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SUMMARY 

 

 All computer simulation models require some form of initialization before their 

outputs can be considered meaningful. Simulation models are typically initialized in a 

particular, often “empty” state and therefore must be “warmed-up” for an unknown 

amount of simulation time before reaching a “quasi-steady-state” representative of the 

systems’ performance.  The portion of the output series that is influenced by the arbitrary 

initialization is referred to as the initial transient and is a widely recognized problem in 

simulation analysis.  Although several methods exist for removing the initial transient, 

there are no methods that perform well in all applications. 

 This research evaluates the effectiveness of several techniques for reducing 

initialization bias from simulations using the commercial transportation simulation model 

VISSIM®.  The three methods ultimately selected for evaluation are Welch’s Method, 

the Marginal Standard Error Rule (MSER) and the Volume Balancing Method currently 

being used by the CORSIM model.  Three model instances – a single intersection, a 

corridor, and a large network – were created to analyze the length of the initial transient 

for varying scenarios, under high and low demand scenarios. 

 After presenting the results of each initialization method, advantages and 

criticisms of each are discussed as well as issues that arose during the implementation.  

The results for estimation of the extent of the initial transient are compared across each 

method and across the varying model sizes and volume levels.  Based on the results of 

this study, Welch’s Method is recommended based on is consistency and ease of 

implementation. 
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CHAPTER 1 

 INTRODUCTION 

 

 Over the past several decades, computer simulation has become an increasingly 

vital instrument for the analysis of transportation networks.  By using simulation, 

complex networks can be analyzed in a risk-free environment to test assumptions and 

preview possible outcomes to determine their potential for implementation [1].  

Simulation provides an enormous amount of flexibility to manipulate conditions that 

could influence the operation of the network.  For instance, if an impact analysis of the 

closure of two lanes due to an accident or construction is desired, simulation can be used 

to model the impact on the network without the need to physically close the two lanes.  

Another example would be if several proposals for the configuration of an interchange 

are being considered, an analyst can run a computer simulation model of each alternative 

to see which proposal can maximize the operational efficiency.    

 The ability to integrate traffic demand forecasting into simulation models can be 

extremely useful for transportation planning purposes.  Simulations can be utilized to 

model the performance of the existing roadway under future demands to help determine 

which arterials cannot handle future capacity and need expanding.  Given the myriad of 

ways transportation simulation can be used to critically analyze travel conditions, it is 

extremely important that the data processing aspect of the simulation analysis be 

fundamentally sound.  One area requiring additional development is guidelines to govern 

the initialization of transportation simulation models in the determination of when it is 

appropriate to begin collecting statistics.  
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 The simulation start-up problem is of significant interest and has been studied 

greatly in literature.  When a model is initialized in a condition uncharacteristic of steady-

state, bias may be introduced into determined estimators leading to inaccurate results.  

There are two common methods of mitigating the initialization bias problem.  The most 

common approach is truncation, or discarding the initial data influenced by the starting 

conditions.  The second approach is intelligent initialization, or starting the model in a 

state with a high probability of equilibrium.  However, it is not always convenient or 

even practical to start the simulation is such a state [2].  More importantly, determining 

what equilibrium means in a transportation model can be difficult and arbitrary.  For 

example, determining a priori how many vehicles to queue at each light, where to place 

all the vehicles, and what initial speed is nearly impossible in most instances. 

 A possible challenge to the use of simulation models for analysis is determining if 

the given model reaches steady-state.  For instance, some argue that transportation 

models never achieve stationarity because they not converge on a constant value [3].  

Due to the nature of traffic signals, vehicles arrive in platoons and travel times can 

fluctuate substantially over the course of several minutes.  Thus, as a part of this effort a 

definition of steady-state will also be established.  

 

1.1  Need for Study 

 The need to eliminate initialization bias, also known as the start-up problem, is a 

widely recognized challenge with simulation analysis.  This occurs because non-

terminating simulations do not have predefined run lengths or initial conditions.  The 

processes must be initialized arbitrarily, which creates bias in steady-state parameter 
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estimates.  Although methods of removing initialization bias exist, there is currently no 

largely accepted method that performs suitably in all applications.  Additionally, there is 

an overall negligence of the initial transient problem in practice [4].  Robinson (2005) 

stated that “the availability of commercial simulation software has placed simulation 

model development into the hands of non-experts by removing the need for a detailed 

knowledge of programming code” [5].  As a result, many simulation models are likely 

being improperly used. 

 

1.2  Study Objective 

 The purpose of this study is to analyze the effectiveness of several techniques in 

eliminating initialization bias from transportation simulation models.  A survey of the 

various methods will be discussed, and the top three methods will be compared in detail 

to examine their performance.  The performance of these truncation methods will be 

tested on a simulation model using PTV-VISSIM® 5.10.   

 

1.3  General Procedure 

 The general framework that will be used to analyze the initialization bias 

mitigation methods is outlined below:    

1. Steady-state in simulation must first be defined. 

2. Existing methods of removing initialization bias are surveyed. 

3. Three truncation methods are selected based on popularity and effectiveness. 

4. VISSIM® models are created for varying network sizes. 

5. Measures of Effectiveness (MOE) for each network are determined. 
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6. Each truncation method will be applied to the selected MOE under non-

congestion conditions. 

7. The methods will be reapplied for cases when the network approaches congestion.  

  

1.4  Study Overview 

 This study compares the proposed initialization bias truncation methods on three 

different networks.  First the methodology is tested on a single intersection modeled after 

the 5th Street and Spring Street intersection in Atlanta, Georgia.  Second, this study area 

is expanded to a corridor of 5th Street consisting of five signalized intersections.  Finally, 

a large network encompassing the Georgia Tech campus and surrounding area is 

analyzed, including the 5th Street corridor.  This large network is approximately 18 by 22 

blocks and consists of 87 signalized intersections.  Each network is simulated for both 

under-capacity and near-capacity conditions.  This analysis allows for a study of the 

impact of network size and traffic demand on the initial transient in the transportation 

setting.  
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CHAPTER 2 

LITERATURE REVIEW AND BACKGROUND 

 

 The purpose of this research is to determine when a simulation model has reached 

equilibrium, or steady-state.  This will allow for the identification and elimination of the 

initial transient and the determination of unbiased (regarding model start-up) performance 

measures.  However, before the initial transient may be identified a general definition of 

steady-state must be established as well as a definition of steady-state specific to 

transportation simulation models.  For transportation simulation applications this effort 

will focus on microscopic simulation models.   

 After defining the initial transient current methods of removing the initial 

transient in simulation output data found by reviewing relevant literature will be 

introduced.  The majority of this literature was selected from the Proceedings of the 

Winter Simulation Conference, the European Journal of Operational Research, and the 

Naval Research Logistics Quarterly.  The methods currently being used by the simulation 

tools VISSIM®, CORSIM, and TransModeler are examined as well.  Finally, three 

methods selected for implementation within this research are identified and further 

discussed.  

 

2.1  Defining Steady-State 

 Simulations can be classified as either terminating or nonterminating.  A 

terminating simulation has a “natural” event that specifies the duration of each run [3].  

An example would be a restaurant open from 8:00 A.M. to 10:00 P.M. and observing the 
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number of transactions occurring within that finite time period.  A non-terminating 

simulation has no natural event to specify the run length [3].    An example is a 

continuous process with no ending conditions, such as traffic flowing on a freeway.  In 

this study the steady-state parameters of interest are estimated from non-terminating 

simulations. Two strategies for calculating the steady-state mean of the performance 

measure of interest are: 

1. Fixed sample size – A single run of arbitrary length is conducted and a confidence 

interval is constructed about the sample mean. 

2. Sequential procedures – Simulation length is sequentially increased until an 

“acceptable” confidence interval is achieved [6]. 

This study focuses on fixed sample size procedures that can be used after the simulation 

has been performed for a predefined amount of time, long enough to allow the model to 

reach a steady-state.  Fixed sample size procedures are the primary considerations as 

much of current transportation simulation practice and tools follow fixed sample size 

techniques.  Future research efforts will explore the use of sequential procedures to 

determine if a more significant change to the current state of the practice can realize 

significant analysis benefits. 

 Most transportation simulations (e.g. VISSIM® which is used in this effort) 

incorporate stochastic distributions (for speed, acceleration, deceleration, and various 

driver behavior characteristics) due to the inherently variable nature of traffic[7].  A 

stochastic process is “a collection of similar random variables ordered over time,” and 

can either be discrete or continuous-time stochastic processes [6].  As the simulation 

models use random variables as input, the simulation output data vary randomly over a 
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particular range.  Parameter estimates are based on observations of the simulation 

process, and cannot be exactly representative of steady-state behavior, as the steady-state 

distribution is unknown.   Characteristics of most real-world systems change over time 

and do not have a true steady-state distributions [3]. 

 One must make assumptions to draw inferences about the stochastic process, in 

order to analyze a set of simulation output data.  One example is to assume that the 

stochastic process is covariance-stationary.  This is defined by Law and Kelton as: 

 

�� � �          for � � 1,2, …  and   -∞ 
 � 
 ∞ 

��
� � ��       for � � 1,2, …  and   �� 
 ∞  

 

 For covariance-stationary processes, the mean and variance are stationary over 

time, and the covariance between two observations depends only on their separation in 

the time series, not on the actual values of i [6].  Furthermore, steady-state does not mean 

the random variables will take on the same values every time; rather they will have 

approximately the same distribution.  The rate of convergence of the transient distribution 

depends on the initial conditions; however the steady-state distribution does not [6].   

 The steady-state average, µ is defined by Law and Kelton as: 

 

� � lim
���

�����     ��      � � lim
���

∑ Y�
�
�  �    

 

 In this study, steady-state is defined as the characteristics of the model obtained 

after the simulation has been running for a finite time of sufficient length such that the 
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output is “relatively free of the influence of initial conditions” [8].  This definition is 

inherently subjective as the user is responsible for choosing the run length and depends 

on the user’s interpretation of ‘relatively free of influence’.  Determining the length of the 

simulation run depends on the size of the network, however, in steady state the 

characteristics of model should take on the same distributions compared to a model run 

for an extremely long time (infinite in theory). 

 Analysts are typically interested in several performance measures from the output 

data.  Each separate performance measures could reach steady-state at different times, 

thus it is important to check each performance measure for initialization bias and use a 

start-up time that is adequate for all of them [9]. 

 

2.2  Steady-State in Transportation 

 Transportation simulation is similar to a queuing system, but varies because: 1) in 

many instances faster vehicles can overtake slower vehicles without having to wait 

behind, 2) vehicles can change lanes easily as opposed to often fixed queues in servers, 3) 

capacity is a continuous constraint over the entire roadway, not just a point constraint, 4) 

congestion can occur unexpectedly, and 5) traffic demands indicate strong time-series 

patterns rather than random distributions [1]. 

 There are several performance measures that can be used to determine when a 

transportation simulation model is in steady-state.  The measures of effectiveness selected 

for this experiment are the number of vehicles in the network and the average travel times 

across the network.  Calculating the number of vehicles in the network for a given time 

interval allows for the determination of when the entering and exiting volumes are 
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balanced, a common intuitive measure of when the system is “full”.  Travel times record 

the amount of time it takes a vehicle to traverse the model which is made up of the free 

flow time plus the delay encountered by the vehicle.  Travel time (along with delay as a 

standalone component) is a common utilized performance metric.  If the model does not 

reach a steady-state, it is expected that the number of vehicles in the network and the 

travel times would constantly increase.  

 It is noted that other performance metrics could be utilized to test for steady state, 

e.g., queue length, average link speed, etc.  However, in this effort the number of vehicles 

in the network and travel time are utilized due to their ability to aid in the intuitive 

understanding of model performance and their common use in practice.  Future efforts 

however should be undertaken to consider the potential benefits of alternative measures 

or combinations of measures. 

 

2.3  Methods of Truncating the Initial Transient 

A survey of methods used to delete the data affected by the initial transient of 

discrete event stochastic simulation models is discussed.  These methods of initializing 

simulation models seek to provide more accurate results for the steady-state estimates of 

the mean.  The methods can be grouped into the following categories as described by 

Robinson (2007): graphical, heuristic, statistical, initialization bias testing, and hybrid 

methods [10].  
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2.3.1  Graphical Methods 

The most common methods to identify the initial transient are graphical 

procedures.  Graphical procedures consist of a visual inspection of the time series to 

determine the extent of the initial transient.  A major advantage is the simplicity of these 

methods and their reliance on few assumptions.  These methods are typically highly 

subjective as the truncation points could vary based on the judgment or experience of the 

analyst. 

 

2.3.1.1  Fishman’s Method (Column Averages) 

 Two types of error present in discrete event simulation are sampling error (caused 

by random input) and systematic error (due to the initial transient) [8].  To detect the 

systematic error, multiple independent replications are needed to reduce the sampling 

error.  Fishman proposed to plot the sequence of column averages to visually determine a 

suitable warm-up [11].  To calculate the column average, independent replications of a 

predefined length are lined up in rows and the average value is determined for each 

observation.  In the Figure below, Yij represents the jth observation of the ith replication. 

Replication 
      1 Y11, Y12, Y13, Y14, … ,  Y1 j 

2 Y21, Y22, Y23, Y24, … ,  Y2 j 
. . . . . 

 
. 

. . . . . 
 

. 
. . . . . 

 
. 

n Yn1, Yn2, Yn3, Yn4, … , Yn j 

Column 
Averages 

            

 

 

           
Figure 1.  Calculation of Column Averages, following Law (2007)  

1Y 2Y 3Y 4Y jY
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 Fishman’s method requires multiple replications in parallel and an experienced 

user to determine the warm-up from the graph.  The steps for Fishman’s method are as 

follows: 

1.  Choose the run length t and number of replications n. 

2.  Compute the average values over every replication at each time step. 

3.  Plot the column, and if a the graph “fails to reveal a suitable warm-up,” 

iteratively increase the run length and the number of replications [8]. 

 

2.3.1.2  Welch’s Method: Moving Averages  

 Welch’s method is a simple and general technique for determining when a model 

reaches steady-state that can be considered an extension of Fishman’s Method [6, 11].  

Welch’s Method consists of plotting a sliding window of the sequence of column 

averages in an attempt to reduce the effects of the systematic error.  It requires multiple 

replications with the goal of determining the smallest window size that best smoothes the 

plot of the moving averages, allowing the sequence to converge to a constant value where 

the truncation point can be visually identified.  Welch (1983) stated that the window 

should be “long enough to remove short term fluctuations but not so long as to distort the 

long term trend” [12]. 

 A major concern in applying Welch’s procedure in practice is the large number of 

replications required if the process is highly variable.  Another disadvantage is that 

smoothing the data can lead to inaccurate results.  Finally, the determination of the 

“smoothness” of the plot and the convergence point is based on the user’s subjective 

judgment. 
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2.3.2  Heuristic Methods 

These methods provide definitive rules or formulas to determine the length of the 

warm-up period.  The advantages of these methods are lack of user specific subjectivity, 

ease of implementation, and the few assumptions needed.  However, if the output series 

is not visually inspected, important patterns could be overlooked.  

 

2.3.2.1  Marginal Standard Error Rule (MSER) 

First proposed by White in 1997 as the Marginal Confidence Rule, the goal of this 

method is to find the truncation point that best “balances the tradeoff between improved 

accuracy (elimination of bias) and decreased precision (reduction in the sample size)” 

[13].  A key assumption of the MSER is the observations in the second half of the 

simulation are closer in value to the true steady-state mean.  White proposes to “select a 

truncation point that minimizes the width of the marginal confidence interval about the 

truncated sample mean” [14].  The expression for the optimal truncation point, dj is 

shown below: 

��� � arg min
�	
���
�

� 1
�n�j� � d�j�!�   " #���$� � �%�,
�$�&��

��
��

' 
 

 MSER applies to the raw output series, Yi (j) and the truncation point, dj is 

selected at the minimum value of this function.  MSER tests to see if an observation prior 

to the proposed truncation point is representative of the sequence observed after this 

point, and if including the prior observations would increase the marginal confidence in 

the estimator [13].   
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2.3.2.2  Marginal Standard Error Rule (MSER-5) 

 A slight modification to MSER, this method examines a series of batch averages 

and uses the same formula to compute the optimal truncation point.  White Jr. et al. 

(2000) determined the performance of MSER can be improved by using batch means, 

specifically a batch size of five [14]. The process is calculated using nonoverlapping 

batches; the rule evaluates the removal of leading batches and calculates the width of the 

confidence interval on the remaining data set.    After the optimal truncation point has 

been selected, the resulting truncated batch means are assumed to have minimal MSE and 

be free of initialization bias [15]. 

This method has been shown to produce desirable results by minimizing the width 

of the confidence interval, however, one critical problem found with the MSER-5 method 

is the technique can be very sensitive to outliers, which can result in poor performance.  

In a study by Sandikçi and Sabuncuoğlu using MSER-5, the output data contained 8 

extreme data points and the suggested truncation point was at 4800 observations.  

However, if the outliers were removed the truncation point changed to 340 observations 

[4].   

 

2.3.2.3  Conway’s Rule 

 Conway (1963) proposed to “truncate a series of measurements until the first of 

the series is neither the maximum nor the minimum of the remaining set” [16].  This 

method would not be suitable for transportation models due to the variability in the 

simulation process.  Output data from transportation models tends to have cyclic patterns 
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due to the operation of signal controllers, which would often result in assuming the model 

has reached steady-state too early.  

 

2.3.2.4  Crossing of the Means Rule 

Proposed in by Fishman (1973), this method requires the analyst to “compute the 

running cumulative mean as data are generated.  Count the number of crossings of the 

mean, looking backwards to the beginning.  If the number of crossings reaches a pre-

specified value,” the resulting value is the proposed truncation point [17].  While the 

method removes subjectivity from its application in a particular instance the method itself 

remains highly subjective.  It requires the user to predefine the number of crossings that 

will be used, leading to arbitrary truncation points.  For instance, in a study performed by 

Gafarian et al. (1978), a value of three was used [18], however, little justification exists 

for applying this results directly to the transportation application. 

 

2.3.2.5  Replicated Batch Means 

This method attempts to combine independent replications (IR) and batch means 

(BM) to estimate steady state characteristics.  Using the IR method, r independent runs 

are performed and the sample average is computed for each run.  Conversely, the BM 

method consists of performing a single, long run and dividing the output into b 

continuous batches [19].  There is a tradeoff between using a single, long run and making 

many replications: 

• Using IR, the replications are independent of each other; however, each trial is 

influenced by initialization bias created from starting up the simulation run. 
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• With BM, initialization only occurs in the first batch, but adjacent batches are 

usually correlated to each other [19].  

 

 Replicated batch means (RBM) combines the two methods in an attempt to 

benefit from each of the method’s advantages.  Argon et al. (2006) propose conducting a 

few independent replications, each including the same number of batches[20].  Numerical 

results from the 2006 study produced confidence interval estimates that were similar to 

substantially better than results obtained by BM [19]. 

 

2.3.3  Statistical Methods 

These methods rely on the statistics principles to determine the warm-up period.  

Disadvantages tend to include the complexity of these procedures, constraining 

assumptions, and increased computing time. 

 

2.3.3.1  Randomization Test 

The Randomization test sets a null hypothesis that there is no initialization bias.  

The sample is divided into b batches and the grand mean of the first batch is compared to 

the grand mean of the remaining batches.  If the difference is significant, the null 

hypothesis is rejected, the batches are regrouped, and the second batch is added to the 

first group. The grand means of the first two batches are compared to the remaining b–2 

batches to see if they are significantly different. This process is repeated until the 

hypothesis is accepted and the transient is detected.  The second group of batches 

represents the steady-state simulation output [17, 21].  As with the previous methods the 
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users must still make a number of subjective assumptions, for instance, the batch size can 

significantly influence results.   

 

2.3.3.2  Welch’s Regression-Based Method 

 The goal of this statistical procedure is identify an appropriate truncation point 

and run length by fitting a straight regression line to the second half of the data.  After the 

output is grouped into batches, a straight line is fit to the batch means of the second half 

of the data using generalized least squares (GLS) [22].  If the slope of the line is 

“significantly different from zero,” the run length must be increased.  Once enough data 

is collected, a reverse pass though the sequence is performed and the simulation is 

consider to be in steady state as long as the fitted line continues to have a zero slope [22].  

However, Law and Kelton (2000) noted several theoretical limitations of this approach, 

such as the fundamental assumption that the process converges to µ monotonically, and 

declined to test it further [3].  Other criticisms noted by Hoad et al. (2008) are the high 

number of parameters needed (nine), the procedure is computationally intensive and can 

be complex to execute [23]. 

 

2.3.3.3  N-Skart 

The purpose of the N-Skart method is to create a confidence interval (CI) for the 

mean with the desired coverage probability (1 – α) specified by the user.  This is achieved 

by employing von Neumann’s Randomness test to spaced batch means to determine the 

point after which the batches are independent and uninfluenced by the initial conditions 

[15].  N-Skart makes modifications to the non-spaced batch means’ CI to correct the 
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underlying skewness and autocorrelation.  “The skewness adjustment is based on the 

Cornish-Fisher expansion for the t-statistic, and the autocorrelation adjustment is based 

on a first-order autoregressive approximation to the batch means autocorrelation 

function” [15]. 

When compared to the MSER-5 method, N-Skart showed significantly less bias 

and variance.  However, N-Skart is significantly more complicated and more efficient 

versions are needed to reduce processing time [15]. 

 

2.3.3.4  Automated Simulation Analysis Procedure (ASAP) 

ASAP is an algorithm for simulation output analysis based on nonoverlapping 

batch means.  For ASAP3 (a refinement of ASAP and ASAP2), the batch size is 

increased until the batch means pass the Shapiro-Wilk test for multivariate normality, 

ASAP3 fits a first-order autoregressive time series model to the batch means [24].  Next, 

ASAP3 delivers a correlation-adjusted confidence interval (CI).  In the case study 

reported in Steiger et al. (2004), the simulation is initially divided into 256 batches (with 

400 long run independent replications being performed). The first 4 batches are ignored 

and every other group of 4 consecutive batches are selected and tested for multivariate 

normality.  If failed, the batch size is increased by a factor of √2.  Correlation between 

adjacent batches is tested to ensure that it does not exceed 0.8.  The confidence intervals 

are then constructed and check to see if they meet the precision requirements [24]. 

This method requires a large amount of replications, and an analyst with a great 

amount of expertise to perform.  ASAP also requires a precision requirement and at this 

time, it would not be suitable for transportation applications. 
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2.3.4  Initialization Bias Tests 

The goal of initialization bias testing is to determine if bias is present in the data 

due to the initial transient.  The majority of these methods build upon the work of 

Schruben (1982) [10].  The general procedure is to divide the output series into b batches 

of equal length and subsequently group into two sets: b’ and b-b’[14].  The estimates of 

the mean and variance are used to compute a test statistic which is compared to an 

appropriate F distribution [14].  Hypothesis testing is performed with the null hypothesis 

that no initialization bias exists.  These procedures can also be used in union with 

previously described methods to determine if initialization bias has been successfully 

removed 

 

2.3.5  Hybrid Methods 

Hybrid methods are a combination of two methods, usually initialization bias 

testing and either a graphical or heuristic method.  These methods are typically complex 

and can require large amounts of data [10]. 

 

2.3.5.1  Statistical Process Control 

 The statistical process control (SPC) method can be classified as a hybrid; a 

combination of a graphical and heuristic methods.  In this approach a simulation model is 

considered “out of control” while in its transient phase and once it has reached steady-

state, “in-control”. The goal of the SPC method is to determine when a model is “in 

control” and thus when the model is no longer influenced by its initial state [10]. 

The 4 steps for the SPC method are: 
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1. Perform experiment and collect data. 

2. Test the second half of the data to check that it is distributed normally and not 

correlated.  The SPC approach must meet these two conditions, therefore: 

• As simulation output is typically a correlated time series batch means 

represent one method to account for this autocorrelation.  However, one issue 

with batch means is determining the batch size.  This procedure requires that 

the batch size be doubled until the null hypothesis (that there is no correlation 

between batches) is accepted.  The minimum batch size for which there is no 

correlation is sought. 

• The data must pass the test for normality at each selected batch size. Different 

methods of testing for normality include: 

o Chi-square test 

o Kolmogorov-Smirnov test 

o Anderson-Darling test 

• If the number of batches is less than 20, a longer simulation run is needed. 

3. Construct a control chart. 

• It is assumed the process is stable during the second half of the data. Estimates 

for the population mean and standard deviation are taken from this portion of 

the time series.  

• Three sets of control limits are calculated accordingly: 

CL � �̂ , z�./√n    for z = 1, 2, 3 

4. Determine the initial transient. 
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• To plot the control chart, the mean, three sets of control limits, and the time-

series output are graphed.   

• Rules for determining when the series is “in control” and “out of control” are 

given that are based on where the data falls within the three sets of control 

limits [10].  

Montgomery and Runger (1994) established the following rules to determine 

when the process is “out of control”: 

• A point plots outside a 3-sigma control limit. 

• Two out of three consecutive points plot outside a 2-sigma control limit. 

• Four out of five consecutive points plot outside a 1-sigma control limit. 

• Eight consecutive points plot on one side of the mean [10]. 

Bias, coverage, and the expected half-length of the confidence interval are the 

performance measures are evaluated by Robinson.  Using the SPC method easily 

increased the accuracy of the steady-state parameters compared to not deleting any initial 

data [10].  However, it is important to note that this method (as well several others 

discussed) assumes the model is in steady-state for the second half of the simulation run.  

If the model fails to reach a steady state this method will likely not identify this 

condition, potentially erroneously identifying the end of the initial transient.   

 

2.4  Methods currently used by simulation models 

 A survey of three traffic simulation models was conducted.   Technical support 

for two of these models was contacted to see how they approached the warm-up problem 

in their respective software, and if the simulation models had built-in methods of 
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initializing the network.  Two of the three models have a built in function to determine 

when the network has reached “equilibrium”. 

 

2.4.1  PTV Vision – VISSIM® 

 Correspondence was made with support at PTV-VISSIM® June 7, 2010 to 

inquire how they mitigate the initialization bias problem.  The response was the length of 

the warm-up period is always dependent on the size and characteristics of the network, 

and that this seeding period should be at least as long as the travel time of the longest 

possible path through the network.  Further correspondence was made (August 2, 2010) 

to ask if PTV was planning on implementing a built-in method of determining 

equilibrium in future releases, similar to some of its competitors.  To their knowledge, no 

such procedure is in progress. 

 

2.4.2  McTrans – CORSIM’s Volume Balancing 

  No contact was made with CORSIM, however their built-in equilibrium 

procedures were studied.  The Federal Highway Administration created a set of 

guidelines for applying simulation analysis entitled “Traffic Analysis Toolbox” with 

Volume IV containing Guidelines for Applying CORSIM [25].  Before it is acceptable to 

start accumulating statistics, CORSIM first determines when the model has reached 

equilibrium.  To do this, there is a built-in heuristic method that compares the number of 

vehicles in the network at consecutive time intervals.  It determines equilibrium has been 

reached “if the difference between the current interval and the previous interval is less 

than eight percent and the difference between the previous interval and the one before it 
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was less than 12 percent… If those conditions have not been met, but the difference 

between the current interval and the previous interval is less than six percent” the model 

has reached equilibrium [25]. The user has the option to enter a maximum initialization 

time and once it has been reached, the model can either collect data if it is in equilibrium, 

or abort if it is not.  It can be helpful to force the maximum initialization time if the 

model appears to incorrectly determine it is in equilibrium. 

There are some disadvantages of using this method to determine equilibrium.  

First, if a small time interval is chosen (such as one second), this method could determine 

equilibrium has began prematurely because the volumes would not be expect to change 

significantly in such a short period.  Similarly, a large model with high volumes could 

terminate the initialization period too soon because the percentage change in volume 

would become less sensitive [25]. 

 

2.4.3  Caliper Corporation – TransModeler® 

 Contact was made with a transportation engineer at Caliper Corporation August 

10, 2010 in inquire about the equilibrium capabilities of TransModeler®.  The response 

was that TransModeler® does implement a method of comparing the number of vehicles 

in the network similar to CORSIM, however it is optional.  Caliper continually surveys 

research literature for other possible methods. 

 

2.5  Selection of Methods 

 Hoad et al. (2008) performed a seminal study on the existing methods of 

estimating the length of the warm-up period in hopes of producing an automated 
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procedure to be included in simulation software [23].  The authors conducted a 

comprehensive review of literature and found 42 methods for detecting the extent of the 

warm-up.   These methods were evaluated and graded based on the following criteria: 

accuracy and robustness of method, simplicity of the model, ease of potential automation, 

generality, number of parameters required, and computing time [23].   The list was 

narrowed down to six methods for further evaluation, excluding graphical methods due to 

their need for human intervention.  Of the six methods, MSER-5 substantially 

outperformed the rest while the other methods either severely underestimated the 

truncation point or required an extremely large number of replications.   

 The criteria that were used to determine the selected methods for this study are 

their ability to be implemented, their effectiveness, and their popularity.   While the 

graphical methods were not included in the study performed by Hoad et al. (2008) 

because of the difficulty automating the procedure [23] this experiment will evaluate the 

graphical procedure, Welch’s Method, based on its simplicity and overwhelming 

popularity.  MSER-5 will also be implemented in this study due to its effectiveness, 

frequent use in the industry, and ease of implementation.  A third method that will be 

examined is the volume balancing method currently used by CORSIM and 

TransModeler®.   
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CHAPTER 3 

METHODOLOGY 

 

 The truncation methods discussed earlier were separated into the following 

categories: graphical, heuristic, statistical and initialization bias testing.  Of the graphical 

procedures proposed, Welch’s Method is widely used and perhaps the most referenced 

method in literature.  The steps needed to implement this procedure are detailed in this 

chapter.  For the heuristic approaches, it appears MSER-5 is the most effective method 

and would be most applicable for this experiment.  The formula for the MSER heuristic is 

listed in this chapter, as well as issues with implementation.  The third method selected is 

the volume balancing procedure used by CORSIM (and similarly by TransModeler®), 

which a simple mathematical heuristic.  This is selected as it is the only method identified 

as commonly used in transportation microscopic simulation applications.  Each 

methodology will first be performed on the number of vehicles in the network to 

determine steady-state.  Next, the network travel times will be examined and each 

method reapplied. 

  

3.1  Welch’s Method 

 The steps and equations for calculating Welch’s Method of moving averages for a 

window size, w are listed below [3, 6]:   

1. A number of replications n ≥ 5 is performed, each of length m, where m is much 

larger than anticipated truncation point.  The observations are averaged over all 

replications at each time-step to create the average process, �.1  
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3. The moving averages, �%�2� are plotted for several values of widow size, w.  An 

initial value for w is 1, and then increased in increments of 1, where w ≤ m/4. 

 

�%��2� �
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����
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44;

 

 

 As shown above, a window size w consists of the average of (2w + 1) 

observations.  The smallest value of w for which the plots are “reasonable 

smooth” is selected. 

4. If no value of w is satisfactory, the number of replications is increased.   

5. The truncation point is selected visually from the moving averages plot [3, 6]. 

 

 Welch proposes starting with n = 5 or 10 replications, based on computing cost 

and time.  For this experiment, we started with 10 replications and increased the number 

of replications if a sufficient window size could not be chosen.  Based on the expected 

truncation value, a simulation length of five hours was selected.  This run length should 

be more than sufficient for all transportation models tested to reach steady state well 

before the halfway point in the model.  To implement Welch’s Method an Excel™ 

spreadsheet was created to generate plots of incrementally increasing window sizes.  The 

data output was averaged over a defined number of replications (initially 10) using a 

separate script.  In this instance the data output is a snapshot of the number of vehicles in 
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the network recorded every five seconds. These plots are visually inspected and if the 

moving averages do not sufficiently converge to a constant value, more replications are 

performed.  Once the desired number of replications and window size are selected and it 

is determined that the moving averages are reasonably smooth for the five hour period, 

the initial portion of the plot is enlarged to examine the warm-up more closely.   

 An example graphical output for Welch’s Method is shown in Figure 2 below.  In 

this example the window size and the number of replications were both increased until 

the plots became sufficiently smooth, resulting in a window size of 100 time steps with 

40 replications as the final parameters for truncation point identification.  In Chapter 4, a 

complete discussion on the selection of the window size and number of replication is 

provided. 

 

Figure 2.  Welch’s Method for 5th Street Model, window size 100, five hour run 
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 As previously stated, to determine the point where the model reaches steady-state, 

the initial portion of the above moving averages plot is enlarged.  A small time period is 

chosen that exceeds the anticipated truncation point and allows the analyst to visually 

detect the point at which the plot becomes smooth.  A visual aid is also added to the plot 

to help identify when the sequence reaches the point where the plot becomes smooth.  A 

horizontal line is added that is equal to the average of Welch’s values in the second half 

of the time series.  This removes some of the subjectivity of visually detecting when the 

plots reach steady-state.  Figure 3 below shows the inspection of the warm-up, plotted for 

the first 1200 seconds of the data shown in Figure 2 .  In this example, the truncation 

point was determined to be 600 seconds. 

 

Figure 3.  Welch’s Method Plot for Identification of Warm-up period  
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3.1.1  Selecting Window Size 

 Law and Kelton noted that “choosing w is like choosing the interval width ∆b for 

a histogram” [6].  If w is too small the plots will appear ragged, and choosing a window 

size too large could over-aggregate the data.  Sturges’s rule is proposed to choose the 

interval width ∆b for a histogram as follows:  

 

< �  =1 7 >�?� @A �  =1 7 3.322 >�?�� @A 
 

Using this formula for our case of 3600 observations would result in value of 12.8 for the 

interval width.  However, Law and Kelton do not believe such rules are useful and 

recommend trying several different values and choosing the smallest value that best 

smoothes the plot [6].  In this study, it was seen that the window size needed to be 

sufficiently large to smooth out the cyclic trends due to the signalized intersections 

timing plans. 

 

3.1.2  Travel Times using Welch’s Method 

 As stated previously, in addition to performing Welch’s Method on the number of 

vehicles in the network, Welch’s Method is applied to network travel times.  While the 

same method is being applied to these output values, there are some small differences in 

the method application to the data.  As noted the number of vehicles in the network is a 

snapshot every five seconds during the simulation.  However, travel time is measured 

along a pre-specified path through the network.  Vehicles complete their traversal of this 

path randomly, based on their arrival into the network and in-network experience.  Thus, 
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travel time measures at specific time intervals are not necessarily meaningful.  It is more 

appropriate to consider the travel time measurements as individual observations.  It is 

noted that as an implementation issue in the specific data collection technique utilized 

that multiple vehicles existing the network during the same five second interval will be 

assigned the same travel time.  

 

3.2  Marginal Standard Error Rule (MSER-5) 

 The Marginal Standard Error Rule is be implemented in this as it has been found 

to an effective heuristic by multiple studies [4, 13, 14, 23, 26].  The expression for the 

optimal truncation point is given in White Jr. (1997) as: 

 

��� � arg min
�	
���
�
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��
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' 
   dj = Truncation point at proposed time ( j ) 

    n = Total number of batches 

   Yi = Value at proposed truncation time ( j ) 

   �%�,
 = The average value of remaining sequence ( from n to d ) 

 

 A major assumption of MSER is that the data on the second half of the sequence 

is more characteristic of steady-state conditions.  The width of the confidence interval 

about the truncated sample mean is minimized to balance the tradeoff between improved 

accuracy and decreased precision.  For this rule to be successful, the simulation length 

must be long enough such that a false steady-state is not observed. 
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3.2.1  Batch Size Selection 

 The first step to analyzing the MSER is to batch the data.  The purpose being that 

batching the observations “ensure the monotonic behavior of the decrease in confidence 

interval width” [26].  It is important to recall that in the current application performance 

statistics were collected every five seconds.  Each snapshot at the end of five seconds is 

considered a single observation.  Using this original data in the application of the MSER 

method will be referred to as MSER-1 because no batching is undertaken.  Next, the 

MSER is performed for n = 5 batches, which covers 25 simulation seconds (i.e. five, 5-

second batches). Additional results for the MSER-n will analyzed for batch sizes of 12 

and 22, corresponding to 60 and 110 simulation seconds.  MSER-22 was selected to 

allow for a test of the method using a batch size equal to the cycle length of the major 

network intersections.  MSER-12 was selected to allow for a testing of the method for an 

equivalent simulation time period (i.e. 60 second) as utilized by default in the CORSIM 

Volume Balancing procedure. 

 

3.2.2  Using MSER on Multiple Replications 

 As with Welch’s Method multiple replications helps to ensure accuracy in the 

identification of the end of the initialization transient.  However, the approach for using 

multiple replications is different for the MSER.  White Jr. (1997) noted that the Marginal 

Confidence Rule (later named MSER) was not intended to be used over the average of 

many replications.  White stated “this rule applies to individuated output sequences and 

has the inherent advantage of specifying the best truncation point for each such sequence, 

rather than a single truncation point, which is best only on average across a very large 
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number of replications” [13].  Therefore, in this effort MSER is performed on each 

individual replication, with 100 replications being performed.  The statistics that will be 

collected for the MSER truncation points are the maximum, average, and 95th percentile.  

These results are shown in Chapter 4. 

 

3.3  Volume Balancing (CORSIM) 

 This method could be considered a heuristic approach.  In the method the percent 

difference in vehicles in the network between consecutive intervals is analyzed. In 

CORSIM if two consecutive percent differences are 12% or less followed by 8% or less 

the model is considered to be in steady state.  The calculations for this method are 

straightforward; however the analyst is free to choose the interval size.  The data for this 

experiment was collected in five second increments to allow for flexible post processing. 

This procedure will be performed on varying interval sizes as mentioned before, 

including a multiple of the cycle length.  CORSIM uses an interval of 60 seconds to 

determine equilibrium.  It is noted that no literature was found regarding the background 

or development of this method. 

 

3.3.1  Multiple Replications 

 Similar to the MSER, averaging multiple replications would only smooth the 

initial transient truncation point to an average value, whereas we are interested in the 

maximum amount of time needed to initialize individual runs of the model.  Thus, this 

procedure will be performed on each individual replication and the maximum, average, 

and 95th percentile truncation point will be collected.  
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3.4  VISSIM® Model Characteristics 

 First, the characteristics of the VISSIM® simulation model are discussed.  The 

locations of the selected models are shown in detail and the performance measures used 

to evaluate the model are discussed. The experiment design is explained to clarify which 

models and conditions will be tested on Welch’s Method, MSER, and the Volume 

Balancing procedure. 

 

3.4.1  VISSIM® Overview 

 VISSIM® is a microscopic, behavior based traffic simulation model which uses 

continuous time-step advancements to move through simulation time [7].  Networks are 

created using links and connectors, where links represent sections of the road and 

connections allow the vehicles to move between these links.  Signal controllers, stop 

signs, reduced speed areas, priority rules and most importantly, the car following model 

and lane changing logic control the movement of vehicles.  The accuracy of the model 

depends highly on the quality of the vehicle modeling and the ability of the user to model 

the respect network (e.g. intersection, arterial, freeway, etc.) geometry.  VISSIM® uses a 

complex psycho-physical driver behavior model developed by Wiedemann (1974) [7].  

This model is based on individual drivers’ perception thresholds of slower moving 

vehicles. 

 As VISSIM® creates a vehicle to be input into the network, specific driver 

behavior characteristics are assigned randomly to each vehicle.  Each driver in turn, 

reacts based on the technical capabilities of his vehicle.  Characteristics of each driver-

vehicle-unit can be classified into the following categories:  
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1. Technical specifications of the vehicle: (length, maximum speed, potential 

acceleration, actual position in the network, actual speed and acceleration). 

2. Behavior of driver-vehicle-unit: (sensitivity thresholds and ability to estimate, 

aggressiveness, memory of driver, acceleration based on current speed and 

driver’s desired speed). 

3. Interdependence of driver-vehicle-units: (reference to leading and following 

vehicles on own and adjacent travel lanes, reference to current link and next 

intersection, reference to next traffic signal) [7]. 

 

3.4.2  Design of Experiment 

 This experiment compares the performance of initialization bias truncation 

procedures in transportation microscopic simulations, utilizing VISSIM® simulation 

models as the example applications.  Three model sizes were developed for this study, 

covering an increasing geographic area.  A single signalized intersection was first 

analyzed to determine the results for a small model.  Next, a corridor consisting of the 

single intersection and four additional signalized intersections is tested.  The corridor 

model is referred to as the medium network size in this study.  Lastly, a large network 

containing the previously analyzed corridor is studied to determine the extent of the 

initial transient for varying model sizes. This would ensure that the geometry and signal 

timing of the small and medium segments are consistent across the experiment.  

 For each model the initial experiments set the input volume at a medium demand 

level, that is, non-congested traffic although reasonable demand.  The actual volumes 

were set based on conducting several iterations of the model and the researchers’ 
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judgment of reasonable, uncongested flow.  These scenarios allow for an analysis to test 

the initialization bias truncation procedures with the confounding influence of 

congestion.  Next, the models’ input volumes are increased to the represent the peak 

volume of the model operating just below capacity.  Finally, each model will be loaded 

over capacity to determine how each method handles the case where equilibrium is not 

achieved.  

    

3.4.3  5th Street and Spring Street Intersection 

 The area for this study is in Atlanta in close proximity to the Georgia Institute of 

Technology (Georgia Tech) campus.  The single intersection to be studied is at 5th Street 

and Spring Street.  Spring Street is a one-way major urban arterial with four lanes, while 

5th Street is an urban local street with two lanes (one lane each direction).  Figure 4 on the 

following page displays the VISSIM® representation of the intersection. 

 

 

Figure 4.  5th Street and Spring Street Intersection 

(Figure Credit: VISSIM® with Google Earth [27] overlay) 

N 
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3.4.4  5th Street Corridor 

 The 5th Street corridor (also known as Ferst Drive adjacent to the Georgia Tech 

campus) spans from Atlantic Drive on the west, to West Peachtree Street to the east.  The 

model consists of a mix of four-lane major arterials with high volumes (including the 

one-way pair of Spring Street and West Peachtree Street) and various two-lane local 

roads with a relatively small amount of traffic primarily moving to and from the Georgia 

Tech campus.  Four travel time segments for this network were defined for this network, 

two eastbound and two westbound.  Figure 5 on the following page shows the 5th Street 

corridor in VISSIM®. 

 

Figure 5.  5th Street Corridor 

(Figure Credit: VISSIM® with Google Earth [27] overlay) 

 

 

 

N 
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3.4.5  Large Georgia Tech Network 

 The VISSIM® model of the Georgia Tech campus and surrounding area in 

Atlanta, Georgia was developed by a graduate research student at Georgia Tech, Kate 

D’Ambrosio.  The network is bounded in each direction by the following streets:  

• South: North Avenue 

• North: 17th Street 

• East: Peachtree Street 

• West: Marietta Street/ Howell Mill Road 

 Existing geometry was extracted by overlaying a series of scaled aerial 

photographs to determine the number of lanes at each intersection and the spacing 

between them.  The signal timings for the 5th Street corridor were obtained from the City 

of Atlanta to match the existing conditions.  More detailed information on the 

development of the VISSIM® model is included in the Appendix.  Figure 6 shows the 

VISSIM®  model of the large Georgia Tech network. 
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Figure 6.  Large Georgia Tech VISSIM® model  

(Figure Credit: VISSIM® with Google Earth [27] overlay) 

 

3.5  Performance Measures 

 The performance measures chosen for this case study are number of vehicles in 

the network and the network travel time.  The number of vehicles in the network is 

recorded every five seconds and is calculated as the instantaneous value at the end of 

each five second interval.  Travel time segments have been set up to record the time it 

takes vehicles to pass entirely through the system for specified routes.  For these routes, 

probe vehicles have been inserted in the model to ensure a sufficient number of vehicles 

complete the travel time segment and use the desired path.  Figure 7 and Figure 8 below 

N 
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show the location of the vehicle inputs and travel time segments for the single 

intersection and corridor model.  Figure 9 shows the location of the travel time segment 

for the large Georgia Tech model. 

 

Figure 7. Location of Performance Measures for Single Intersection Model 
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Figure 8. Location of Performance Measures for 5th Street Corridor Model 

 

Figure 9. Location of Performance Measures for Large Model 
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3.6  VISSIM® Limitations 

 One major limitation of this research is the given simulation model does not 

include pedestrians.  Pedestrians can have a significant impact on the operation of 

signalized intersections, especially near a college campus.  Additionally, bicycles were 

not introduced into the model.  The capabilities of VISSIM® to integrate pedestrians and 

bicycles were not explored, but should be considered in future research.   

 Another issue is the accuracy of the VISSIM® model with respect to routing 

decisions, signal timing, and traffic volumes.  The calibration process is an important 

aspect of simulation analysis to ensure the integrity of the results.  For this effort the 

models were reviewed only for reasonable operations (that is, vehicle behavior and 

performance that was reasonable for the given network size), not necessarily calibrated to 

match field conditions for the given locations.  These models have generic traffic 

demands and signal timings, although where possible known field timings were utilized.  

Thus, the simulations are not applicable to an operational analysis of actual conditions in 

the modeled areas.  However, the intent of this effort is a study of initial transient, which 

may be accomplished using the given models. 

 One concern encountered in VISSIM® is whether or not vehicles queued off 

network or vehicles disappearing were counted in the number of vehicles in the network.  

Several tests were performed to determine how VISSIM® counts the number of vehicles 

in the network.  A simple model was created where the demand greatly exceeded the 

capacity and it was found that the vehicle count only includes the vehicles that have 

entered the network, and not those queued off the network.  Additional tests were 
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performed to see if vehicles being removed from the model are included in the vehicles in 

the network count; which they were not.   

 There are two main reasons vehicles would be removed from the network in our 

study.  The first reason is VISSIM® by default removes stalled vehicles that are unable to 

make a lane change after 60 seconds to avoid unrealistic backups [7].  The second reason 

is that once a vehicle has been specified a certain path on a routing decision, if that 

vehicle is unable to change to a lane where it can make that turn, it will continue on 

through the intersection searching for its specified path.  Once it reaches the end of the 

link without finding that path it is removed from the network.  While this would present 

an issue in measuring performance characteristics of the model, the occurrences of this 

issue was minimal and is comparable to vehicles exiting the network into a parking lot.  
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CHAPTER 4 

RESULTS 

 

The results for Welch’s Method, MSER, and the Volume Balancing Method are 

presented in this chapter.  The sensitivity of each method’s parameters are tested and 

discussed.  The estimated truncation point will be given for the small, medium, and large 

models, as well as a change from low volume to high volume. 

 

4.1  Welch’s Method 

 For Welch’s Method, the procedures for selecting the window size and number of 

replications are first discussed.  Next, the sensitivity to choosing different window sizes 

and number of replications is analyzed.   

  

4.1.1  Selection of Window Size 

 To perform Welch’s Method, the window size w = 1 is initially evaluated and 

incrementally increased until the plots become smooth.  Increasing the window size will 

smooth the plots of the moving averages only to a certain point; if the plots do not 

sufficiently converge more replications are needed.  The figures on the following pages 

show the progression of increasing the window size and the number of replications until a 

plot with reasonable smoothness can be selected.  

 The numerical value of w represents the half-width of the “window” that is used 

to average the output.  A window size of 10 corresponds to the average of 21 

observations centered on that point in the time series.  Thus, each graphed point in 
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Welch’s Method is the calculated average of 2w + 1 observations.  As stated previously 

an observation in this experiment represents a data point collected each 5 seconds of 

simulation time. Figure 10 begins with 10 replications and a window size of 1. The 

window size is increased sequentially before it no longer becomes beneficial to increase 

the window size.  It is important to select the smallest possible window size that produces 

a reasonably smooth graph as a window size unnecessarily large will yield excessively 

large initial transient truncation points.   

 The following plots are from the medium size model (5th Street Corridor) for low 

volumes 

 

Figure 10.  Welch’s Method for 10 Replications and a window size 1 
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Figure 11. Welch’s Method for 10 Replications and window size 5 

 

Figure 12. Welch’s Method for 10 Replications and a window size 10 
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Figure 13. Welch’s Method for 10 Replications and a window size 15 

 

Figure 14.  Welch's Method for 10 Replications and window size 20 
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Figure 15. Welch's Method for 10 Replications and window size 30 

 

Figure 16. Welch's Method for 10 Replications and window size 40 
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Figure 17. Welch's Method for 10 Replications and window size 50 

 

Figure 18. Welch's Method for 10 Replications and window size 75 
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Figure 19. Welch's Method for 10 Replications and window size 100 

 

 Beyond a window size of 100, the advantages of selecting a larger window size 

are no longer beneficial.  Thus, the plots do not appear to converge to a smooth line with 

the selected number of replications.  Figures 19–22 demonstrate the selection of the 

number of replications needed to smooth the moving averages.  Similarly to the selection 

of the window size, after a certain amount of replication there is no longer significant 

improvement in the smoothness of the plots.  After 10 replications were examined, the 

number of replications was increased by 10 each time. 

 In this example, 40 replications were found sufficient to result in convergence of 

the moving averages.  After 40 replications were selected, the process of determining the 

window size was repeated and w = 100 was selected again.  The next step for Welch’s 

Method is to plot the initial portion of the moving averages series and visually determine 

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

N
u

m
b

e
r 

o
f 

V
e

h
ic

le
s 

in
 N

e
tw

o
rk

Simulation Time (seconds)



49 

when the plot is “reasonably smooth”.   By including the horizontal line representing the 

average value over the second half of the data, the truncation point could be selected 

easily. 

 

Figure 20. Welch's Method for 20 Replications and window size 100 
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Figure 21. Welch's Method for 30 Replications and window size 100 

 

Figure 22. Welch's Method for 40 Replications and window size 100  
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 Clearly selecting the appropriate window size is a judgment call and can vary 

from user to user.  Each user selects the smallest possible window that can smooth (in 

that users’ judgment) the data.  For instance, in this example a window size of 100 was 

selected by the author.  To analyze the impact of user judgment, results were obtained for 

two window sizes below 100 and two above 100. Table 1 below shows the truncation 

points found at these different window sizes.  An important trend was discovered: as the 

window size increases, so does the estimated truncation point.  Thus, the selection of the 

window size has a significant impact on the location of the anticipated truncation point.  

It is expected that some users will tend to determine more conservative truncations points 

while other tend to determine short start-up periods.   

 

Table 1. Sensitivity to Window Size, 5th Street Model 

Number of 
Replications 

Window 
Size 

Truncation Point 
Low 

Volume 
High 

Volume 
40 60 400 400 
40 80 500 450 
40 100 600 550 
40 120 700 650 
40 140 800 750 

 

 

4.1.2  Sensitivity to Number of Replications 

 Law and Kelton proposed starting with five or ten replications, based on model 

execution and cost [6].  In our study, ten replications were used as a starting point and the 

number of replications were increased until the desired smoothness is achieved.  A total 

of 100 replications were performed, each with a different random seed.  Ten replications 
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were randomly selected from the sample set and the average value was computed at each 

time step.  This sampling method was repeated to obtain the averages of 20, 30, 40, and 

50 replications. The entire set was used to find the average over 100 replications.  The 

impact of using different numbers of replications for the medium model size is shown in 

Table 2 below.  

 

Table 2. Sensitivity to Number of Replications, 5th Street Model 

Number of 
Replications 

Window 
Size 

Truncation Point 
Low 

Volume 
High 

Volume 
10 100 550 550 
20 100 550 550 
30 100 600 550 
40 100 600 550 
50 100 550 550 
100 100 600 550 

 
  

 As the number of replications is increased, it becomes easier to determine the 

truncation point as the moving average plots becomes smoother.  However, the same 

truncation time can be read from the graph of 10 replications as that of 100 replications, 

shown in Table 2 for the high volume case.   The trend was evident for both the small and 

large model sizes (results included in Appendix).  This indicates that Welch’s Method 

can provide similar results as the number of replication is increased for this model 

scenario. However, it should be noted that 10 replications was used as the minimum for 

this experiment; it is not believed that using one, or even five replications would produce 

the same result as those from 100 replications.   
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 The major factor affecting the sensitivity of the truncation point found by Welch’s 

Method to the number of replications used is the variability of the output data.  For highly 

variable data, a large amount of replications may be needed to produce similar results.  

More analysis is needed before this conclusion can be generalized, but the fact that the 

results obtained from 10 and 100 replications are similar is an important finding.  

 

4.1.3  Change in Model Size 

 Welch’s Method was applied to the three different model sizes: a single 

intersection, a small corridor, and a large grid network.  The results for the Welch’s 

Method for each case are shown in Table 3 below.  The truncation point was found using 

replicated averages of the number of vehicles in the network for both the low and high 

volume case. 

 

Table 3. Truncation Point for three models sizes, 40 replications, w = 100 

Volume 
Truncation Point (seconds) 

Small Medium Large 
Low 600 650 1800 
High 550 550 1700 

 

 The small and medium network sizes have very similar warm-up lengths, while 

the warm-up period for the large network is almost three times as large.  One reason the 

small and medium network have similar warm-up times is these two models are generally 

dominated by the same intersection, Spring Street and 5th Street.  The small network 

consists of solely this intersection while the medium model contains an additional 

intersection to the east (West Peachtree Street) and three signalized intersections to the 
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west.  Both Spring Street and West Peachtree Street contain five times as much volume 

as that on 5th Street.  Thus, the time it takes to initialize the 5th Street corridor model 

depends primarily on the time it takes to warm-up the intersection at Spring Street.  The 

number of vehicles in the network is the performance measure evaluated, and the 

intersections with higher volumes dominate the calculations.  For future research, it 

would be beneficial to construct an experiment where the volume difference between the 

two cross streets is less drastic.  

 As expected the large model contains a longer initial transient period than the 

smaller models.  During its steady-state conditions, the large model contains fewer than 

900 vehicles in the network, while the medium and small models contain an average of 

84 and 41 vehicles (respectively) for the high volume case.  The main factors that 

determine the length of the initial transient are the distance and time a vehicle needs to 

travel through the network.  A model with a large number of signalized intersections 

would be expected to reach steady-state at a later time because of delay encountered at 

each intersection.  Similarly, if the effective green time is reduced for major movements 

in a network, the initial transient period would be expected to increase. 

 

4.1.4  Welch’s Method using Travel Time 

 Network travel time was tested for Welch’s Method to determine if travel time is 

a good indicator of the performance of corridor or network.  For each model size, a route 

was selected that is considered representative of the network and constitutes a large 

amount of traffic.  The input volume and routing decisions were modified before the 

experiment was performed such that a minimum of 60 vehicles would complete the travel 
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time segment per hour.  This number was selected based on the desire to have a sufficient 

amount of data to perform each method by creating an observation interval of 60 seconds.   

 For the first iteration of Welch’s Method, 10 replications were randomly selected 

and averaged. The window size was initially set at w = 1 for the medium network as 

shown in Figure 23 below. 

 

 

Figure 23. Welch's Method using Travel Time, medium model, 10 replications, w=1 

 Next, the window size is sequentially increased until the plots become 

“reasonably smooth”, which could not be achieved without further replications.  Using 20 

replications, the window size was increased to w = 50 to produce the desired smoothness.  

The moving average plots from 20 replications are displayed in Figure 24 on the 

following page. 
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Figure 24. Welch's Method using Travel Time, medium model, 20 replications, 

w=50 
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Figure 25. Initial Warm-up of Welch's Method using Travel Time, medium model, 

20 replications, w = 50 
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shown below in Figure 26 as well as the warm-up period in Figure 27 on the following 

page. 

 

Figure 26. Welch's Method for Travel Time, large model, 40 replications, w = 50 

 For this model, 40 replications are necessary to ensure sufficient smoothness, and 

a window size of 50 was selected.  Table 4 below shows a comparison of the truncation 

values obtained by Welch’s Method from the three model sizes. 
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Figure 27. Welch's Method for Travel Times, large model, 40 replications, w = 50 

 From Figure 27, the truncation point was determined to be at 1600 seconds.  As a 
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vehicle count versus using travel time to plot the moving averages for the smaller 
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intersection (the southbound through for this case) does not represent the entire network 

sufficiently as the side street would have a small impact.  For the medium and large 

networks, as long as the travel time segment chosen spans the entire network and has 

enough vehicles on the route, travel time can be used as a measure of equilibrium.  More 

research is needed to determine the sufficient number of vehicles completing the route 

that are needed, as well as comparing the results to measurements obtained from other 

major routes in the network. 

 

4.1.5  Analysis of Welch’s Method 

 An analysis of the issues that arose while using Welch’s Method will be discussed 

in Chapter 5.  The benefits of using the method will be discussed, as well as a comparison 

of the method’s performance compared to other methods.  Lastly, the criticisms and 

disadvantages of using Welch’s Method will be discussed with future recommendations 

being proposed. 

4.2  Marginal Standard Error Rule (MSER) 

 As noted by White (1997), MSER specifies the optimal truncation point when 

applied to individual output sequences [13].  Thus, this method will be performed on each 

replication rather than performing the method on averaged output from multiple runs.  In 

this study, 100 replications were generated for analysis of each model size and traffic 

demand level.  The formula given in Chapter 3 is been implemented to select the local 

minimum value of the MSER statistic.  For comparison purposes, the maximum 

truncation point, average truncation point, and the 95th percentile truncation point are 

recorded.  



61 

 The selected truncation value for the MSER is the minimum value of the width of 

the marginal confidence interval about the truncated sample mean.  A sample plot of the 

MSER statistic is shown in Figure 28 for the 5th Street Corridor model using a batch size 

of 5.  The minimum value was calculated at 350 seconds for this example.  

  

Figure 28. Sample plot of the MSER-5 statistic for an individual run 

 Figure 29 below shows the frequency of occurrences of the truncation values for 

the 5th Street model at low demand calculated by finding the minimum of the MSER-5 

statistic. The Cumulative Distribution Function (CDF) for the MSER-5 case is shown 

below in Figure 30 on the next page for 100 replications.  Similar plots for the remaining 

scenarios are given in Appendix C.   
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Figure 29. Frequency of Occurrences of truncation points for MSER-5 

 

Figure 30. Cumulative Distribution Function for MSER-5 truncation values 
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network vehicle count obtained every five seconds.  Transportation models containing 

signalized networks can exhibit patterns when grouped in different time intervals due to 

the nature of traffic signals.  Therefore, the MSER procedure is repeated for varying 

batch sizes to determine the impact batch size on the truncation value.  The batch sizes 

tested for the five-second observation data are 1, 5, 12, and 22 batches, corresponding to 

simulation time windows of 5, 25, 60, and 110 seconds.   

 Table 6 on the next page demonstrates the sensitivity of the truncation value to the 

selected batch size. 

 

Table 6. MSER-n: Number of Vehicles with different batch sizes, 5th Street Model 

  
Optimal Truncation Time (seconds) 

MSER-1 MSER-5 MSER-12 MSER-22 
Simulation time 
covered (seconds) 

5 25 60 110 

Average 77 98 159 398 
95th Percentile 175 275 360 1298 

 

 

 Table 6 shows that increasing the batch size will increase the value of the 

truncation point.  This meets intuition because as the batch size increases, the values for 

the earliest possible truncation points are larger and also increase more rapidly.  MSER-1 

and MSER-5 produce comparable truncation points while the batch sizes of 12 and 22 

result in much larger truncation points.    
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4.2.2  Sensitivity to Observation Length 

 As mentioned before, an observation interval of five seconds was selected based 

on experience and convenience before the experiment was performed.  While obtaining 

information for one second intervals is feasible, it can be computationally intensive.   

To determine the sensitivity of the determined truncation point to the observation 

internal, the width of the observation is changed from 5 seconds to 25, 60, and 110 

seconds.  The MSER-1 must be used in this set of experiments as a larger batch size 

would result in batch intervals that are unnecessarily large.  Table 7 below shows the 

results of changing the observation size without using batches (MSER-1). 

 

Table 7. Number of Vehicles with different observation lengths, 5th Street Model 

  
Optimal Truncation Time (seconds) 

MSER-1 MSER-1 MSER-1 MSER-1 
Simulation time 
covered (seconds) 

5 25 60 110 

Average 77 97 162 370 
95th Percentile 175 275 360 1254 

   

 The results for increasing the interval size for the number of vehicles in the 

network has the same effect as increasing the batch size: increasing the interval size 

increases the truncation point.  The results obtained from changing the observation size 

were almost identical to those from changing the batch size.  The main reason is that the 

same amount of simulation time is being covered by each method.  MSER-1 using 25-

second batches produced the same results as MSER-5 with five-second batches.  The 

difference between these two procedures is MSER-1 is taking one measurement at the 

end of the 25 seconds while MSER-5 is averaging five observations. 
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4.2.3  Sensitivity to Simulation Run Length 

 In each experiment discussed thus far the simulation run length is set to five hours 

to ensure the models are given sufficient time to reach “steady-state”.  In this analysis the 

data is re-analyzed to determine the truncation points as if the model had been run for a 

shorter time period.  That is, the later part of each run is not included in the MSER 

calculations.  Table 8 below displays the truncation points for run lengths of 1, 2, 3, 4, 

and 5 hours for the MSER-5 case for the medium network size.  For any run length over 

2 hours, MSER-5 provides the same maximum truncation point, and very similar average 

truncation points.  For any run length from two to five hours long, the 95th percentile 

truncation points are also nearly identical. 

 

Table 8: MSER-5:  Number of Vehicles in Network for changing Run Length  

  
Optimal Truncation Time (seconds) 

MSER-5 MSER-5 MSER-5 MSER-5 MSER-5 
Total simulation 
length (seconds) 

3,600 7,200 10,800 14,440 18,000 

Average 93 103 99 98 95 
95th Percentile 175 276 275 275 275 

 

4.2.4  Change in Volume and Model Size 

 MSER was applied to the three selected model sizes to determine the average 

truncation point of each model.  All four batch sizes chosen earlier were examined as 

well as high and low volumes for the small and medium network sizes.  These values are 

shown in a bar graph in Figure 31 on the following page.  
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Figure 31. Average MSER-n Truncation Point for varying model sizes 

 

 Table 9 on the following page shows the results for Figure 31 which consists of 

the average truncation point over 100 replicate runs.  As anticipated, the small network 

has the shortest warm-up time, closely followed by the medium network, the 5th Street 

corridor.  The results for the small and medium network were extremely close, mainly 

due to the similarities in the network characteristics.  For these two model sizes, MSER-5 

remained consistent for an increase in the volume.  The large network’s average 

truncation point is almost 12 times larger than the medium case, which is reasonable due 

to the size difference. 
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Table 9.  Average MSER-n Truncation Point for varying model and batch sizes 

 Network size, volume 
(simulation time) 

MSER-1 
(5) 

MSER-5 
(25) 

MSER-12 
(60) 

MSER-22 
(110) 

Small, Low Volume 60 71 115 365 
Small, High Volume 64 74 133 261 

Medium, Low Volume 77 98 161 395 
Medium, High Volume 83 98 211 342 
Large, Low Volume 1123 1159 1214 1238 
Large, High Volume 1216 1221 1252 1527 

 

 In general, the higher volume scenarios have a slightly longer initial transient 

period than the lower volumes scenarios using MSER.  This follows intuition as a model 

with 100 vehicles would be expected to take longer to “fill up” than a model with only 

ten vehicles.   

 

4.2.5  Travel Time Comparison 

 As mentioned before, travel time measurements were split into observations 

representing individual vehicles completing the travel time segment. These observations 

were grouped in batches of five and the MSER-5 was performed to compare the results to 

those obtained from the number of vehicles in the network, shown in Table 10 below. 

Table 10.  Average MSER-5 Truncation Point for number of vehicles, travel time 

Network size, volume 
Average Truncation Point (seconds) 

Vehicle Count Travel Time 
Small, Low Volume 71 59 
Small, High Volume 74 50 
Medium, Low Volume 98 453 
Medium, High Volume 98 311 
Large, Low Volume 1159 463 
Large, High Volume 1221 463 
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 Based on the results from Table 10, MSER-5 does not appear to give consistent 

results for both travel time and number of vehicles in the system, and it is unclear why 

these two performance measures give such different results.  MSER optimizes each data 

set and based on minimizing the confidence interval, thus if one performance measure is 

more variable than the other, the different standard deviations would affect the truncation 

point chosen.  

 

4.2.6  Analysis of MSER 

 A full analysis of MSER will be discussed in Chapter 5.  The topics that will be 

examined are the advantages and criticisms of the method, the ease of implementation, 

and the various issues encountered in this study.  Recommendations will be offered on 

applying this method to transportation models similar to those analyzed in this study. 

 

4.3  Volume Balancing Method 

 The Volume Balancing Method was the third procedure tested in this experiment.  

The motivation behind selecting this method is its current use of this simulation software 

packages.  Both CORSIM and TransModeler® have an algorithm for determining when 

the model has reached equilibrium by comparing the percentage change in the number of 

vehicles in the network over a specified time interval.  In this section, the sensitivity of 

selecting the interval over which to compare the percentage difference in volumes is 

analyzed.  
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4.3.1  Sensitivity to Interval Size 

 The impact of selecting the length of the time interval is tested in this experiment.  

CORSIM compares the number of vehicles in the network every 60 seconds as a default 

value; however we are interested in analyzing several values to compare the results.  Our 

study begins with 5 second intervals, and continues with 25, 60, and 110 second intervals.  

The percentage difference algorithm is applied to each individual run and the average 

value and 95 percentile are reported in Table 11 below. 

 

Table 11: Volume Balancing Method for 5th Street Model, changing interval size 

  VB 5s VB 25s VB 60s VB 110s 
Total simulation 
length (seconds) 

5 25 60 110 

Average 57 121 301 388 
95th Percentile 85 201 420 556 

 

 The small interval chooses the least amount of warm-up time while the large 

interval selects the longest.  The main reason for this is that shorter time intervals have 

more chances to have a two consecutive percentage change less than 12% and 8%; the 

first chance for the 110-second interval is at 330 seconds.  There are no guidelines on 

selecting the interval size, and no explanation was found as to why CORSIM uses 60 

seconds as a default value.  The percent differences of consecutive time intervals are 

shown in the Figure 32-35 on the following page for the medium network size, and 

interval lengths of 5, 25, 60, and 110 seconds. 

 There are two main disadvantages of using this method to determine equilibrium.  

First, choosing a time interval that is too short would cause the percentage differences to 

be too small.  Second, a network with high volume could determine a truncation point too 
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soon because the percentage change in volume would not fluctuate as much.  At this time 

we cannot recommend one interval over the other and realize insufficient guidelines for 

determining the interval size is a disadvantage to using this method.  

   

 

Figure 32.  Percentage Difference in Vehicle Count, using 5-second intervals 
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Figure 33.  Percentage Difference of Vehicle Count, using 25-second intervals 

 

Figure 34.  Percentage Difference of Vehicle Count, using 60-second intervals 
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Figure 35.  Percentage Difference of Vehicle Count, using 100-second intervals 
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

 

 The goal of this research is to explore different initialization bias truncation 

methods for their potential implementation in transportation simulation models.  The 

initialization bias problem has often been neglected in practice and unaccounted for it can 

yield inaccurate results.  After a survey of literature and the techniques used by 

simulation models, Welch’s Method, MSER, and the Volume Balancing Method were 

selected for implementation and tested on three different network sizes using VISSIM®.  

Throughout the process of implementing these procedures, several issues arose that will 

be discussed in this section.  Advantages and criticisms of each method will be listed in 

an attempt to compare the methods.  Based on the results of this experiment, 

recommendations for which method to use and how to set the specific parameters will be 

made. 

 

5.1  Analysis of Welch’s Method 

 Welch’s Method is the only one of the selected methods that could not be 

implemented through automation and requires the most intervention from the analyst.  

The theory behind Welch’s Method is intuitive and the formula and methodology for 

plotting the moving averages is easy to calculate and implement. Welch’s Method is 

performed on multiple replications and therefore has the advantage of specifying the 

truncation point that works best for the entire set.   
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 One advantage of using Welch’s Method is the analyst is able to visually inspect 

the output data to verify the model reaches steady-state.  Other methods that can be 

automated do not require plotting the data (however such plots are highly recommended 

as it is critical for the analyst to observe the characteristics of the output sequence).  

Another advantage is that Welch’s Method can provide consistent results for different 

numbers of replications.  Initial tests indicate that the warm-up times selected from 10 

replications were almost identical to those selected from 20, 40, and 100 replications.  

While increasing the number of replications does result in more smoothness in the 

graphs, an extremely large number of replications were not needed for the VISSIM® 

models studied.  Lastly, this method is popular and advantageous because the plots of the 

moving average provide a clear picture of the model reaching steady-state. 

 

5.1.1  Issues/Criticisms of Welch’s Method 

 The most common criticism of graphical methods is their subjectivity due to 

visually selecting the truncation point.  Individuals could judge the plot to be “reasonably 

smooth” at different locations in the time series based on their expertise and individual 

preferences.  In addition to reading the truncation value off the graph, there are two major 

factors that lead to subjective results by influencing the smoothness of the plot.  The first 

is the selection of the window size; selecting a window size that is larger than necessary 

will over-smooth the plots and result in a truncation point larger than needed.  The rules 

for selecting the best window size are very flexible which can be a problem because 

using different window sizes leads to a range of results.  Second, the selection of the scale 

of the y-axis for the moving averages plots determines how rough or smooth the plot 
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appears.   There are no guidelines on how to set the range for the y-axis, however it is 

important to keep the scale consistent.  As a rule of thumb for this study, the scale for the 

y-axis was determined by setting the range to twice the variation observed from the 

moving averages plotted with w = 1.   

 As mentioned earlier, an aid was installed to help determine when the plot reaches 

the mean of the moving average function.  An alternative to using this method, the 

analyst could add a 95% confidence interval (or any other confidence band) to the mean 

of the second half of the data and decide steady-state has been reached once the plot falls 

within this region.  This approach was applied to the same plot shown in Figure 3 where a 

warm-up time of 600 seconds was chosen.  In Figure 36 below, a warm-up time of 550 

seconds can be obtained using the confidence interval.  

 

Figure 36.  Confidence Interval (95%) added to Welch’s Method 
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 Using this approach helps provide more consistent truncation values each time 

and should be examined for future implementation of this method.  

 One disadvantage evident from this experiment is that Welch’s Method has the 

potential to overestimate the warm-up period when using very large window sizes.  A 

window size of 100 with five-second observations means the sliding window first begins 

to move through data at 500 seconds.  The first point (usually close to zero when the 

system is started empty) is included in each calculation until the window reaches 100. 

This issue would effectively set a minimum truncation point to the length of the window 

size, which could overestimate the warm-up time needed.  Lastly, the inability to 

automate this process could be a minor obstacle for future use of this procedure. 

  

5.2  Analysis of MSER 

 The primary advantage of using MSER is that this method optimizes the 

truncation point by selecting the point that minimizes the width of the confidence interval 

about the truncated sample mean [12].  By assuming the data in the second half is more 

representative of steady-state conditions, and an optimum truncation point is found for 

each individual run.  This is potentially more robust than Welch’s approach where a 

single truncation point is determined and applied to all replications. 

 Another advantage of MSER is the ability to automate the process with little 

intervention from the user needed.  In this effort a script was made for Visual Studio 

.NET to compute the MSER statistic for each replication, then the minimum value and 

the location in the time series was found.  While this method can be performed without 
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plotting the data series, it is highly recommended to examine the output series to verify 

the model is behaving correctly.     

 

5.2.1  Issues/Criticisms of MSER 

 The biggest issue encountered with MSER is the tendency to select the truncation 

point at the end of the data series.  The explanation for this problem is MSER can be 

sensitive to a data series with very similar values at the end of the simulation output data 

stream.  This problem has been noted in literature and an attempt to mitigate this problem 

was suggested by Hoad et al. who proposed ignoring the last five simulation observations 

when determining the minimum MSER statistic [23].  In this effort the application of this 

rule was found to eliminate this issue in most cases, however several runs were still 

reaching a minimum MSER statistic towards the end of the set.  Hoad et al. also 

suggested increasing the amount of data being collected and only considering the 

minimum values from the first half of the data series.  This method was implemented as 

well (with no additional data as 5 hours should be sufficiently large).  This almost 

completely eliminated the problem.  However, there is a significant drawback to 

imposing this restriction on the MSER.  If the method is not allowed to select a truncation 

point in the last half of the data, this would potentially miss the case where congestion 

builds in the second half of the model or if the model never reaches steady-state.  

 To mitigate this problem, we suggest first imposing the restriction of not selecting 

the truncation point in the last five observations, and then run the method again by only 

considering a truncation point in the first half of the data.  For series having a minimum 

first determined near the end of the simulation output data and then near the midpoint in 
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the second application the individual replication should be examined to see if there is 

congestion in the model (due to high volume or an incident) or if MSER reported this 

value because observations were close together at the end of simulation output data.  If 

the latter is the case, the value obtained in the first half of the series can be used. 

 Another criticism of MSER is it can be sensitive to outliers.  This effect was 

difficult to measure because outliers in transportation models can be hard to quantify.  

However, this problem does exist, and Hoad et al. noted that using the average of 

multiple replications (five in their experiment) partially alleviated this problem [23].  The 

idea of using multiple replications rather than individual replications is also an issue, as 

Hoad et al. found that by averaging five replications, a larger percentage of the bias could 

be removed.  This approach was not used in this experiment due to the fact that White 

explicitly expressed MSER “applies to individual output sequences”, but could be 

considered for future implementation. 

 The last issue with MSER is whether to use the optimal truncation point 

calculated for each individual series, or to use a single point for the entire set that is equal 

to the average value (or max, or 95%, etc. value) obtained from multiple replications.  

The first case ensures each replication has reached steady-state and utilized the maximum 

possible amount of data from each replication.  However, different simulation lengths 

will result in truncated data sets of varying sizes, potential complicating the processing of 

the replication runs and their statistical analysis.  Using the average value will result in a 

truncation point too small for the more variable cases.  Alternatively, the maximum value 

could be used to ensure each case has reached its optimal truncation point, but this could 

throw away significant amounts of steady-state data in many of the replications.  Lastly, 
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the 95th percentile truncation value could be selected to reduce the amount of 

unnecessarily discarded data while ensuring the majority of replications will be in steady-

state. 

 

5.3  Analysis of the Volume Balancing Method 

 After the Volume Balancing formula was examined closely, this method does not 

appear to be a good indicator of when the model has reached steady-state.  The intuition 

behind determining equilibrium with this method is that once the network is “full”, the 

percent difference in the total number of vehicles in the system between observations will 

be relatively small for the remainder of the simulation run.  However, experiments 

conducted for this research have found that the stability of the observations of the number 

of vehicles in the network is largely dependent on the chosen time interval between 

observations and the volume in the network.  If a very small interval is chosen, the 

percentage difference can be small because the number of vehicles in the network at the 

current time is highly dependent on the number of vehicles in the network in the previous 

interval.  For example, if the interval size is one second the observations between 

consecutive intervals would be expected to be highly correlated with small absolute 

differences.  If a larger interval size is chosen, the variation in the percentage difference 

can be much higher.  For example, in the case of the medium model size, a 60-second 

interval (which is the default value CORSIM uses) results in a range of percent 

differences of 0 to 113%, with many instances of 30% or more differences between 

observations seen throughout the simulation time period.  Figure 34 displays these results 

for the medium model size using 60-second intervals. The graph of these percent 
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differences illustrates why this method may not be a good measure of equilibrium. Based 

on the Volume Balancing methodology, the point the model reaches equilibrium would 

occur at 900 seconds, when two consecutive points are below 12% and 8%.  However, 

the volume continues to fluctuate for the remainder of the simulation.   

 When examining a network with a large volume, the graphs can look substantially 

different.  Figure 37 below shows the percentage difference in volume for the large 

network.  Due to the magnitude of the vehicle counts, the percentage difference in 

volumes becomes very small, ranging from 0% to 6.5%.  Based on the results from this 

experiment, it is not believed this method can be relied on as a measure of equilibrium. 

 

 

Figure 37.  Percentage Difference of Vehicle Count for Large network,  

(60-second interval) 
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 Using the Volume Balancing formula for the large network, equilibrium is 

obtained at 480 seconds.  However, at this time the number of vehicles in the network is 

632 while the model does not completely “fill” until it reaches 762 vehicles (the average 

number of vehicles in the network for second half of the data set).  Once the network 

reaches a certain size, a change in volume represents a smaller percentage change.  Based 

on the results from this experiment, it is not believed this method can be relied on as a 

measure of equilibrium. 

 

5.4  Limitations 

  One possible limitation would be the use of the number of vehicles in the network 

as an equilibrium measure.  If our model was given a demand greater than capacity, the 

traffic signals would effectively meter the incoming vehicles and only a certain number 

of vehicles will be let in the system, no matter how high the demand.  Also, if a network 

has a large volume, looking at the network vehicle count may not be able to account for a 

single intersection that fails and begins to form a small queue.  Thus, it is important to be 

cautious if using only volume as a measure of equilibrium. 

 Travel time could be used to capture characteristics of the network that the 

vehicle count would not account for, such as a failed traffic signal. However, it has the 

disadvantage of only analyzing the consistency of the particular route being considered, 

as it would be extremely tedious to apply the methodology to every route in the network.  

Another limitation of using travel time to detect the initial transient is it can be a sparse 

measurement.  A route that spans the entire network is desired, however, longer routes 
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could have a higher percentage of vehicles turning off of the mainline, resulting in fewer 

vehicles that complete the travel time segment from start to finish.  

 
 

5.5  Conclusion 

 All three methods presented in this study provide comparable results for the 

truncation point of the steady-state mean.  As the true value of the steady-state mean is 

unknown, we are unable to measure the amount of bias removed from the results and at 

what time in the sequence the correct truncation point occurs.  However, the results from 

implementing these procedures indicate that Welch’s Method provides the most 

consistent results and would be the most desirable to use in practice.    

 The most appealing characteristic of Welch’s Method is the ability to provide 

extremely consistent results for an increasing the number of replications; consistent 

truncation points can be obtained from 10 to 100 replications.  The same result was not 

found for MSER and Volume Balancing methods.  Another important aspect of Welch’s 

Method is its ability to determine the same length of the initial transient by using both 

vehicle counts and travel times.  This was not true for MSER and the Volume Balancing 

Method is limited to only looking at the network vehicle count. 

 It is also important to have the analyst involved in the decision so that they are not 

completely removed from the process.  MSER has the potential to be a useful tool, but 

additional efforts are needed to better guide its use in transportation applications.  To 

improve the application of Welch’s Method, the addition of a confidence band for the 

second half of the data is suggested.    
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APPENDIX A: DEVELOPMENT OF VISSIM® MODEL 

 

  A main goal of this study was to perform the warm-up procedures on three 

distinctly different models sizes.  However, we wanted the larger models to build upon a 

small model so that we could have a similar area to compare at each level.  This was 

accomplished by first building the large network and inputting the routing decisions and 

signal timing information.  Kate D’Ambrosio, a graduate research student at Georgia 

Tech, created the VISSIM® model of the Georgia Tech campus and surround area used 

in this study.   This was an extensive process and took several months of labor to code the 

massive network.  The default values for the routing decision used for this study were for 

80% of the vehicles to continue through, 15% turn right, and 5% turn left.  27 vehicle 

input were inserted into the network at all boundary points. 

 The 87 signalized intersections were set up with a Ring Barrier Controller (RBC) 

in VISSIM® with a default value of 60 seconds for the cycle length.  Traffic count 

information was obtained for the 5th Street corridor and the routing decisions were 

updated to reflect actual movements.  Signal timing for the corridor was obtained and the 

RBC controllers were adjusted accordingly.  For the corridor, Spring Street and West 

Peachtree both used 110 second cycle lengths, while 5th and Fowler, and 5th  and 

Techwood Drive used 75 seconds.  As the majority of the analysis was performed on this 

corridor, it was important to ensure it was as realistic as possible.   

 After the parameters had been updated for the large Georgia Tech network, the 

model was reduced in size to include 5th Street from Dalney Street to West Peachtree 

Street.  This model was carved out of the larger network to ensure the signal timing and 
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routing decisions were consistent across all three model sizes.  To create the single 

intersection case, the model was further reduced to 5th Street and Spring Street. 

 

 

Figure 38.  The three Model Sizes and relative location within the large model 
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Vehicle Input Tables 
 
 

Table 12.  5th Street at Spring Street Vehicle Inputs 

Link Name 
Number of Vehicles/Hour 

(per volume level) 
Medium High 

EB 5th Street 200 400 
WB 5th Street 200 400 
SB Spring Street 1000 2000 

 
 
 
 

Table 13.  5th Street Corridor Vehicle Inputs 

Link Name 
Number of Vehicles/Hour 

(per volume level) 
Medium High 

EB 5th Street 200 400 
WB 5th Street 100 100 
SB State Street 100 100 
SB Fowler Street 100 100 
NB Fowler Street 100 100 
SB Techwood Drive 100 100 
NB Techwood Drive 100 100 
Spring Street 1000 2000 
West Peachtree Street 1000 2000 
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Table 14.  5th Street Corridor Vehicle Inputs 

Link Name 
Number of Vehicles/Hour 

(per volume level) 
Medium High 

Ferst Dr. EB 100 100 
Techwood Dr NB 100 100 
5th Street WB 250 250 
Peachtree St SB 500 700 
Spring St SB 1500 2000 
W. Peachtree St NB 1500 2000 
7th Street WB 100 100 
Cyprus St SB 100 100 
Northside Dr NB 600 1000 
North Ave EB 300 300 
Tech Way WB 100 100 
Strong Street NB 100 100 
Donald Lee Holdwell Pkwy WB 200 200 
West Marietta St SB 400 400 
Dillian St SB 100 100 
Holly Street SB 100 100 
Ikea Exit SB 100 100 
Northside Dr SB 600 1000 
Howell Mill SB 300 300 
Huff Rd EB 100 100 
Ethel St EB 100 100 
Peachtree St NB 500 700 
Ponce De Leon WB 400 400 
4th Street WB 200 200 
10th Street WB 120 120 
Travel Time probe vehicle 100 100 
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APPENDIX B: ADDITIONAL PLOTS FOR WELCH’S METHOD 

 

Figure 39.  Welch's method for small network, 40 replications, w = 100 

 

Figure 40.  Welch's Method for Identification of warm-up,  

Small network, 40 replications, w = 100 
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Figure 41.  Welch's Method for large network, 50 replications, w = 150 

 

 
 

Figure 42.  Welch's Method for Identification of warm-up,  

Large network, 50 replications, w = 150  
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APPENDIX C: MSER GRAPHS 

 

 The following section presents the graphs from the MSER truncation method.  

The Frequency of Occurrences and Cumulative Distribution Function (CDF) are 

displayed for each model size.  First the CDF and Frequency plot are shown for the small 

network size using MSER-5, followed by the CDF and Frequency plot for the large 

network using MSER-5.  Figure 29 and Figure 30 showed the results of MSER-5 for the 

medium network. 
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Figure 43. Cumulative Distribution Function: MSER-5, small model, low volume 

 

 

Figure 44. Frequency of Occurrences: MSER-5, small model size, low volume 
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Figure 45. Cumulative Distribution Function: MSER-5, large model, low volume 

 
 

 
 

Figure 46. Frequency of Occurrences: MSER-5, small model size, low volume
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APPENDIX D: VISUAL BASIC™ CODE 

 

 Two sets of Visual Basic™ scripts, written by Georgia Tech researcher Wonho 

Suh are included.  After the data collection points were set up in VISISM®, a script was 

created to extract the desired information from VISSIM®.  There was one script written 

for each network size, with the ability to adjust the input volume.  Next, a script was 

written to perform the calculations for MSER and Volume Balancing Method.  Welch’s 

Method differs because it requires plotting incremental window sizes and observing the 

smoothness of the plots.  This procedure was performed in a separate spreadsheet 

designed to generate the plots.   
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Visual Basic™ Script to collect statistics from VISSIM® medium network size 
 
 
Imports  System.Text 
Imports  VISSIM_COMSERVERLib 
Imports  System.Runtime.InteropServices 
Imports  Microsoft.Office.Interop 
Imports  System.Convert 
Imports  System.Math 
Imports  System 
Imports  System.IO 
 
Public  Class  Warmup 
    Delegate  Sub VB_Reflect( ByVal  a As Integer , ByVal  b As String , 
ByVal  c As Integer ) 
 
    Dim objApp As Excel.Application 
    Dim objbook As Excel._Workbook 
    Dim objBooks As Excel.Workbooks 
    Dim objSheets As Excel.Sheets 
    Dim objSheet1 As Excel._Worksheet 
    Dim objSheet2 As Excel._Worksheet 
    Dim objSheet3 As Excel._Worksheet 
 
    Dim Vissim As Vissim 
    Dim Simulation As Simulation 
    Dim Net As Net 
    Dim Vehicles As Vehicles 
    Dim Vehicle As Vehicle 
    Dim Links As Links 
    Dim Link As Link 
    Dim Eval As Evaluation 
    Dim LinkEval As LinkEvaluation 
 
    Dim TTimes As TravelTimes 
    Dim TTime(0 To 50) As TravelTime 
    Dim Delays As Delays 
    Dim Delay(0 To 50) As Delay 
 
    Dim Detectors As DataCollections 
    Dim Detec(0 To 50) As DataCollection 
    Dim Detector As DataCollectionEvaluation 
 
    Dim DataCollections As DataCollections 
    Dim DataCollection As DataCollectionEvaluation 
 
 
    Dim VissimRandom As Integer 
    Dim RunCount As Integer 
    Dim x As Integer 
    Dim xx As Integer 
    Dim xxx As Integer 
    Dim xxxx As Integer 
    Dim SimTime As Long 
 
    Dim Start As Date 
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    Dim Start2 As Date 
     
    Private  Sub Form1_Load( ByVal  sender As System.Object, ByVal  e As 
System.EventArgs) Handles  MyBase.Load 
        Console.WriteLine(Now()) 
        Start = Now() 
        Start2 = Now() 
        Randomize() 
        objApp = New Excel.Application 
        objBooks = objApp.Workbooks 
        objbook = objBooks.Add 
        objSheets = objbook.Worksheets 
        objSheet1 = objSheets(1) 
        objApp.Visible = True 
 
        While  RunCount < 100 ' Total Number of Runs 
 
            RunCount = RunCount + 1 
            VissimRandom = Int(Rnd() * 1000) 
            Vissim = CreateObject( "vissim.vissim" ) 
            Simulation = Vissim.Simulation 
            Vissim.LoadNet( "C:\Tmp3\vissim\5th st luke.inp" ) 
 
            objSheet1.Cells(1 + 4000 * (RunCount - 1), 1) = "Run NO" 
            objSheet1.Cells(1 + 4000 * (RunCount - 1), 3) = "VISSIM 
seed" 
            objSheet1.Cells(1 + 4000 * (RunCount - 1), 5) = "Spring 
Vol" 
            objSheet1.Cells(1 + 4000 * (RunCount - 1), 7) = "5th Vol" 
 
            objSheet1.Cells(2 + 4000 * (RunCount - 1), 1) = "" 
 
            Dim i As Integer 
            For  i = 0 To 6 
                objSheet1.Cells(2 + 4000*(RunCount - 1), 2 + 26 * 
i)= "Time" 
            Next 
 
            objSheet1.Cells(2 + 4000 * (RunCount - 1), 3) = "In system" 
 
            objSheet1.Cells(2 + 4000 * (RunCount - 1), 55) = "SB T 
Ttime" 
            objSheet1.Cells(2 + 4000 * (RunCount - 1), 56) = "NO VEH" 
            objSheet1.Cells(2 + 4000 * (RunCount - 1), 57) = "Total" 
 
            objSheet1.Cells(2 + 4000 * (RunCount - 1), 81) = "EB1 
Ttime" 
            objSheet1.Cells(2 + 4000 * (RunCount - 1), 82) = "NO VEH" 
            objSheet1.Cells(2 + 4000 * (RunCount - 1), 83) = "Total" 
 
            objSheet1.Cells(2 + 4000 * (RunCount - 1), 107) = "EB2 
Ttime" 
            objSheet1.Cells(2 + 4000 * (RunCount - 1), 108) = "NO VEH" 
            objSheet1.Cells(2 + 4000 * (RunCount - 1), 109) = "Total" 
 
            objSheet1.Cells(2 + 4000 * (RunCount - 1), 133) = "WB1 
Ttime" 
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            objSheet1.Cells(2 + 4000 * (RunCount - 1), 134) = "NO VEH" 
            objSheet1.Cells(2 + 4000 * (RunCount - 1), 135) = "Total" 
 
            objSheet1.Cells(2 + 4000 * (RunCount - 1), 159) = "WB2 
Ttime" 
            objSheet1.Cells(2 + 4000 * (RunCount - 1), 160) = "NO VEH" 
            objSheet1.Cells(2 + 4000 * (RunCount - 1), 161) = "Total" 
 
 
            Run() 
            Console.WriteLine(Abs(DateDiff(DateInte rval.Second, Start2, 
Now())) & "  sec    "  & RunCount) 
            Start2 = Now() 
        End While 
 
        Console.WriteLine(Abs(DateDiff(DateInterval .Second, Start, 
Now())) & "      "  & RunCount)  
 
    End Sub 
    Sub Run() 
        Vissim.LoadLayout( "c:\tmp3\vissim\lukemedium.ini" ) 
        Vissim.ShowMinimized() 
        Vissim.Graphics.AttValue( "visualization" ) = 0  
 
        Net = Vissim.Net 
        Vehicles = Vissim.Net.Vehicles 
        Links = Net.Links 
        Simulation.Period = 999999999999  
        Simulation.RandomSeed = VissimRandom  
        Simulation.Resolution = 1 
 
        Eval = Vissim.Evaluation         
        Eval.AttValue( "delay" ) = True 
        Eval.AttValue( "datacollection" ) = True 
        Eval.AttValue( "vehiclerecord" ) = True 
        Eval.AttValue( "traveltime" ) = True 
 
        TTimes = Vissim.Net.TravelTimes 
        Delays = Vissim.Net.Delays 
        Detector = Vissim.Evaluation.DataCollection Evaluation 
        Detector.LoadConfiguration( "c:\tmp2\gt.qmk" )  
        Detectors = Vissim.Net.DataCollections 
 
        Dim controllers As SignalControllers 
        Dim controller As SignalController 
        controllers = Vissim.Net.SignalControllers 
 
        Dim groups As SignalGroups 
        Dim group As SignalGroup 
 
        For  x = 1 To controllers.Count 
            controller = controllers(x)  
            groups = Vissim.Net.SignalControllers(x ).SignalGroups 
        Next 
 
         
        Dim Inputs As VehicleInputs 
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        Inputs = Vissim.Net.VehicleInputs 
 
        For  x = 1 To Inputs.Count      ' Change input volume here  
            If  Inputs(x).Name = "SB"  Then 
                Inputs(x).AttValue( "volume" ) = 1000  
            ElseIf  Inputs(x).Name = "EB"  Then 
                Inputs(x).AttValue( "volume" ) = 200  
            ElseIf  Inputs(x).Name = "NB"  Then 
                Inputs(x).AttValue( "volume" ) = 200 
            End If 
        Next  x 
 
        objSheet1.Cells(1 + (RunCount - 1) * 4000, 2) = RunCount 
        objSheet1.Cells(1 + (RunCount - 1) * 4000, 4) = 
Simulation.RandomSeed 
        objSheet1.Cells(1 + (RunCount - 1) * 4000, 6) = ""   
        objSheet1.Cells(1 + (RunCount - 1) * 4000, 8) = ""   
 
        For  xx = 1 To TTimes.Count 
            If  TTimes(xx).Name = "1"  Then 
                TTime(1) = TTimes(xx) 
            End If 
        Next 
 
        While  1 > 0 
            Simulation.RunSingleStep() 
            SimTime = Simulation.AttValue( "elapsedtime" ) 
 
            If  SimTime = 18001 Then 
                Simulation.Stop() 
                Vissim.Exit() 
                Exit  While 
            End If 
 
            Dim tempcount As Integer 
            Dim ii As Integer 
 
            xxx = 1 
            If  (SimTime - xxx) Mod 5 = 0 And SimTime > 1 Then 
 
                For  ii = 0 To 6 
                    objSheet1.Cells((SimTime - xxx)  / 5 + 2 + (RunCount 
- 1) * 4000, 1 + ii * 26) = Int((SimTime - xxx) / 5 ) 
                    objSheet1.Cells((SimTime - xxx)  / 5 + 2 + (RunCount 
- 1) * 4000, 2 + ii * 26) = SimTime - xxx 
                Next 
 
                objSheet1.Cells((SimTime - xxx) / 5  + 2 + (RunCount - 
1) * 4000, 3) = Vehicles.Count 
 
                objSheet1.Cells((SimTime - xxx) / 5  + 2 + (RunCount - 
1) * 4000, 55) = TTime(1).GetResult(SimTime - 1, "traveltime" , "" , 0) 
                objSheet1.Cells((SimTime - xxx) / 5  + 2 + (RunCount - 
1) * 4000, 56) = TTime(1).GetResult(SimTime - 1, "nvehicles" , "" , 0) 
                objSheet1.Cells((SimTime - xxx) / 5  + 2 + (RunCount - 
1) * 4000, 57) = TTime(1).GetResult(SimTime - 1, "traveltime" , "" , 0) * 
TTime(1).GetResult(SimTime - 1, "nvehicles" , "" , 0) 
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            End If 
        End While 
    End Sub 
End Class  
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VB Script to perform MSER and Volume Balancing Method on vehicle count and 
travel time for medium model size 

 
 

Imports  System.Text 
Imports  System.Runtime.InteropServices 
Imports  Microsoft.Office.Interop 
Imports  System.Convert 
Imports  System.Math 
Imports  System 
Imports  System.IO 
 
Public  Class  Warmup 
    Delegate  Sub VB_Reflect( ByVal  a As Integer , ByVal  b As String , 
ByVal  c As Integer ) 
 
    Dim objApp As Excel.Application 
    Dim objbook As Excel._Workbook 
    Dim objBooks As Excel.Workbooks 
    Dim objSheets As Excel.Sheets 
    Dim objSheet1 As Excel._Worksheet 
 
    Dim objApp2 As Excel.Application 
    Dim objbook2 As Excel._Workbook 
    Dim objBooks2 As Excel.Workbooks 
    Dim objSheets2 As Excel.Sheets 
    Dim objSheet2 As Excel._Worksheet 
 
    Dim Start As Date 
    Dim Start2 As Date 
 
    Private  Sub Form1_Load( ByVal  sender As System.Object, ByVal  e As 
System.EventArgs) Handles  MyBase.Load 
        Console.WriteLine(Now()) 
        Start = Now() 
        Start2 = Now() 
 
        objApp = New Excel.Application 
        objBooks = objApp.Workbooks 
        objbook = objBooks.Add 
 
        objSheets = objbook.Worksheets 
        objSheet1 = objSheets(1) 
        objApp.Visible = True   
 
        objApp2 = New Excel.Application 
        objbook2 = 
objApp2.Workbooks.Open( "C:\tmp3\output\medium_original.xlsx" ) 
        objApp2.Visible = False   
        objSheet2 = objbook2.Worksheets( "sheet1" ) 
 
        Dim RunNo As Integer 
        Dim Interval As Integer 
        Dim b As Integer 
        Dim i As Integer 
        Dim ii As Integer 
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        Dim iii As Integer 
        Dim Cutoff(0 To 5) 
 
        Cutoff(1) = 1800 ' x5 = 9000s 
        Cutoff(2) = 360 ' x25 = 9000s 
        Cutoff(3) = 150 ' x60 = 9000s 
        Cutoff(4) = 82 ' x110 = 9020s 
 
        For  i = 0 To 19 
            objSheet1.Cells(1, 1 + i * 10).value = "Run NO" 
        Next 
 
        objSheet1.Cells(1, 2).value = "VC M1 5s" 
        objSheet1.Cells(1, 3).value = "VC M5 25s" 
        objSheet1.Cells(1, 4).value = "VC M12 60s" 
        objSheet1.Cells(1, 5).value = "VC M22 110s" 
 
        objSheet1.Cells(1, 22).value = "VC M1 5s" 
        objSheet1.Cells(1, 23).value = "VC M1 25s" 
        objSheet1.Cells(1, 24).value = "VC M1 60s" 
        objSheet1.Cells(1, 25).value = "VC M1 110s" 
 
        objSheet1.Cells(1, 42).value = "VC M5 1hr" 
        objSheet1.Cells(1, 43).value = "VC M5 2hr" 
        objSheet1.Cells(1, 44).value = "VC M5 3hr" 
        objSheet1.Cells(1, 45).value = "VC M5 4hr" 
        objSheet1.Cells(1, 46).value = "VC M5 5hr" 
 
        objSheet1.Cells(1, 62).value = "VB 5s" 
        objSheet1.Cells(1, 63).value = "VB 25s" 
        objSheet1.Cells(1, 64).value = "VB 60s" 
        objSheet1.Cells(1, 65).value = "VB 110s" 
        objSheet1.Cells(1, 66).value = "5s NO" 
        objSheet1.Cells(1, 67).value = "25s NO" 
        objSheet1.Cells(1, 68).value = "60s NO" 
        objSheet1.Cells(1, 69).value = "110s NO" 
 
        objSheet1.Cells(1, 102).value = "TT M1" 
        objSheet1.Cells(1, 103).value = "TT M5" 
        objSheet1.Cells(1, 104).value = "TT M10" 
        objSheet1.Cells(1, 105).value = "TT M20" 
 
        objSheet1.Cells(1, 112).value = "TT M5 1hr" 
        objSheet1.Cells(1, 113).value = "TT M5 2hr" 
        objSheet1.Cells(1, 114).value = "TT M5 3hr" 
        objSheet1.Cells(1, 115).value = "TT M5 4hr" 
        objSheet1.Cells(1, 116).value = "TT M5 5hr" 
 
        Dim Count(0 To 0, 0 To 100, 0 To 5, 0 To 4000)         
        Dim TTime(0 To 5, 0 To 100, 0 To 5, 0 To 10000)       
        Dim TTimeWhen(0 To 5, 0 To 100, 0 To 5, 0 To 10000)  
 
        For  RunNo = 1 To 52 
 
            Dim TempCount(0 To 10) 
            ReDim TempCount(0 To 10) 
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            Console.WriteLine(RunNo & " start   "  & Now()) 
 
            For  i = 0 To 19 
                objSheet1.Cells(1 + (RunNo), 1 + i * 10).value = RunNo 
            Next 
 
            'read from excel 
            For  i = 1 To 3599 
                Count(0, RunNo, 1, i) = objSheet2.C ells(2 + i + (RunNo 
- 1) * 4000, 3).value 
 
                For  ii = 1 To 1 ''''''''''''''''''''''''''' total route 
number 
                    If  objSheet2.Cells(2 + i + (RunNo - 1) * 4000, 30 + 
26 * ii).value > 0 Then 
                        For  iii = 1 To objSheet2.Cells(2 + i + (RunNo - 
1) * 4000, 56).value 
                            TempCount(ii) = TempCou nt(ii) + 1 
                            TTime(ii, RunNo, 1, Tem pCount(ii)) = 
objSheet2.Cells(2 + i + (RunNo - 1) * 4000, 55).val ue 'travel time 
                            TTimeWhen(ii, RunNo, 1,  TempCount(ii)) = i 
* 5 'simulation time 
 
                            objSheet1.Cells(TempCou nt(ii) + 150, 1) = 
TempCount(ii) 
                            objSheet1.Cells(TempCou nt(ii) + 150, RunNo 
* 2) = TTime(ii, RunNo, 1, TempCount(ii)) 
                            objSheet1.Cells(TempCou nt(ii) + 150, RunNo 
* 2 + 1) = TTimeWhen(ii, RunNo, 1, TempCount(ii)) 
                        Next 
                    End If 
                Next 
            Next 
 
            Dim IntCount(0 To 10) 
            IntCount(1) = 1 
            IntCount(2) = 5 
            IntCount(3) = 12 
            IntCount(4) = 22 
 
            Dim Temp0 As Integer 
 
            For  Temp0 = 2 To 4 
                Interval = IntCount(Temp0) 
 
                For  i = 1 To Int(3599 / Interval) 
                    Dim Temp1 As Single  = 0 
                    Dim Temp2 As Single  = 0 
 
                    For  iii = 1 To Interval 
                        Temp1 = Temp1 + Count(0, Ru nNo, 1, (i - 1) * 
Interval + iii) 
                                            Next 
                    Count(0, RunNo, Temp0, i) = Tem p1 / Interval 
                   
                Next 
            Next 
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            objSheet1.Cells(RunNo + 1, 7) = Count(0 , RunNo, 1, 3599) 
 
            Dim IntTT(0 To 10) 
            IntTT(1) = 1 
            IntTT(2) = 5 
            IntTT(3) = 10 
            IntTT(4) = 20 
 
            For  Temp0 = 2 To 4 
                Interval = IntTT(Temp0) 
 
                For  ii = 1 To 1   
                    For  i = 1 To Int(TempCount(ii) / Interval)   
                        Dim Temp3 As Single  = 0 
                        For  iii = 1 To Interval 
                            Temp3 = Temp3 + TTime(i i, RunNo, 1, (i - 1) 
* Interval + iii) 
                        Next 
                        TTime(ii, RunNo, Temp0, i) = Temp3 / Interval 
                        TTimeWhen(ii, RunNo, Temp0,  i) = TTimeWhen(ii, 
RunNo, 1, i * Interval) 
 
                    Next 
                Next 
            Next 
 
            For  Temp0 = 1 To 4 
                Interval = IntCount(Temp0) 
                Dim CountTerm1(0 To Int(3599 / Interval)) As Single 
                Dim CountTerm2(0 To Int(3599 / Interval)) As Single 
 
                ReDim CountTerm1(0 To Int(3599 / Interval)) 
                ReDim CountTerm2(0 To Int(3599 / Interval)) 
 
                For  i = 0 To Int(3599 / Interval) - 1  
                    Dim Temp4 As Single  = 0 
                    Dim Temp5 As Single  = 0 
                    Dim Temp6 As Single  = 0 
                    Dim Temp7 As Single  = 0 
                    Dim Temp8 As Single  = 0 
 
                    For  ii = 1 To Int(3599 / Interval) - 1 - i + 1 
                        Temp4 = Temp4 + Count(0, Ru nNo, Temp0, i + ii) 
                        Temp6 = Temp6 + 1 
                    Next 
 
                    CountTerm1(i) = Temp4 / Temp6  
 
                    For  iii = i + 1 To Int(3599 / Interval) 
                        Temp7 = Temp7 + (Count(0, R unNo, Temp0, iii) - 
CountTerm1(i)) * (Count(0, RunNo, Temp0, iii) - Cou ntTerm1(i)) 
                         
                    Next 
 
                    CountTerm2(i) = Temp7 / (Int(35 99 / Interval) - i) 
/ (Int(3599 / Interval) - i) 
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                Next 
 
                Dim Temp9 As Single  = CountTerm2(1) 
                Dim Temp10 As Single  = Interval * 5 
 
                For  i = 1 To Int(3599 / Interval) - 1 - Cutoff(Temp0) 
                    If  CountTerm2(i) < Temp9 Then 
                        Temp9 = CountTerm2(i) 
                        Temp10 = i * Interval * 5 
                    End If 
                Next 
                objSheet1.Cells(RunNo + 1, Temp0 + 1) = Temp10 
            Next 
 
            For  Temp0 = 1 To 4 
                Interval = IntCount(Temp0) 
                Dim CountTerm1(0 To Int(3599 / Interval)) As Single 
                Dim CountTerm2(0 To Int(3599 / Interval)) As Single 
 
                ReDim CountTerm1(0 To Int(3599 / Interval)) 
                ReDim CountTerm2(0 To Int(3599 / Interval)) 
 
                For  i = 0 To Int(3599 / Interval) - 1 ' 0 <= d < n 
                    Dim Temp4 As Single  = 0 
                    Dim Temp5 As Single  = 0 
                    Dim Temp6 As Single  = 0 
                    Dim Temp7 As Single  = 0 
                    Dim Temp8 As Single  = 0 
 
                    For  ii = 1 To Int(3599 / Interval) - 1 - i + 1 
                        Temp4 = Temp4 + Count(0, Ru nNo, 1, i * Interval 
+ ii * Interval)  
                        Temp6 = Temp6 + 1 
                    Next 
 
                    CountTerm1(i) = Temp4 / Temp6  
 
                    For  iii = i + 1 To Int(3599 / Interval) 
                        Temp7 = Temp7 + (Count(0, R unNo, Temp0, iii) - 
CountTerm1(i)) * (Count(0, RunNo, Temp0, iii) - Cou ntTerm1(i)) 
 
                    Next 
 
                    CountTerm2(i) = Temp7 / (Int(35 99 / Interval) - i) 
/ (Int(3599 / Interval) - i) 
                     
                    Next 
                 
                Dim Temp9 As Single  = CountTerm2(1) 
                Dim Temp10 As Single  = Interval * 5 
                Dim Temp12 As Single  = Interval * 5 
 
                For  i = 1 To Int(3599 / Interval) - 1 - Cutoff(Temp0) 
                    If  CountTerm2(i) < Temp9 Then 
                        Temp9 = CountTerm2(i) 
                        Temp10 = i * Interval * 5 
                    End If 
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                Next 
                objSheet1.Cells(RunNo + 1, Temp0 + 21) = Temp10 
            Next 
 
 
             
            Dim RunLength(0 To 10) 
            RunLength(1) = 144 '144 x 25 = 3600s or 1hr 
            RunLength(2) = 288 '288 x 25 = 7200s or 2hr 
            RunLength(3) = 432 '432 x 25 = 10800s or 3hr 
            RunLength(4) = 576 '576 x 25 = 14400s or 4hr 
            RunLength(5) = 720 '720 x 25 = 18000s or 5hr 
 
            For  Temp0 = 1 To 5 
                Dim Length As Integer 
                Length = RunLength(Temp0) 
 
                Dim CountTerm1(0 To Length) As Single 
                Dim CountTerm2(0 To Length) As Single 
 
                ReDim CountTerm1(0 To Length) 
                ReDim CountTerm2(0 To Length) 
 
                 
                For  i = 0 To Length - 1  
                    Dim Temp4 As Single  = 0 
                    Dim Temp5 As Single  = 0 
                    Dim Temp6 As Single  = 0 
                    Dim Temp7 As Single  = 0 
                    Dim Temp8 As Single  = 0 
 
                    For  ii = 1 To Length - 1 - i + 1 
                        Temp4 = Temp4 + Count(0, Ru nNo, 2, i + ii)  
                        Temp6 = Temp6 + 1 
                    Next 
 
                    CountTerm1(i) = Temp4 / Temp6  
                     
                    For  iii = i + 1 To Length 
                        Temp7 = Temp7 + (Count(0, R unNo, 2, iii) - 
CountTerm1(i)) * (Count(0, RunNo, 2, iii) - CountTe rm1(i)) 
 
                    Next 
 
                    CountTerm2(i) = Temp7 / (Length  - i) / (Length - i) 
                Next 
 
                Dim Temp9 As Single  = CountTerm2(1) 
                Dim Temp10 As Single  = 25 
 
                For  i = 1 To Length - 1 - Cutoff(2)   
                    If  CountTerm2(i) < Temp9 Then 
                        Temp9 = CountTerm2(i) 
                        Temp10 = i * 25  
                    End If 
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                Next 
                objSheet1.Cells(RunNo + 1, Temp0 + 41) = Temp10 
            Next 
 
            'Volume Balancing with different interval 
            For  Temp0 = 1 To 4 
                Interval = IntCount(Temp0) 
                Dim Temp4 As Single  = 0 
                Dim Temp5 As Single  = 0 
                Dim Temp6 As Single  = 0 
                Dim Temp7 As Integer  = 0 
 
                For  i = 3 To Int(3599 / Interval) - 1 
 
                    Temp4 = Count(0, RunNo, 1, Inte rval * (i - 2)) 
                    Temp5 = Count(0, RunNo, 1, Inte rval * (i - 1)) 
                    Temp6 = Count(0, RunNo, 1, Inte rval * (i - 0)) 
 
                    If  (Abs(Temp4 - Temp5) / Temp4) < 0.12 And 
(Abs(Temp5 - Temp6) / Temp5) < 0.08 Then 
                        Temp7 = Temp7 + 1 
                        If  Temp7 = 1 Then 
                            objSheet1.Cells(RunNo +  1, Temp0 + 61) = i 
* Interval * 5 
                        End If 
                    End If 
                Next 
            Next 
 
            'Travel Time MSER with different batch sizes 
            For  Temp0 = 1 To 4 
                Interval = IntTT(Temp0) 
                Dim TTTerm1(0 To Int(TempCount(1) / Interval)) As 
Single   
                Dim TTTerm2(0 To Int(TempCount(1) / Interval)) As 
Single 
 
                ReDim TTTerm1(0 To Int(TempCount(1) / Interval)) 
                ReDim TTTerm2(0 To Int(TempCount(1) / Interval)) 
 
 
                For  i = 0 To Int(TempCount(1) / Interval) - 1 ' 0 <= d 
< n 
                    Dim Temp4 As Single  = 0 
                    Dim Temp5 As Single  = 0 
                    Dim Temp6 As Single  = 0 
                    Dim Temp7 As Single  = 0 
                    Dim Temp8 As Single  = 0 
 
                    For  ii = 1 To Int(TempCount(1) / Interval) - 1 - i 
+ 1 
                        Temp4 = Temp4 + TTime(1, Ru nNo, Temp0, i + ii) 
                        Temp6 = Temp6 + 1 
                    Next 
 
                    TTTerm1(i) = Temp4 / Temp6  
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                    For  iii = i + 1 To Int(TempCount(1) / Interval) 
                        Temp7 = Temp7 + (TTime(1, R unNo, Temp0, iii) - 
TTTerm1(i)) * (TTime(1, RunNo, Temp0, iii) - TTTerm 1(i)) 
                    Next 
 
                    TTTerm2(i) = Temp7 / (Int(TempC ount(1) / Interval) 
- i) / (Int(TempCount(1) / Interval) - i) 
                Next 
 
                'Find the minimum value 
                Dim Temp9 As Single  = TTTerm2(1) 
                Dim Temp10 As Single  = TTimeWhen(1, RunNo, Temp0, 1) 
 
                For  i = 1 To Int(TempCount(1) / Interval) - 1 - 
Cutoff(Temp0) 
                    If  TTTerm2(i) < Temp9 Then 
                        Temp9 = TTTerm2(i) 
                        Temp10 = TTimeWhen(1, RunNo , Temp0, i) 
                    End If 
                Next 
                objSheet1.Cells(RunNo + 1, Temp0 + 101) = Temp10 
            Next 
 
            'Travel Time MSER5 with different run lengths 
            For  i = 1 To Int(TempCount(1) / 5) 
                If  TTimeWhen(1, RunNo, 2, i) <= 3600 Then 
                    RunLength(1) = i   
                ElseIf  TTimeWhen(1, RunNo, 2, i) <= 7200 Then 
                    RunLength(2) = i  
                ElseIf  TTimeWhen(1, RunNo, 2, i) <= 10800 Then 
                    RunLength(3) = i  
                ElseIf  TTimeWhen(1, RunNo, 2, i) <= 14400 Then 
                    RunLength(4) = i  
                End If 
                RunLength(5) = Int(TempCount(1) / 5 ) 
            Next 
 
            For  Temp0 = 1 To 5 
                Dim Length As Integer 
                Length = RunLength(Temp0) 
 
                Dim TTimeTerm1(0 To Length) As Single 
                Dim TTimeTerm2(0 To Length) As Single 
 
                ReDim TTimeTerm1(0 To Length) 
                ReDim TTimeTerm2(0 To Length) 
 
                 
                For  i = 0 To Length - 1       ' 0 <= d < n 
                    Dim Temp4 As Single  = 0 
                    Dim Temp5 As Single  = 0 
                    Dim Temp6 As Single  = 0 
                    Dim Temp7 As Single  = 0 
                    Dim Temp8 As Single  = 0 
 
                    For  ii = 1 To Length - 1 - i + 1 
                        Temp4 = Temp4 + TTime(1, Ru nNo, 2, i + ii)  
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                        Temp6 = Temp6 + 1 
                    Next 
 
                    TTimeTerm1(i) = Temp4 / Temp6  
 
                    For  iii = i + 1 To Length 
                        Temp7 = Temp7 + (TTime(1, R unNo, 2, iii) - 
TTimeTerm1(i)) * (TTime(1, RunNo, 2, iii) - TTimeTe rm1(i)) 
                    Next 
 
                    TTimeTerm2(i) = Temp7 / (Length  - i) / (Length - i) 
                Next 
 
                'Finding the minimum value 
                Dim Temp9 As Single  = TTimeTerm2(1) 
                Dim Temp10 As Single  = TTimeWhen(1, RunNo, 2, 1) 
 
                For  i = 1 To Length - 1 - Cutoff(2)   
                    If  TTimeTerm2(i) < Temp9 Then 
                        Temp9 = TTimeTerm2(i) 
                        Temp10 = TTimeWhen(1, RunNo , 2, i) 
                    End If 
                Next 
                objSheet1.Cells(RunNo + 1, Temp0 + 111) = Temp10 
            Next 
        Next 
 
 
        Console.WriteLine(Abs(DateDiff(DateInterval .Second, Start, 
Now())) & "      " ) 
    End Sub 
End Class 
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