Project Information Form

	<u>, </u>
Project Title	Next-Generation Wireless Bridge Weigh-in-Motion (WIM) System Integrated with Nondestructive Evaluation (NDE) Capability for
	Transportation Infrastructure Safety
University	Georgia Institute of Technology, University of Alabama at Birmingham
Principal Investigator	Yang Wang, Nasim Uddin, Laurence J. Jacobs, Jin-Yeon Kim
PI Contact Information	Dr. Yang Wang
	School of Civil and Environmental Engineering
	Georgia Institute of Technology
	790 Atlantic Drive
	Atlanta, GA 30332-0355
	Phone: (404) 894-1851, FAX: (404) 894-2278
	Email: yang.wang@ce.gatech.edu
Funding Source(s) and	\$ 244,562 (UTC) + \$177,949 (GDOT) + \$109,075 (ALDOT)
Amounts Provided (by each	
agency or organization)	
Total Project Cost	\$313,436
Agency ID or Contract	DTRT12GUTC12
Number	
Start and End Dates	05/01/12 ~ 08/15/14
Brief Description of	This proposal seeks to develop a wireless WIM+NDE system as a solution
Research Project	to the premature transportation infrastructure safety problem, for the
	first time ever, in a two-fold approach: control of overloaded trucks and
	safety assessment/monitoring of transportation infrastructure. The
	system contains individual wireless sensing nodes that integrate state-of-
	the-art shear strain sensors suitable for concrete bridge components, and
	ultrasonic nondestructive evaluation (NDE) devices suitable for steel
	components.
Describe Implementation of	The main goal of current research work is on simulation of heavy
Research Outcomes (or why	vehicle to bridge interaction using advanced finite element modeling
not implemented)	technique in order for effective use with the moving force
(4.1. 1.4. 51.1.)	identification (MFI) algorithm for the B-WIM system for enforcement
(Attach Any Photos)	and safety assessments. For this reason, the 3D heavy vehicle model was created with a complex suspension and damping system along
	with pneumatic tires. In addition to this, the 3D bridge model was
	developed with different types of elements such as beam, shell and

solid. Transient dynamic vehicle to bridge interaction analysis was carried out based on numerical finite element computational mechanics using LSDYNA advanced computer program. We are in the process of mapping the 3D LSDYNA output of bridge-vehicle interaction analyses onto recently developed MFI algorithm from this current project. Our recently developed MFI algorithm is not, however, capable of integrating high fidelity simulation output from 3D LS DYNA. So significant efforts are currently underway on upgrading MFI algorithm and implementing the approach on a US-78 bridge. Free of Axle Detection (FAD) Sensors ШПППП ППППП 12800 cm 12800 cm 12800 cm (0) Test Span (2)Weighing Sensor Weighing Sensors 45.72 30.48 Weighing and FAD sensor locations at US-78 Bridge Impacts/Benefits of • The efforts are underway for the real time application of advanced FE simulation into MFI algorithm on a US-78 bridge to Implementation (actual, not improve the axle detection of the current B-WIM system therefore anticipated) making it more reliable for enforcement and safety assessment. http://nctspm.gatech.edu/pi/next-generation-wireless-bridge-weigh-Web Links motion-wim-system-integrated-nondestructive-evaluation-nde Reports Project website