection levels, the EMSR-b heuristic adjusts the classical 

Littlewood rule to account for pooling effects.  The fare of class i results as a weighted 

average  of higher classes fares (see Equation 5-20).  Also, the mean ( ) and 

standard deviation ( ) of class i results as a sum of means and standard deviations of 

higher fare classes (see Equation 5-21).  

                                                        (5-20) 

 

                                                               (5-21) 
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 The EMSR-b heuristic can be adjusted to incorporate passenger no-show 

(Belobaba 1989) and buy-up behavior (Weatherford and Bodily 1992).  In the presence of 

cancellations or no-shows, expected marginal revenues and fares are “deflated” with 

overbooking factors OV (see Equation 5-22).  In the case of passenger diversion from 

lower to higher fares, the expected marginal revenue and fares are adjusted with the 

probability of sell-up s (see Equation 5-23).  

                       (5-22) 

       (5-23) 

5.3.2. Risk-based Overbooking Algorithms 

Since the objective of current simulation is to address the general yield management 

problem, overbooking algorithms have to be analyzed in the context of combined 

capacity control and overbooking algorithms.  The following paragraphs describe the 

main characteristics of risk-based algorithms, contrast the use of exact solutions with the 

use of heuristics for the general yield problem, and discuss differences between current 

simulation and the state of practice. 

 With respect to the type of overbooking algorithm used several aspects are worth 

noticing.  First, compared with service-based overbooking algorithms, risk based 

overbooking algorithms have the advantage of determining overbooking levels based on 

economic criteria.  Second, the results of risk-based overbooking models, i.e., the 

overbooking controls, depend on several inputs: the type of distribution used to describe 

the cancellation process (F), the intensity of the cancellation process (q), the marginal 
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revenue (p), the marginal denied boarding cost (h) and the effects of cancellation and new 

reservations over time.   

 To describe the cancellation process, the state of practice uses a binomial 

distribution with the probability of the event happening - q(t) dependent on the time 

remaining until departure (t) (see Equation 5-24).   

                                (5-24) 

 

 Values of marginal revenue and marginal cost used in risk base overbooking 

models depend on the type of model used to control available capacity and assumptions 

about passenger denied boarding behavior.  For bid-price controls the optimal marginal 

revenue is determined in the context of monotonicity
39

 conditions of the value function.  

For booking limits or protection levels controls, the heuristic marginal revenue is 

determined as a weighted average fare.  Finally, the marginal cost is equal with the 

compensation offered to passenger whose boarding was denied and typically assumed to 

follow a convex function V(x) with a constant gradient (Equation 5-25).   

                                                                      (5-25) 

 In the context of the dynamics of cancellations and new reservations over time, 

overbooking models can be static or dynamic.  Overbooking limits determined with static 

models use estimates of cancellation proportions and bookings on hand to determine local 

                                                 
39

 The marginal revenue is decreasing in remaining capacity and increasing in time until departure – Talluri 

and Van Ryzin (2004a)  

 

(x-1) then 
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optimums.  In contrast, overbooking limits determined with dynamic models use current 

and future estimation of demand and cancellation rates to determine global optimums.  

As approximations of dynamic models, static models can be re-solved periodically to 

generate close-to-optimal solutions.  

 With respect to what type of approach to use when simulating a general yield 

management problem several aspects are worth noticing. First, for exact solutions of the 

general yield management problem, experimental results of Subramanian, Stidham et al 

(1999) prove that using class-dependent cancellation rates can result in significant 

revenue gains.  Another important finding of Subramanian, Stidham et al. is that using 

“close approximation” of class-dependent cancellation rates in the context of mixed 

dynamic programming formulations results in close to optimal results.  However, the 

work of Subramanian, et al (1999) does not provide any methodological details on how 

one can determine a close approximation of class-dependent cancellation rates.  

 Second, for approximate solutions of the general yield management problems re-

solving static overbooking models periodically remains the most popular alternative 

among yield management practitioners. Differences between static and dynamic 

formulations of risk-based overbooking models are presented in Equation 5-26 and 

Equation 5-27 (Talluri and Van Ryzin 2004a).  

                                                                                           (5-26) 

                                              (5-27) 

  

 If, for static overbooking solutions assumptions about cancellation distribution 

and marginal cost and revenue suffice, for dynamic overbooking solution the intensity of 
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the cancellation process has to be considered as well. To describe the number of 

surviving reservations at time t - Zt(x), both types of models use a binomial distribution 

with survival probability- q(t).  For dynamic overbooking models time of cancellation 

refunds- r(t) and expected values of the new reservation requests D(t) have to be 

considered.     

 To determine the impact of time-to-event estimates of cancellation rates in the 

context of the general yield management problem, current simulation uses approximate 

solutions.  The main reasons for using a heuristic instead of an exact solution have been 

described in Chapter 2.  With the use of heuristics current dissertation establishes a lower 

bound on the revenue worthiness of a time-to-event cancellation forecast and limits the 

curse of dimensionality.   

 Finally, with respect to the set of assumptions used, our simulation differs from 

the state of practice on several aspects.  For the type of distribution used to describe the 

cancellation process current dissertation uses a Poisson distribution.  Indeed, since 

cancellations are analyzed from a time-to-event perspective, the intensity of the 

cancellation process depends on the distribution of cancellations from new bookings and 

not on the distribution of cancellations from bookings on hand.  In this context, 

determining cancellation probabilities based only on time until departure leads to 

identification problems.  Also, as a closely related alternative to the binomial distribution, 

the Poisson distribution has the advantage that exact knowledge about the population of 

risk and the probability of an event happening is not required.  As such, in the case of rare 

events, e.g., cancelled tickets, the Poisson distribution is more stable at predicting 

expected cancellation effects over long periods of time.  
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 For marginal revenue and marginal cost values
40

, this dissertation uses the lowest 

fare and the highest fare.  To determine overbooking limits, the newsvendor model 

(Littlewood rule) is used.  The expected number of cancellations is determined as the 

inverse of a cumulative Poisson distribution with probability equal with the critical ratio 

and the mean of the distribution equal with the forecast of cancellations (see Equations 5-

28, 5-29).  Finally, an overbooking factor is determined as the ratio between the expected 

number of cancellations and expected demand. 

                                                                                  (5-28)       

                         (5-29) 

5.3.4. Simulation of a single resource capacity control  

To assess the impact of time-to-event forecasts on the current yield management practice, 

a complete simulation of a single resource capacity control (SRCC) was designed. 

Revenue opportunities are identified by the expected difference between revenue streams 

of a SRCC under a time-to-event cancellation forecast and revenue streams of a SRCC 

under a state-of-practice cancellation forecast.  

 To replicate the deployment of a new yield management system, the SRCC 

simulation is divided between two stages: the preliminary stage and the simulation stage. 

The following paragraphs describe the details of the simulation for each of these two 

stages. 

 Preliminary stage is equivalent with an initialization cycle of a new yield 

management system.  Start-up values for the demand (mean and standard deviation) are 

                                                 
40

 Here, values refer to leg-defined fare buckets.  
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determined such they will match empirical characteristics of the ARC data sample.  For 

each time period of the booking horizon, overbooking and seat inventory controls are re-

adjusted using the Littlewood’s rule and the EMSR-b heuristic. Finally, demand is 

unconstrained and used to update original values of mean and standard deviation.   

 Figure 5-3 presents the conceptual framework of the preliminary stage.  To assess 

the impact of time-to-event cancellation forecasts on airlines revenue streams, two 

categories of overbooking controls (time to event -TTE and booking on hand - BOH) are 

applied to the same arrival stream. 

 

Figure 5-3: SRCC Simulation - Preliminary Stage 

 The first step in the preliminary stage simulation is the initialization of the main 

input values for SRCC simulation. The set of values for the capacity, the total gross 

demand, the fare structure, the number of booking intervals, and cancellation percentage 

identify the characteristics of a simulation scenario and are initialized using the following 

set of assumptions: 
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 To match current characteristics of domestic fleets, flight capacity is assumed to 

vary between 100 and 200 seats.   

 To guarantee that capacity allocation runs under saturated demand conditions, the 

start-up value for the total gross demand is determined as two times the available 

capacity.  

 Since information about fare buckets is not available, a simplified fare structure 

consisting of three classes with threshold
41

 values equal with $100 (discount), 

$200 (economy) and $300 (business) is assumed.  

 Booking horizon is divided into three day from departure booking intervals (0-14, 

15-21, and 22-90) or six booking intervals (0-7,15-21, 22-30, 31-45, 46-60, and 

61-90 ) booking intervals.  

 Total cancellation percentage is assumed to vary between 10% and 30%. 

 Initialization step is followed by the start-up step.  With the main input values 

defined, the SRCC simulation initializes the demand (mean and standard deviation of the 

gross demand and the conditional cancellation distributions) for each fare class and 

booking interval using characteristics of the ARC data sample.  Start-up values for gross 

demand (mean and variance) are estimated using the assumed total gross demand and the 

empirical distribution of gross demand resulted from ARC data sample. The mean of 

gross demand is determined by multiplying the assumed total gross demand with the 

correspondent ARC percentage.  The variance of demand is considered equal with the 

mean.   

                                                 
41

Used to identify fare buckets, i.e., $0 -$100 one-way fares are mapped  to discount class, $101-$200 one 

way fares are mapped to economy class, >$200 one way fares are mapped to business class. 
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 Similarly, start-up values for conditional cancellations (mean and variance) are 

estimated using the total assumed cancellation percentage, the total ARC dataset 

cancelation percentage (2.2%), and the sample hazard estimators resulted from ARC data 

sample. The mean of conditional cancellations is determined by multiplying the ratio 

between the assumed cancellation percentage and the empirical cancellation percentage 

with the correspondent ARC hazard estimator.  The variance of demand is considered 

equal with the mean.   

 To be able to store and update the mean and the standard deviation the 

distributions of gross demand and conditional cancellations across multiple time 

dimensions (i.e., time of booking and days from departure) current research uses a matrix 

format.  Figure 5-4 presents the mean and standard deviation matrixes for a booking 

horizon consisting of five intervals.  Both bookings with time of booking i and 

cancellations from bookings with a time of booking i at period j are assumed to be 

normally distributed: Nd (di, i
2
) and Nc (cij, ij

2
). 

 Initial values of gross demand and cancellations are used to determine the set of 

inputs for overbooking and capacity allocation controls procedures.  The estimation step 

uses mean values of the distributions of gross demand and cancellations and consists of 

two steps. First, according to procedures describes in Section 2.2 the sample estimates of 

the conditional probabilities of cancelling (hazards) - hij and of the state of practice 

cancellation probabilities (rates) - rj are determined.  Second, start-up values of the mean 

ndij and variance of the net demand distribution are estimated.  
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Figure 5-4: Time of Booking Data Storage  

 Following the estimation stage, the forecasting step generates future values of 

gross demand - F(di) as random realizations of current distributions.  To maintain 

consistency across time-to-event and booking-on hand streams, forecasts of booking on 

hand - F(bi) result as a difference between cumulative values of time-to-event gross 

demand and cumulative values time-to-event cancellations. Cancellations are computed 

using the set of cancellation probabilities (hij and ri) determined in the estimation stage 

and forecasts of gross demand and bookings on hand.  Forecasts of cancellations at time 

period j from bookings with a time a booking i - F(cij) result from multiplying the 

forecasts of gross demand F(di) with the estimates of cancellation hazards - hij.  Forecasts 

of cancellation at time period j form bookings on hand results from multiplying the 

forecasts of bookings on hand - F(bi)  with the estimates of cancellation rates - rj. 

 In the control step, forecasts combined with the estimates of net demand and 

cancellation probabilities are used to generate the arrival stream for the current run of 

Mean - Gross Demand and Cancellations 

Demand Cancel_5 Cancel_4 Cancel_3 Cancel_2 Cancel_1 

d5 c55 c54 c53 c52 c51 

d4  c44 c43 c42 c41 

d3   c33 c32 c31 

d2    c22 c22 

d1     c11 

 

 

Standard Deviation – Gross Demand and Cancellations 

Demand Cancel_5 Cancel_4 Cancel_3 Cancel_2 Cancel_1 

5 55 54 53 52 51 

4  44 43 42 41 

3   33 32 31 

2    22 22 

1     11 
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SRCC simulation and to determine the set of controls (overbooking and capacity 

allocation).  To isolate the effect of overbooking controls on revenue streams, the actual 

values of gross demand are considered equal with forecasts of gross demand.  In contrast, 

the actual values of cancellations are generated as random realization of the cancellation 

distributions - CC.   

 Simulated arrival streams result from the combination of actual gross demand and 

actual cancellations, each distributed across booking intervals according to Poisson 

arrivals.  To facilitate the update of simulation statistics and ensure consistency when 

processing arrival streams, a time-of-booking label is associated with each booking 

request and cancellation event.    

 Overbooking levels for each booking interval are estimated using the following 

steps:   

 Compute the mean of the cancellation distribution as a sum of conditional 

cancellations forecasts - F(cij; j=n,..i).  

  Use the risk based algorithm defined in Section 5.3.2 to determine the maximum 

number of allowed cancellations. 

 Divide the maximum number of cancellation by forecasts of gross demand and 

bookings on hand to determine cancellation proportions. 

 Compute the inverse of the survival proportion to determine overbooking factors. 

 Use estimates of overbooking factors multiplied by available capacity to 

determine overbooking levels (i.e., the maximum number of allowed reservations 

at a certain point in time).   
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 To determine capacity allocation controls a dynamically adjusted EMSR-b 

heuristic is used (see Section 5.3.1).  At each booking interval, estimates of expected 

future net demand for each fare class and overbooking levels are used to determine 

protection levels.   

 Using current values of the set of controls (overbooking and protections levels), 

the processing step generates a sequence of accept/reject decisions for booking requests.  

In this context, the state of practice for processing arrival streams was adjusted to take 

into account the fact that demand streams are generated in a multi-dimensional context 

(i.e., time-of-booking and days from departure).  First, simulation statistics (the number 

of accepted requests, the number of denied requests, cancellations, the net demand, and 

the available capacity) are recorded across both time dimensions.  Second, demand 

streams are processed across both sets of overbooking controls (time-to-event and 

bookings on hand).   

 In the context of a defined arrival stream, the processing procedure manages two 

sets of decisions: (1) accept or reject a booking request, and (2) process or not process a 

cancellation. With respect to the first category, a booking request is accepted if and only 

if the available capacity is greater or equal to one.  If available capacity is greater than 

one, a booking request is accepted provided that remaining capacity is greater or equal 

with the protection level of immediately higher class.    

 With respect to the second category of decisions, a cancellation for a fare class is 

processed if and only if there are available reservations in that class. To ensure 

consistency of arrival streams, the availability of reservations is checked across the time 

of booking dimension, i.e., cancellations at booking interval j from bookings with time of 
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booking i can only occur if the total number of reservations with time of booking i is 

greater or equal to one. 

 To avoid the spiral-down effect of revenues (Talluri and Van Ryzin 2004a), 

resulted values of gross demand and cancellations need to be unconstrained.  The 

unconstraining step uses the same level of detail as the processing step.  Resulted 

streams of gross demand and cancelations are unconstrained at a time-of-booking level.  

As a final stage of the preliminary stage simulation, the updating step uses 

unconstrained values of demand and cancellations to update the input matrixes.  Finally, 

to allow the values of gross demand and cancellations to stabilize, all steps of the 

preliminary stage were repeated for 15 times.  

 As the second stage of the simulation, the simulation stage is equivalent with the 

production cycle of a revenue management system. Since input values were stabilized 

during the “warm-up” stage, the revenue streams of the two simulation scenarios (time-

to-event and bookings on hand) can be recorded and compared.  Figure 5-5 presents the 

conceptual framework of the simulation stage. 

 

 Figure 5-5: Single Resource Capacity Control Simulation – Simulation Stage  

 Each run of the simulation stage re-estimates the time-to-event rates and the 

bookings-on-hand rates using updated values of gross demand and cancellations. These 

estimates are used as inputs to the preliminary stage cycle.  To compare the performance 
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of time-to-event forecasts with bookings-on-hand forecasts, simulation statistics are 

recorded and compared. For each scenario, the production cycle is repeated 100 times.  

Chapter 6: RESEARCH RESULTS 

This chapter sections presents research results. As an alternative to time-to-event models, 

estimation results of a MNL model are presented Section 6.1.  Results of time to event 

analysis are presented in Section 6.2 and organized in several subsections: exploratory 

analysis, DTPO cancellation hazard model, competing risk model, and validation of 

DTPO model.  Section 6.3 presents results of the Single Resource Capacity Control 

(SRCC) simulation.   

6.1. A Multinomial Logit Model of Ticket Exchanges and Refunds 

As an alternative to time-to-event models, a multinomial logit model of ticket exchanges and 

refunds is estimated at a leg level.   Using a sample of 6,204 ticketing records from the ARC data, 

MIA-SEA market, the effect of carrier, trip and booking characteristics on ticket exchanges and 

refunds is explored. 

 In the context of polychotomous models several hypothesis are tested.  First, compared to 

smaller carriers (market shares less than 10%) major carriers
42

 (i.e., carriers with market shares 

higher than 10%) are expected to exhibit higher exchange and refund probabilities.  Second, due 

to higher frequency of rescheduling activities, tickets booked closer to flight departure are 

expected to exhibit higher refund and exchange probabilities. Third, with lower price sensitivity 

and higher flexibility of associated fare rules, higher fare classes are expected to exhibit higher 

refund and exchange probabilities.  Fourth, since one way tickets are typically associated with 

                                                 
42

 For the considered markets major carriers are synonymous with legacy carriers 
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business travelers we expect them to exhibit higher refund and exchange probabilities when 

compared to round tickets. 

 The dependent variable in the multinomial logit model (MNL) is defined by passengers’ 

choice of exchanging, cancelling, or keeping the original ticket.  If P(y = m | x) is the probability 

of observing outcome m given characteristics x then the probability model for y is defined in 

Equation 6-1. 

1

exp( )
Pr( | )

exp( )

i m
i i J

i j

j

x
y m x

x

                             (6-1)  

For “no event” or “keep the original ticket” as reference category, MNL estimation 

results are presented in Table 6-1.  Results of MNL model indicate a good data fit and are 

generally consistent with the hypothesized scenarios. As expected, passengers flying on major 

carriers are more likely to cancel or exchange their tickets relative to minor carriers.  Relative to 

the reference category of all other carriers (defined as carriers with market share less or equal 

then 10%), both major carriers have higher probabilities of exchanges and cancellations, and 

higher frequencies of exchange behavior then cancellation behavior. These findings may capture 

market-specific characteristics such as the variety of itinerary and ticketing options provided by a 

major carrier, which is expected to be more important for business travelers. Moreover, to the 

extent that business travelers are more likely to select major carriers with frequent flight 

departures (that represents more re-scheduling opportunities), this result is consistent with 

hypothesized expectation that both cancellations and exchange rates would be higher for major 

carriers. 

  In terms of trip characteristics, it was expected that both cancellation and exchange 

probabilities would be higher for one-way fares.  However, results indicate that only cancellation 



 74 

probabilities are higher for one way fares.  Since we suspect that this is due to data 

misspecification
43

 we excluded the effects of one-way versus round trips from future analysis. 

Table 6-1: MNL Model of Exchange and Cancellation Choice for Airline Tickets 

                                                                      Standard               Wald 

 Parameter            choice            DF             Estimate                Error                 Chi-Square          Pr > ChiSq 

Intercept                   2                 1               -6.8331                 0.6381                114.6837                    <.0001 

Intercept                   1                 1               -1.9375                 0.1452                178.0680                    <.0001 

 

Carrier9                    2                 1                1.1145                 0.5358                     4.3271                   0.0375 

Carrier9                    1                 1                0.4363                 0.1269                   11.8129                   0.0006 

 

Carrier8                    2                 1                1.9554                 0.5067                   14.8949                   0.0001 

Carrier8                    1                 1                0.5529                 0.1192                   21.5282                   <.0001 

 

RoundTrip                2                 1                0.8031                 0.3761                    4.5601                   0.0327 

RoundTrip                1                 1               -2.2784                0.1437                 251.2181                   <.0001 

 

BookCurve0to3        2                 1              -1.8530                 0.6120                     9.1675                   0.0025 

BookCurve0to3        1                 1              -0.6664                 0.1525                   19.0916                   <.0001 

 

BookCurve4to7        2                1                -1.6347                0.6139                     7.0915                  0.0077 

BookCurve4to7        1                1                -0.1745                0.1587                     1.2097                  0.2714 

 

BookCurve8to14      2                1                -0.1737                0.3845                     0.2042                  0.6514 

BookCurve8to14      1                1                 0.0749                0.1549                      0.2340                  0.6286 

 

BookCurve15to21    2                1               -0.00624              0.3818                      0.0003                  0.9870 

BookCurve15to21    1                1                0.1631                0.1772                      0.8472                   0.3573 

 

BookCurve22to30    2                1               -0.3356               0.4346                       0.5961                   0.4401 

BookCurve22to30    1                1                0.0103               0.1989                       0.0027                   0.9588 

 

fare_ow                    2                1                0.00240             0.000675                 12.6290                   0.0004 

fare_ow                    1                1                0.000206           0.000263                   0.6150                   0.4329 

No observations                                               6204  

Log-likelihood at 0 - L(0)                              -2555.712 

Log Likelihood at convergence - L( )           -1779.262                      

-2(L(0)- L( ))                                                  1552.9  

R-Square                                                          0.2214     

Max-rescaled R-Square                                    0.3945 

Choice set: 2 - Exchange , 1-Cancel  0-Normalizing alternative (No event)  

 

The impact of time of booking on exchanges and cancellations is significant only for 

short-term horizon bookings (i.e., BookingCurve0to3 and BookingCurve4to7).  The results 

indicate that relative to tickets that are purchased eight or more days from flight departure, 

                                                 
43

 A significant number of tickets coded with round trip indicators had the outbound departure date missing.  
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passengers are less likely to exchange or cancel their tickets. Furthermore, the difference between 

the two choices overwhelmingly favors cancellation behavior over the exchange behavior. 

Intuitively, this result makes sense due to the underlying fare structure of airlines in this particular 

short period of time. Specifically, tickets purchased within the seven days of flight departure are 

generally higher fares that are refundable. 

Finally, the results indicate that as fare increases, exchange and cancellation are more 

likely to occur.  This is not surprising, as higher fares are typically associated with an increase in 

the availability of exchange and cancellation opportunities. To the extent in which higher fares 

are purchased by business travelers, the results are consistent with hypothesized scenario. 

6.2. Time-to-event Models  

Results of time to event analysis are structured in several sections. To motivate the use of 

a discrete functional form for the base line hazard, the first section presents the results of 

the exploratory analysis. The second section uses exploratory analysis results to estimate 

a Discrete Time Proportional Odds model for the intensity of the cancellation process 

(i.e., cancellation hazard). The last section presents goodness of fit the DTPO model 

compared with a series of binary logits.   

6.2.1. Exploratory Analysis for Base Line Hazard  

Exploratory analysis focuses on finding the most appropriate specification for the 

base line hazard.  Using the ARC ticketing data presented in Section 4.2 sample 

estimators of baseline hazard with associated 95% CI and interval ticket cancellations 

with associated lost to follow up tickets are estimated (see Figure 6-1 and Table 6-2).  

Figure 6-1 points out that the intensity of cancellations decreases with days from issue.   
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Table 6-2: Interval Ticket Cancellations and Lost to Follow up Tickets  
Day from 

Issue 
Total 

ni 

Cancel  
ci 

Follow-up 
fi 

Survival 
prob. 

Day from 
Issue 

Total 
ni 

Cancelled 
ci 

Follow-up 
fi 

Survival 
prob. 

0    1 154,367 37 2,966 0.9998 46    47 22,896 6 1,044 0.9612 

1     2 151,364 121 6,299 0.9989 47    48 21,846 8 936 0.9608 

2     3 144,944 188 4,772 0.9976 48    49 20,902 11 1,035 0.9603 

3     4 139,984 136 5,236 0.9966 49    50 19,856 13 972 0.9596 

4     5 134,612 164 4,862 0.9954 50    51 18,871 12 897 0.959 

5     6 129,586 179 4,692 0.994 51    52 17,962 11 821 0.9584 

6     7 124,715 182 4,034 0.9925 52    53 17,130 5 883 0.9581 

7     8 120,499 204 5,636 0.9908 53    54 16,242 9 715 0.9576 

8     9 114,659 150 3,632 0.9895 54    55 15,518 3 699 0.9574 

9    10 110,877 122 3,172 0.9884 55    56 14,816 7 703 0.9569 

10    11 107,583 97 3,260 0.9875 56    57 14,106 7 646 0.9564 

11    12 104,226 101 3,053 0.9865 57    58 13,453 3 694 0.9562 

12    13 101,072 97 3,054 0.9855 58    59 12,756 3 644 0.956 

13    14 97,921 102 2,999 0.9845 59    60 12,109 5 609 0.9556 

14    15 94,820 121 4,335 0.9832 60    61 11,495 3 561 0.9553 

15    16 90,364 70 3,360 0.9824 61    62 10,931 1 469 0.9552 

16    17 86,934 63 2,821 0.9817 62    63 10,461 7 517 0.9546 

17    18 84,050 63 3,029 0.981 63    64 9,937 3 518 0.9543 

18    19 80,958 66 2,825 0.9802 64    65 9,416 5 551 0.9538 

19    20 78,067 51 2,695 0.9795 65    66 8,860 6 517 0.9531 

20    21 75,321 79 2,773 0.9785 66    67 8,337 2 485 0.9529 

21    22 72,469 93 3,061 0.9772 67    68 7,850 3 418 0.9525 

22    23 69,315 58 2,562 0.9763 68    69 7,429 6 405 0.9517 

23    24 66,695 45 2,574 0.9757 69    70 7,018 2 385 0.9514 

24    25 64,076 32 2,467 0.9752 70    71 6,631 2 413 0.9511 

25    26 61,577 35 2,345 0.9746 71    72 6,216 2 417 0.9508 

26    27 59,197 34 2,258 0.974 72    73 5,797 1 403 0.9506 

27    28 56,905 41 2,157 0.9733 73    74 5,393 1 399 0.9505 

28    29 54,707 42 2,072 0.9726 74    75 4,993 3 364 0.9499 

29    30 52,593 30 2,191 0.972 75    76 4,626 2 357 0.9494 

30    31 50,372 36 2,251 0.9713 76    77 4,267 1 322 0.9492 

31    32 48,085 29 2,158 0.9707 77    78 3,944 3 339 0.9484 

32    33 45,898 19 2,060 0.9703 78    79 3,602 2 313 0.9479 

33    34 43,819 31 1,851 0.9696 79    80 3,287 1 335 0.9476 

34    35 41,937 35 1,808 0.9687 80    81 2,951 1 335 0.9473 

35    36 40,094 38 1,702 0.9678 81    82 2,615 1 281 0.9469 

36    37 38,354 27 1,549 0.9671 82    83 2,333 0 258 0.9469 

37    38 36,778 18 1,671 0.9666 83    84 2,075 1 284 0.9464 

38    39 35,089 32 1,539 0.9657 84    85 1,790 2 309 0.9452 

39    40 33,518 13 1,613 0.9653 85    86 1,479 0 283 0.9452 

40    41 31,892 22 1,530 0.9647 86    87 1,196 0 260 0.9452 

41    42 30,340 19 1,626 0.964 87    88 936 0 255 0.9452 

42    43 28,695 29 1,704 0.963 88    89 681 0 240 0.9452 

43    44 26,962 14 1,310 0.9625 89    90 441 0 230 0.9452 

44    45 25,638 15 1,457 0.9619 90    91 211 0 211 0.9452 

45    46 24,166 13 1,257 0.9614      

          

 

Also, for tickets booked well in advance of departure date the sample hazard 

exhibits a higher variability. Table 6-2 results point out the need to use a hazard model 
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formulation which accounts for the effect of lost to follow up (i.e., differential chances of 

being at risk of cancelling or the effect of time of booking).   

 

Figure 6-1: Non Parametric Hazard Estimates and 95% Confidence Intervals 

 

Figure 6-2 presents the survival Kaplan-Meier estimator and the point-wise 

estimate hazard hj=sj/nj (where sj – number of cancelled tickets during the j
th

 day from 

issue; nj – number of total tickets during the j
th

 day from issue).  To explore possible 

candidates for the baseline hazard, a lowess smoother with neighborhood bandwidth 

equal to 0.1 is associated with the point-wise estimators of sample hazard.    

With the exception of the 0-3 days from issue (DFI) time interval, the visual 

inspection of Figure 6-2 reinforces the idea of a decrease of cancellation hazard with days 

from issue.  However, the hazard decrease is not strictly monotonic, and one can observe 

large jumps in hazard values around 3, 7, 14 and 21 DFI combined with constant hazards 

for 21-45 and 46-80 DFI time intervals.   
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Figure 6-2: Non-Parametric Estimators for Survival and Hazard Functions 

 

Lower values of the cancellation hazard in the 0-3 DFI time period relative to the 

4-7 DFI time period are somehow surprising. In analyzing this phenomenon, one has to 

consider the way in which population at risk is considered. For example, the population at 

risk for the 0-3 DFI time period includes the entire mix of business and leisure 

passengers.  In this context, without an indicator to separate tickets cohorts based on their 

time of booking the effects of business versus leisure are difficult to isolate.  

One possible explanation for the hazard decrease is the fact that business 

passengers purchasing very close to departure (present only in the DFI 0-3 period) are 

more certain of their travel plans and thus less likely to cancel and exchange tickets.  

Another explanation is the stricter set of rules associated with tickets purchased in the 

near proximity of departure date.  Regardless of the reason, Figure 6-2 points out that the 

development of the cancellation hazard over time results from a combination of time of 

booking and days from issue (or days from departure and days from issue) effects.  The 

hazard jumps at 3, 7, 14 and 21 DFI followed by constant values for 21-45 and 46-80 DFI 

time intervals are consistent with refund and exchange rules associated with advance 
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purchase policies. Indeed, all classes of refundable tickets are entitled to refunds provided 

changes are made until advance purchase deadlines.  

 

6.2.2. Cancellation Hazard - Discrete Time Proportional Odds (DTPO) Model  

Findings of Section 6.2.1 were used as a basis to define three baseline hazards 

specifications for the DTPO model: linear, logarithmic and discrete ((0-3], (3-7], (7-14], 

(14-21], (21-45] and (45-90]).  Estimation results for the transformed ARC dataset using 

these specifications are presented in Table 6-3.  The likelihood ratio test and non-nested 

hypothesis tests were used to statistically compare the fit of the different models and 

select the discrete formulation as the preferred specification.  Formally, the likelihood 

ratio test rejects the null hypothesis that the linear and discrete models are equal at a 

0.001 significance level since 2
4 0 001-2 >> , .R ULL LL , or 66.7>>18.5.  Likewise, the 

non-nested hypothesis test (Horowitz 1982) rejects the null that the logarithmic and 

discrete models are equal; the significance of the decision rule for this test is given by (-

12.64) = << 0.001. 

Table 6-3: Comparison of Baseline Hazard Specifications 

Baseline hazard functional form ij  
Parameter Estimates Log 

Likelihood 

Pseudo-

R2 

0_3 0_3 21_45 21_45 45_90: ...Discrete d d

 

0_3 4_ 7

8_14 15_ 21

22_ 45 46_90

0.981 1.240

0.959 0.723

0.470 7.778

  

-26,686.20 0.0071 

: ln( )Logarithmic t  6.419 0.236   -26,764.74 0.0042 

:Linear t  6.634 0.020  -26,719.56 0.0059 

 

The estimation results of the Discrete Time Proportional Odds model are 

presented in     Table 6-4 (odds-ratio format). We report an adjusted R-square of the 
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DTPO model equal with 0.057 and significant effects of all considered covariates on the 

cancellation hazard. 

    Table 6-4: Discrete Time Proportional Odds Estimation Results 

Covariates  [95% Confidence Interval] 

Parameter z-stat lower bound upper bound 

Time (DFI=Days from Issue; reference category 46-90 days from issue)  

    DFI_0_3 2.135 8.19 1.780 2.559 

    DFI_4_7 2.966 12.32 2.495 3.526 

    DFI_8_14 2.461 10.36 2.075 2.918 

    DFI_15_21 2.048 7.88 1.714 2.448 

    DFI_22_45 1.681 5.98 1.417 1.993 

Days from Departure (DFD)  

    DFD 0.963 -24.22 0.960 0.966 

Group Size (reference= one person)  

    2 people 0.440 -13.93 0.392 0.494 

    3 or more people 0.304 -10.88 0.245 0.377 

Saturday Night Indicator  

    Saturday night  0.779 -5.66 0.714 0.849 

Outbound Day of the Week (reference = Sunday)  

    Monday 1.297 4.33 1.153 1.460 

    Tuesday 1.275 3.86 1.127 1.442 

    Wednesday 1.135 1.99* 1.002 1.287 

    Thursday 0.862 -2.14 0.753 0.987 

    Friday 0.823 -2.74 0.716 0.946 

    Saturday 0.945 -0.71* 0.809 1.104 

Market (reference =Bos-Mia) 

    Bos-Sea 0.653 -7.69 0.586 0.728 

    Hnl-Ord 0.441 -5.69 0.333 0.585 

    Mia-Bos 0.618 -7.28 0.543 0.703 

    Mia-Sea 1.347 3.86 1.158 1.567 

    Ord-Hnl 0.669 -4.85 0.569 0.788 

    Sea-Bos 0.629 -7.61 0.558 0.709 

    Sea-Mia 0.625 -5.86 0.535 0.732 

Carriers (masked information)  

    Carrier 2 1.133 2.20 1.014 1.266 

    Carrier 3 0.392 -10.79 0.331 0.465 

    Carrier 4 0.804 -2.20 0.662 0.977 

    Carrier 5 1.089 1.20* 0.948 1.250 

Pro-Rated Fare  

    Fare 1.001 20.35 1.001 1.002 

Goodness of fit statistics   

    Number of obs.   151,401   (equivalent of  3,707,425( day-person observations) 

    LR chi2(df)  3100.41 (27) 

    Pseudo R
2
    0.0577 

    Log likelihood -25327.923 

    Note: Z-stats are reported against estimated coefficients (not shown).   

          

The highly significant coefficient of days from departure indicates that 

cancellation rates depend on how close passengers are from their departure date. As 
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expected, the coefficient shows a decrease in the odds of cancelling by a factor of 0.96, 

with each extra day from departure suggesting a strong effect of the “last-minute” change 

of plans on cancellations. Given cancellation rates are influenced both by the time from 

ticket purchase (issue) and the time from departure, results from this study reinforce 

previous empirical evidence (Westerhof 1997) on the violation of the memoryless 

property.  

In view of currenlty methods used to forecast cancellation rates, this finding is 

particularly important. Specifically, it suggests that determining cancellation proportions 

only as extrapolations of previously realized values
44

 may not be valid, as different 

cancellation proportions will be observed depending on when a passenger tickets (see, 

Figure 6-3).   

 

Figure 6-3: Evidence on the Violation of the Memoryless Property 

 

Several other covariates were also examined in the study, including the outbound 

departure day of week, presence of a Saturday night stay on the itinerary, group size, 

                                                 
44

 The use of separate cancellation rates for each booking class only partially corrects for this problem, as 

some booking classes are available for purchase over the entire (or large portion) of the booking horizon. 
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carrier, market, and pro-rated fare.   These variables typically associated with leisure 

passengers exhibit decreased cancellation rates. For passengers with a Saturday night 

stay, the odds of cancelling decrease by a factor of 0.78 relative to those without a 

Saturday night stay.  In addition, the odds of cancelling for passengers traveling in groups 

decrease by factors of 0.30 to 0.44 relative to passengers traveling alone.  Those traveling 

with two or more individuals are less likely to cancel than those traveling with just one 

other person.  Finally, the odds of cancelling for passenger traveling outbound early in 

the work week (typically associated with business travelers) are higher than those 

departing later in the week.  Specifically, relative to the reference category (Sunday), the 

odds of cancelling for Monday, Tuesday and Wednesday departures increase by factors 

of 1.30, 1.28 and 1.14, respectively, while the odds of cancelling for Thursday, Friday 

and Saturday decrease by factors of 0.86, 0.82 and 0.95, respectively. 

The effects of the last three categories of covariates: Market, Carrier, and the 

Pro-Rated Fare, although significant, are more difficult to generalize because of 

endogenity concerns (the fare is highly correlated with market, and different carriers may 

impose different refund and exchange ticketing policies).   

6.3. DTPO Model Validation – Receiver Operating Characteristics Analysis 

 The purpose of current validation procedures is to compare predictive 

performance of a Discrete Time Proportional Odds model to a series of binary logit 

models.  In this context, the two categories of models are ranked across two validation 

procedures: (1) the likelihood of cancellation, and (2) predicted number of cancellations.   

 With respect to the first category, the DTPO model and the series of binary logit 

models are ranked in the ability to predict the propensity of the cancellation process, i.e. 
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the conditional probability of cancelling tickets. With respect to the second category, the 

DTPO model and the series of binary logit models are compared in the ability to predict 

future number of cancellations.  To generate model predictions, the ARC data are divided 

into estimation (75% of the data) and holdout (25% of the data) samples.  Also, to ensure 

unbiasness of model estimators observations from holdout sample are randomly selected.   

 To assess the ability of models to correctly predict cancellation hazards, Receiver 

Operating Characteristics (ROC) analysis is used. For both categories of models, 

maximum likelihood coefficients from estimation data sample are used to predict 

conditional cancellation probabilities of the holdout data sample.  For the DTPO model, 

this procedure is used only once.  For the second category of models, a binary logit model 

is estimated for each of the time intervals of the DTPO model described in Section 6.2. 

Estimation results for the two categories of models are presented in Appendix B.  As a 

performance indicator of the two categories of models Figure 6-4 presents the ROC area 

plots.  

 

Figure 6-4: ROC Areas for DTPO and Binary Logit Models 
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 For each of the time intervals, ROC areas are determined as the total sum of 

predicted probabilities of passengers in the hold-out sample that cancelled tickets (true 

positive rate).  When compared to a series of binary logit models the DTPO model ranks 

superior in the ability to predict the propensity of the cancellation process for all time 

intervals in the booking horizon. 

 To compare models predictive performance in terms of number of cancellations, 

predicted probabilities are summed over the set of available observations in the hold-out 

data. Figure 6-5 presents predicted number of cancellations for each time interval. 

Although differences between the two categories of models are very small, the DTPO 

model prediction performance is superior to a series of binary logits. 

 

Figure 6-5: Number of Cancellations for DTPO and Binary Logit Models 
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 Overall, model validation results indicate that when compared to a series of 

binary logits the DTPO model does a better job of explaining and predicting the 

propensity of passengers’ to cancel tickets.     

6.4. Single Resource Capacity Control Simulation Results 

In the context of time-to-event and bookings-on-hand cancellations forecasts Table 6-5 

and Table 6-6 present the results of the SRCC simulation.  Using procedures described in 

Section 5.3.4, revenues for 16 x 2 scenarios are estimated and compared.  Estimation 

results prove that when compared with current state of practice, time-to-event 

cancellation forecasts typically generate additional revenues.  Minimum revenues uplifts 

vary from -0.24% to 3.33% while maximum revenue uplifts vary from 0.27% to 9.06% 

(see Figure 6-6).  

              Table 6-5: Revenues for Time-to-Event (TTE) Streams 

CAP Per N_BI 

Revenue BOH 95% confidence intervals 

Mean Variance lower  upper 

100 10 3 17,914 8,937,580 12,054 23,774 

100 20 3 17,512 5,232,178 13,029 21,995 

100 30 3 18,342 4,984,481 13,966 22,718 

150 10 3 29,717 14,314,557 22,301 37,133 

150 20 3 28,058 10,624,077 21,669 34,447 

150 30 3 24,633 7,400,819 19,301 29,965 

200 10 3 38,709 18,424,666 30,296 47,122 

200 20 3 34,535 10,941,894 28,052 41,018 

200 30 3 34,114 11,573,135 27,446 40,782 

100 10 6 21,412 4,398,844 17,301 25,523 

100 20 6 19,605 3,387,955 15,997 23,213 

150 10 6 30,581 5,482,363 25,992 35,170 

150 20 6 29,894 6,422,994 24,927 34,861 

150 30 6 26,862 2,060,360 24,049 29,675 

200 10 6 38,013 9,426,193 31,995 44,031 

200 20 6 41,067 6,701,223 35,993 46,141 
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 Table 6-6: Revenues Uplifts from Bookings on Hand (BOH) Streams 

CAP Per N_BI 

Difference 
Revenue 95% confidence intervals 

Mean Variance lower  upper 

100 10 3 244 3,978 120 368 

100 20 3 957 13,033 733 1,181 

100 30 3 832 13,682 603 1,061 

150 10 3 764 8,179 587 941 

150 20 3 1,256 8,741 1,073 1,439 

150 30 3 968 29,890 629 1,307 

200 10 3 490 6,249 335 645 

200 20 3 1,049 19,824 773 1,325 

200 30 3 958 19,632 683 1,233 

100 10 6 -1 944 -61 59 

100 20 6 69 1,110 4 134 

150 10 6 4 1,151 -63 71 

150 20 6 207 2,602 107 307 

150 30 6 261 7,571 90 432 

200 10 6 16 2,081 -73 105 

200 20 6 1,039 8,514 858 1,220 

 

 

 
 

Figure 6-6: Revenue Uplifts for Time to Event Forecasts  
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 To better understand the role of input parameters in generating revenue uplifts in 

the context of time-to-event (TTE) cancellation forecasts, Table 6-7 present the result of a 

linear regression model with the dependent variable equal with the percentage revenue 

increase. 

Table 6-7: Uplift from Time-to-Event Cancellation Forecast (Linear Regression) 

  Coefficients Std. Error t Stat 
P-

value 
Lower 
95% Upper 95% 

Intercept 0.08330 0.02175 3.830 0.002 0.036 0.131 

Capacity -0.00012 0.00010 -1.211 0.249 0.000 0.000 

Cancellation Percentage 0.00134 0.00050 2.706 0.019 0.000 0.002 

Booking Intervals -0.01285 0.00260 -4.942 0.000 -0.019 -0.007 

R Square 0.77           

Adjusted R Square 0.71           

 

 We report an adjusted R-square of 0.77 and significant coefficients for the 

cancellation percentage and the number of booking intervals.  As expected, the effects of 

cancellation percentage and booking intervals on the revenue generated by time-to-event 

cancellation forecasts are opposite.  For one unit increase in cancellation percentage, the 

percentage increase in revenue from a time-to-event cancellation forecasts is equal with 

0.00134.  In contrast, for one unit increase in the number of booking intervals the 

percentage decrease in revenue from a time-to-event cancellation forecast is equal with 

0.01285.  These findings point out that time-to-event cancellation forecasts are 

particularly powerful for carriers with a simple fare structure and relatively simple 

advance purchase structure
45

.  

 Surprisingly, under time-to-event cancellation forecasts, capacity does not appear 

to have a significant impact on revenue increases.  This finding contradicts empirical 

                                                 
45

 Low cost carriers or regional jets are good candidates.  
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examples of Subramanian et al. (1999)  that show that “when we have the possibility of 

cancellations the function un and the optimal policy depend on the total capacity, C, and 

the capacity remaining s=C-x.”  This result is part due to the way in which the general 

yield management problem was approached (i.e., heuristic versus optimal) and due in 

part to conceptual differences between time-to-event forecasts and bookings-on-hand 

forecasts. 

 

Chapter 7: CONTRIBUTIONS AND FUTURE RESEARCH 

 

 There are four main contributions of this work.  First, in the context of the general 

yield management problem it presents an updated literature review of cancellation 

forecast practice.  Differences between pre-deregulation and post-deregulation era are 

described and empirical evidence which question properties of cancellation probability 

are discussed.   

 Second, in order to decide what type of data to use to determine transitional 

properties of the cancellation process, ticketing and booking data sources are contrasted.  

As an alternative to the current state of practice, this research uses the Airline Reporting 

Corporation (ARC) ticketing data.  Compared with previous data sources, the ARC data 

permits the analysis of the cancellation process from a multi-market multi-carrier 

perspective and ties directly to the financial streams of carriers.  

 Third, compared to cancellation models reported in the literature or used in 

practice, this research is the first to motivate and use more “customer-focused” models. 

First, for a subset of ARC data, properties of the static propensity of ticket cancellations 

are explored using a multinomial logit model (MNL).  Second, based on the occurrence 
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of refund and exchange events in sample of ticketing data from the Airline Reporting 

Corporation (ARC), a DTPO “cancellation” model for the outbound legs of an airline 

itinerary for groups ticketing within 90 days of flight departure is estimated.  Third, the 

goodness of the DTPO model is compared with a series of binary logits using ROC 

analysis.   

 In contrast to current state of practice for cancellation models which considers 

cancellation probabilities to be memoryless, we show that the propensity of cancelling 

develops from a combination of time effects.  Our findings reinforce latest empirical 

studies in the airline industry and indicate that the intensity of the cancellations process 

depends both on days from departure and days from issue.  Moreover, higher 

cancellations rates are observed for recently purchased tickets, and for tickets whose 

associated flight departure dates are near.   

 In addition to time effects, this dissertation demonstrates the dependence of the 

cancellation process on several other covariates.  As expected, segmentation effects (i.e., 

Saturday night stay) are significant with leisure passengers less prone to cancel than 

business passengers.  Similarly, compared with itineraries departing late days of the week 

(Thursday, Friday, and Saturday) the intensity of cancellations of itineraries departing 

early days of the week (Monday, Tuesday, and Wednesday) is higher.  Finally, higher 

groups have lower cancellation rates.  

 Fourth, to assess the effect of time-to-event forecasts on revenue stream a 

complete single resource capacity control (SRCC) simulation is designed and executed. 

Results of the simulation indicate that compared with current state of practice of 
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cancellation forecast (i.e. bookings on hand and anchored in departure date), time to 

event cancellation forecast result in additional revenues up to 9%. 

One of the limitations of current dissertation is that it reports a smaller proportion 

of cancellations (less than 8% across all markets) than proportions from booking data.  

For example, Smith, Leimkuhler et al. (1992) report a combined no-show and 

cancellation proportion of 50% for American Airlines; while these rates vary across 

carriers and markets and may have decreased over time, cancellation proportions of 30% 

or more are not uncommon today.  

 Therefore, one of the questions that naturally arise from this study is: Why is 

there a large discrepancy in cancellation proportions between booking and ticketing data?  

One possible explanation is that booking data (and revenue management systems) are 

capturing the initial searching and pre-purchasing behavior of passengers.  This would 

occur, for example, if a business traveler called a travel agent to booked a reservation, but 

then waited a few days to either modify or pay for the reservation once travel plans 

became more firm.  In general, the time period a reservation can be held is short – 24 to 

48 hours.  Thus, failure to pay for a reservation could lead to rebooking the same (or 

similar) itinerary multiple times.  Part of this booking activity or booking “churn” as it is 

more commonly referred to may be represented in ARC “void” data.  The void data 

represents tickets that were created, but not purchased and thus “voided” before a 

financial transaction was required.  

 Acknowledging this statute of limitation current dissertation uses a range of 

cancellation percentages (10% to 30%) to “inflate” the original cancellation percentage, 

to determine the impact of time to event forecasts.  In the context of missing cancellations 
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(voids, other), this adjustment should provide good estimates provided that the effect of 

the booking churn is constant over time.   

As such, one possible extension of current analysis is to estimate a model that will 

estimate and possible isolate the effect of cancellations from voids.  This should permit a 

better linkage between cancellation rates determined using ARC ticketing data and 

cancellation rates determined using booking data. Also, if we assume that the risk of 

canceling tickets due to voids is fundamentally different from the risk of cancelling 

purchased tickets (with the former having a much smaller probability of surviving past 

two days), other modeling methodologies (including competing risks or a multi-stage 

estimation approach) may be appropriate.  

The second area of further refinements is way in which cancellation forecasts are 

implemented in the SRCC simulation.  Although, transitional properties of the 

cancellation process are estimated using disaggregate data, the SRCC simulation uses 

estimated average effects when forecasting for cancellations.  Despite its tractability in 

the context of traditional revenue management, the SRCC simulation does not assess the 

impact of time to event forecasts for a discrete choice revenue management.  To fully 

capture the effects of a time-to-event cancellation forecast at a disaggregate level the 

SRCC simulation needs to be adjusted accordingly.   In this context, a new algorithm 

capable of jointly optimizing capacity allocation and overbooking controls in the context 

of non-stationary cancellation process needs to be designed.    
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Appendix A - Airline Reporting Corporation (ARC) fields   

TERM DEFINITION POSSIBLE VALUES

1. Carrier The airline reported on the flight coupon 

as the transporting carrier for an airport 

pair.

ARC assigns a random number to identify 

unique carriers within the specified city pair, 

yet mask the identity of an individual carrier.  

2. Issue Date The date the specified ticket was issued 

by the ARC

Any day, formatted as MM/DD/YY, prior to and 

including the Departure Date.

3-4. Departure Date The departure date for inbound and 

outbound segments

Any day in the calendar year 2004, formatted 

as MM/DD/YY.

5-6. Departure Date 

New

The departure date for inbound and 

outbound segments, displayed in 

association with an exchange event 

Any day, formatted as MM/DD/YY, prior to, 

including, or after the Departure Date 

(original).

7. Exchange Date The date, as applicable, associated with 

an exchange event - full or partial - on a 

ticket.

Any day, formatted as MM/DD/YY, prior to, 

including, or after the Departure Date 

(original); 

8. Refund Date The date, as applicable, associated with a 

refund event on a ticket.

Any day, formatted as MM/DD/YY, prior to, 

including, or after the Departure Date 

(original); 

9. Void Date The date, as applicable, associated with a 

voidevent on a ticket.

Any day, formatted as MM/DD/YY, prior to, 

including, or after the Departure Date 

(original);

10. Exchange Fee The fee, if any, associated with an 

exchange event.

A numeric value, expressed in USD currency, 

formatted to the hundredths (e.g. $49.75).

11. Fare The value, net of taxes and other fees, 

listed on the ‘Fare’ field of a ticket.

Any numeric value, expressed in USD 

currency, greater than or equal to 0, 

formatted to the hundredths (e.g. $209.99)

12. Fare Difference Exchange event = calculated by 

subtracting the old fare value from the 

new fare.

A positive or negative numeric value, 

expressed in USD currency, formatted to the 

hundredths (e.g. $49.75).

13-14. New Flight # Ind A code applied to indicate when the flight 

number associated with an exchange 

event is different 

A 1-character numeric value.  1 = Yes; 0 = 

No; 

15. Ticketing Class A high-level categorization of tickets 

associated with the first character (prime 

code) on the Fare Basis Code; 

First, Business, Economy/Coach, or Other.  

First = (A, F, or P); Business = (C, D, I, J, or 

Z); Economy/Coach = (B, H, K, L, M, N, Q, S, 

T, V, W, X, or Y); Other = (E, G, O, R, or U). 

ARC utilizes the standard codes as defined 16. Ticketing Class 

New

If for an exchange event the value is 

different from the original value.

First, Business, Economy/Coach, or Other.

17-18. Ticketing Class 

Code

The first character (prime code) of the 

Fare Basis Code, defined by carriers to 

specify the type of fare applicable.  (e.g. F, 

C, Y, etc…)

A 1-character alpha value.

19-20. Ticketing Class 

Code New

The first character (prime code) of the 

Fare Basis Code, reported in association 

with an exchange event 

A 1-character alpha value.

21. Trip Type The type of trip on an itinerary. A 2-character alpha value; OW (One Way) or 

RT (Round Trip)
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Appendix B - ROC Analysis Estimation Results    

HAZARD LOGIT 0_3 LOGIT 4_7 LOGIT 8_14 LOGIT 15_21 LOGIT 22_45 LOGIT 46_90

DFI_0_3 0.573***

DFI_4_7 1.116***

DFI_8_14 0.943***

DFI_15_21 0.763***

DFI_22_45 0.551***

DFD -0.0378***

GSize2 -0.816*** -1.149*** -1.075*** -0.890*** -0.819*** -0.772*** -1.050***

GSize3plus -1.235*** -1.079** -1.227*** -1.367*** -1.595*** -1.315*** -1.409**

SatInd -0.265*** -0.324* -0.470*** -0.387*** -0.549*** -0.0865 -0.335

Monday 0.244*** 0.0800 0.340* 0.631*** 0.435* 0.166 0.0557

Tuesday 0.252*** 0.117 0.454** 0.629*** 0.392* -0.101 0.301

Wednesday 0.0923 -0.242 0.354* 0.470** 0.126 -0.111 0.132

Thursday -0.107 -0.420* 0.0453 0.188 0.325 -0.606*** 0.505

Friday -0.178* -0.103 -0.282 0.175 -0.161 -0.407* -0.247

Saturday -0.0269 -0.206 -0.0903 0.247 0.0972 -0.227 0.172

BosSea -0.426*** -0.186 -0.425** -0.446** -0.722*** -0.678*** 0.0775

HnlOrd -0.983*** -1.423* -0.425 -1.484** -1.507** -1.500*** -2.363*

MiaBos -0.532*** -0.597** -0.431** -0.240 -0.410* -0.686*** -1.472*

MiaSea 0.343*** 0.105 0.356 0.599*** 0.0212 0.319 -0.430

OrdHnl -0.381*** -0.852** -0.859*** -0.650** -0.443 -0.457* -1.235*

SeaBos -0.416*** -0.243 -0.483** -0.352* -0.419* -0.697*** -0.453

SeaMia -0.505*** -0.407 -0.737*** -0.468* -0.912*** -0.331 -1.057*

Carrier2 0.138* 0.0163 0.181 0.121 0.237 0.203 0.0239

Carrier3 -0.981*** -1.152*** -0.749*** -0.968*** -1.371*** -0.819*** -1.487**

Carrier4 -0.252* -0.455 -0.199 -0.274 0.0500 -0.243 -0.382

Carrier5 0.094 0.0623 0.199 -0.249 0.188 0.261 0.454

FarePro 0.00127*** 0.00119*** 0.00162*** 0.00193*** 0.00185*** 0.00205*** 0.00236***

_cons -6.813*** -5.238*** -5.047*** -5.002*** -4.837*** -4.082*** -4.501***

N 2894317 113551 100941 86011 67758 52018 17205

pseudo R-sq 0.057 0.038 0.053 0.052 0.051 0.045 0.065

LL 0 -20148.6 -2545.3 -3326.5 -3512.5 -2255.0 -2926.0 -700.5

LL -18991.3 -2447.9 -3151.7 -3328.9 -2141.1 -2795.8 -654.9

* p<0.05 ** p<0.01  *** p<0.001
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