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SUMMARY

All computer simulation models require some forhindialization before their
outputs can be considered meaningful. Simulatiodetsoare typically initialized in a
particular, often “empty” state and therefore muestwarmed-up” for an unknown
amount of simulation time before reaching a “qusisady-state” representative of the
systems’ performance. The portion of the outptuesdhat is influenced by the arbitrary
initialization is referred to as the initial traest and is a widely recognized problem in
simulation analysis. Although several methodstdrisremoving the initial transient,
there are no methods that perform well in all agggions.

This research evaluates the effectiveness of aketemhniques for reducing
initialization bias from simulations using the coential transportation simulation model
VISSIM®. The three methods ultimately selecteddealuation are Welch’'s Method,
the Marginal Standard Error Rule (MSER) and theuvfté Balancing Method currently
being used by the CORSIM model. Three model it&sr a single intersection, a
corridor, and a large network — were created tdyaeahe length of the initial transient
for varying scenarios, under high and low demarmshagos.

After presenting the results of each initializatrmethod, advantages and
criticisms of each are discussed as well as ishizsrose during the implementation.
The results for estimation of the extent of théiahtransient are compared across each
method and across the varying model sizes and wlawels. Based on the results of
this study, Welch’s Method is recommended baseid oonsistency and ease of

implementation.
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CHAPTER 1

INTRODUCTION

Over the past several decades, computer simulaéistibecome an increasingly
vital instrument for the analysis of transportati@iworks. By using simulation,
complex networks can be analyzed in a risk-freerenment to test assumptions and
preview possible outcomes to determine their p@kfar implementation [1].

Simulation provides an enormous amount of flexipilo manipulate conditions that
could influence the operation of the network. Fatance, if an impact analysis of the
closure of two lanes due to an accident or constmucs desired, simulation can be used
to model the impact on the network without the niephysically close the two lanes.
Another example would be if several proposals lerdonfiguration of an interchange
are being considered, an analyst can run a computettation model of each alternative
to see which proposal can maximize the operatieffigiency.

The ability to integrate traffic demand forecagtinto simulation models can be
extremely useful for transportation planning pugssSimulations can be utilized to
model the performance of the existing roadway uateire demands to help determine
which arterials cannot handle future capacity amedrexpanding. Given the myriad of
ways transportation simulation can be used tocatlii analyze travel conditions, it is
extremely important that the data processing aspfdbie simulation analysis be
fundamentally sound. One area requiring additioleakelopment is guidelines to govern
the initialization of transportation simulation nedslin the determination of when it is

appropriate to begin collecting statistics.



The simulation start-up problem is of significanterest and has been studied
greatly in literature. When a model is initializeda condition uncharacteristic of steady-
state, bias may be introduced into determined estira leading to inaccurate results.
There are two common methods of mitigating theahration bias problem. The most
common approach is truncation, or discarding titealrdata influenced by the starting
conditions. The second approach is intelligerttalzation, or starting the model in a
state with a high probability of equilibrium. Howes, it is not always convenient or
even practical to start the simulation is suchageq?]. More importantly, determining
what equilibrium means in a transportation modael loa difficult and arbitrary. For
example, determining priori how many vehicles to queue at each light, whepaoe
all the vehicles, and what initial speed is nearlgossible in most instances.

A possible challenge to the use of simulation nette analysis is determining if
the given model reaches steady-state. For instaooge argue that transportation
models never achieve stationarity because thegaroterge on a constant value [3].
Due to the nature of traffic signals, vehicles\aiin platoons and travel times can
fluctuate substantially over the course of severautes. Thus, as a part of this effort a

definition of steady-state will also be established

1.1 Need for Study
The need to eliminate initialization bias, als@wm as the start-up problem, is a
widely recognized challenge with simulation anaysi his occurs because non-
terminating simulations do not have predefinedlemgths or initial conditions. The

processes must be initialized arbitrarily, whichates bias in steady-state parameter



estimates. Although methods of removing initidi@a bias exist, there is currently no
largely accepted method that performs suitablylia@plications. Additionally, there is
an overall negligence of the initial transient gewsb in practice [4]. Robinson (2005)
stated that “the availability of commercial simuigat software has placed simulation
model development into the hands of non-experteloving the need for a detailed
knowledge of programming code” [5]. As a resulany simulation models are likely

being improperly used.

1.2 Study Objective
The purpose of this study is to analyze the affeness of several techniques in
eliminating initialization bias from transportatisimulation models. A survey of the
various methods will be discussed, and the topethrethods will be compared in detail
to examine their performance. The performancéede truncation methods will be

tested on a simulation model using PTV-VISSIM® 5.10

1.3 General Procedure
The general framework that will be used to analyeeinitialization bias
mitigation methods is outlined below:
1. Steady-state in simulation must first be defined.
2. Existing methods of removing initialization biag @aurveyed.
3. Three truncation methods are selected based origrdp@and effectiveness.
4. VISSIM® models are created for varying network size

5. Measures of Effectiveness (MOE) for each netwoekdsatermined.



6. Each truncation method will be applied to the gel@®dMOE under non-
congestion conditions.

7. The methods will be reapplied for cases when thear& approaches congestion.

1.4 Study Overview

This study compares the proposed initializatiasruncation methods on three
different networks. First the methodology is tdst@ a single intersection modeled after
the 8" Street and Spring Street intersection in AtlaBtegrgia. Second, this study area
is expanded to a corridor of' Btreet consisting of five signalized intersectiofénally,
a large network encompassing the Georgia Tech csuapadi surrounding area is
analyzed, including the"5Street corridor. This large network is approxiehatl8 by 22
blocks and consists of 87 signalized intersectidéach network is simulated for both
under-capacity and near-capacity conditions. &halysis allows for a study of the
impact of network size and traffic demand on theahtransient in the transportation

setting.



CHAPTER 2

LITERATURE REVIEW AND BACKGROUND

The purpose of this research is to determine veh&mulation model has reached
equilibrium, or steady-state. This will allow fre identification and elimination of the
initial transient and the determination of unbiagedjarding model start-up) performance
measures. However, before the initial transient bwidentified a general definition of
steady-state must be established as well as atdefiof steady-state specific to
transportation simulation models. For transpastaimulation applications this effort
will focus on microscopic simulation models.

After defining the initial transient current mettsoof removing the initial
transient in simulation output data found by revieywelevant literature will be
introduced. The majority of this literature waseséed from the Proceedings of the
Winter Simulation Conference, the European Joush&lperational Research, and the
Naval Research Logistics Quarterly. The methodeeatly being used by the simulation
tools VISSIM®, CORSIM, and TransModeler are exardias well. Finally, three
methods selected for implementation within thiseesh are identified and further

discussed.

2.1 Defining Steady-State
Simulations can be classified as either termiigatinnonterminating. A
terminating simulation has a “natural” event thag¢afies the duration of each run [3].

An example would be a restaurant open from 8:00.AdV10:00 P.M. and observing the



number of transactions occurring within that firtitee period. A non-terminating
simulation has no natural event to specify thelemgth [3]. An example is a
continuous process with no ending conditions, sgtraffic flowing on a freeway. In
this study the steady-state parameters of intarestéstimated from non-terminating
simulations. Two strategies for calculating theadiestate mean of the performance
measure of interest are:

1. Fixed sample size — A single run of arbitrary length is conducted @nconfidence

interval is constructed about the sample mean.

2. Sequential procedures — Simulation length is sequentially increased|atti

“acceptable” confidence interval is achieved [6].

This study focuses on fixed sample size procedingscan be used after the simulation
has been performed for a predefined amount of tiomg enough to allow the model to
reach a steady-state. Fixed sample size procedtgdle primary considerations as
much of current transportation simulation practiod tools follow fixed sample size
techniques. Future research efforts will explbeeuse of sequential procedures to
determine if a more significant change to the autretate of the practice can realize
significant analysis benefits.

Most transportation simulations (e.g. VISSIM® winie used in this effort)
incorporate stochastic distributions (for speedgéaration, deceleration, and various
driver behavior characteristics) due to the inhéyarariable nature of traffic[7]. A
stochastic process is “a collection of similar ramdvariables ordered over time,” and
can either be discrete or continuous-time stoohasticesses [6]. As the simulation

models use random variables as input, the simulatigput data vary randomly over a



particular range. Parameter estimates are baselsmmnvations of the simulation
process, and cannot be exactly representativeeaflgtstate behavior, as the steady-state
distribution is unknown. Characteristics of masl-world systems change over time
and do not have a true steady-state distributi8hs [

One must make assumptions to draw inferences ahestochastic process, in
order to analyze a set of simulation output d&@ae example is to assume that the

stochastic process is covariance-stationary. ishdefined by Law and Kelton as:

Ui =u fori =1,2,...and -o0o < u <

gl.z =¢g? fori=12,..and 0% < o

For covariance-stationary processes, the meanaahce are stationary over
time, and the covariance between two observatiepsmls only on their separation in
the time series, not on the actual values[6f. Furthermore, steady-state does not mean
the random variables will take on the same valwesyetime; rather they will have
approximately the same distribution. The rateafvergence of the transient distribution
depends on the initial conditions; however thedtestate distribution does not [6].

The steady-state averages defined by Law and Kelton as:

p=lmEY) or u=
L— 00

In this study, steady-state is defined as theadtaristics of the model obtained

after the simulation has been running for a fititge of sufficient length such that the



output is “relatively free of the influence of it conditions” [8]. This definition is
inherently subjective as the user is responsibletioosing the run length and depends
on the user’s interpretation of ‘relatively freeiofluence’. Determining the length of the
simulation run depends on the size of the netwaokyever, in steady state the
characteristics of model should take on the sasteilolitions compared to a model run
for an extremely long time (infinite in theory).

Analysts are typically interested in several perfance measures from the output
data. Each separate performance measures coualdsesdy-state at different times,
thus it is important to check each performance mea®r initialization bias and use a

start-up time that is adequate for all of them [9].

2.2 Steady-State in Transportation

Transportation simulation is similar to a queusygtem, but varies because: 1) in
many instances faster vehicles can overtake sloalacles without having to wait
behind, 2) vehicles can change lanes easily asseppo often fixed queues in servers, 3)
capacity is a continuous constraint over the emtieglway, not just a point constraint, 4)
congestion can occur unexpectedly, and 5) trafimands indicate strong time-series
patterns rather than random distributions [1].

There are several performance measures that caseldeo determine when a
transportation simulation model is in steady-statbe measures of effectiveness selected
for this experiment are the number of vehiclehmnetwork and the average travel times
across the network. Calculating the number ofalekiin the network for a given time

interval allows for the determination of when thetezing and exiting volumes are



balanced, a common intuitive measure of when teeesyis “full”. Travel times record
the amount of time it takes a vehicle to travehgerodel which is made up of the free
flow time plus the delay encountered by the vehidleavel time (along with delay as a
standalone component) is a common utilized perfanaanetric. If the model does not
reach a steady-state, it is expected that the nuafbehicles in the network and the
travel times would constantly increase.

It is noted that other performance metrics coddiblized to test for steady state,
e.g., queue length, average link speed, etc. Hewavthis effort the number of vehicles
in the network and travel time are utilized du¢hteir ability to aid in the intuitive
understanding of model performance and their comusenin practice. Future efforts
however should be undertaken to consider the patdrgnefits of alternative measures

or combinations of measures.

2.3 Methods of Truncating the Initial Transient
A survey of methods used to delete the data affdzyehe initial transient of
discrete event stochastic simulation models isudised. These methods of initializing
simulation models seek to provide more accurat@tefor the steady-state estimates of
the mean. The methods can be grouped into thenfmly categories as described by
Robinson (2007): graphical, heuristic, statistigatjalization bias testing, and hybrid

methods [10].



2.3.1 Graphical Methods

The most common methods to identify the initiahsi@nt are graphical
procedures. Graphical procedures consist of aliegpection of the time series to
determine the extent of the initial transient. Ajar advantage is the simplicity of these
methods and their reliance on few assumptions.sd heethods are typically highly
subjective as the truncation points could vary dasethe judgment or experience of the

analyst.

2.3.1.1 Fishman’'s Method (Column Averages)

Two types of error present in discrete event satmoth are sampling error (caused
by random input) and systematic error (due to titeal transient) [8]. To detect the
systematic error, multiple independent replicatiaresneeded to reduce the sampling
error. Fishman proposed to plot the sequencelafribaverages to visually determine a
suitable warm-up [11]. To calculate the columnrage, independent replications of a
predefined length are lined up in rows and theayewalue is determined for each

observation. In the Figure below; Yepresents thgh observation of thih replication.

Replication
1 Y11, Y12, Y13, Y14, . Yij
2 You, Y22, Y2z, Y 24, s Y2
n Ynlu YI"I2| Yn3, YI"I4| ey YI"I]
Column = = = = =
Averages Vs \E Ys Vs Y

Figure 1. Calculation of Column Averages, followig Law (2007)

10



Fishman’s method requires multiple replicationpamallel and an experienced
user to determine the warm-up from the graph. sStbps for Fishman’s method are as
follows:

1. Choose the run lengtland number of replications

2. Compute the average values over every rephcati each time step.

3. Plot the column, and if a the graph “fails ¢oeal a suitable warm-up,”

iteratively increase the run length and the nunabeeplications [8].

2.3.1.2 Welch’s Method: Moving Averages

Welch’s method is a simple and general techniqueétermining when a model
reaches steady-state that can be considered arsextef Fishman’s Method [6, 11].
Welch’s Method consists of plotting a sliding windof the sequence of column
averages in an attempt to reduce the effects adybmatic error. It requires multiple
replications with the goal of determining the srastlwindow size that best smoothes the
plot of the moving averages, allowing the sequéa@®nverge to a constant value where
the truncation point can be visually identified.eMh (1983) stated that the window
should be “long enough to remove short term flutbbms but not so long as to distort the
long term trend” [12].

A major concern in applying Welch'’s procedure ragtice is the large number of
replications required if the process is highly ahle. Another disadvantage is that
smoothing the data can lead to inaccurate reskitglly, the determination of the
“smoothness” of the plot and the convergence peibased on the user’s subjective

judgment.

11



2.3.2 Heuristic Methods

These methods provide definitive rules or formutadetermine the length of the
warm-up period. The advantages of these methedsiek of user specific subjectivity,
ease of implementation, and the few assumptiondatkeHowever, if the output series

is not visually inspected, important patterns cdagdoverlooked.

2.3.2.1 Marginal Standard Error Rule (MSER)

First proposed by White 1997 as the Marginal Confidence Rule, the gb#his
method is to find the truncation point that bestldmces the tradeoff between improved
accuracy (elimination of bias) and decreased prectiseduction in the sample size)”
[13]. A key assumption of the MSER is the obseoret in the second half of the
simulation are closer in value to the true steadyesmean. White proposes to “select a
truncation point that minimizes the width of thergiaal confidence interval about the
truncated sample mean” [14]. The expression ferofitimal truncation point, @5
shown below:

d;" = argmin [; D (Yiw—Yn,do'))z]

n>d(j)20 | (n(j) — d(i))z i=d+1

MSER applies to the raw output seriggj) and the truncation point; i$
selected at the minimum value of this function. BRStests to see if an observation prior
to the proposed truncation poistrepresentative of the sequence observed after th
point, and if including the prior observations wautcrease the marginal confidence in

the estimator [13].

12



2.3.2.2 Marginal Standard Error Rule (MSER-5)

A slight modification to MSER, this method exansreseries of batch averages
and uses the same formula to compute the optimmat#étion point. White Jr. et al.
(2000) determined the performance of MSER can lpgored by using batch means,
specifically a batch size of five [14]. The processalculated using nonoverlapping
batches; the rule evaluates the removal of leddatghes and calculates the width of the
confidence interval on the remaining data setfterAhe optimal truncation point has
been selected, the resulting truncated batch nmea@sssumed to have minimal MSE and
be free of initialization bias [15].

This method has been shown to produce desirablésds/ minimizing the width
of the confidence interval, however, one criticallgem found with the MSER-5 method
is the technique can be very sensitive to outlwrsch can result in poor performance.
In a study by Sandik¢i and Sabungliousing MSER-5, the output data contained 8
extreme data points and the suggested truncatiom was at 4800 observations.

However, if the outliers were removed the trungapoint changed to 340 observations

[4].

2.3.2.3 Conway's Rule

Conway (1963) proposed to “truncate a series atsmements until the first of
the series is neither the maximum nor the minimé@ith® remaining set” [16]. This
method would not be suitable for transportation el®due to the variability in the

simulation process. Output data from transpomatnmdels tends to have cyclic patterns

13



due to the operation of signal controllers, whiabhwd often result in assuming the model

has reached steady-state too early.

2.3.2.4 Crossing of the Means Rule

Proposed in by Fishman (1973), this method reqtiresnalyst to “compute the
running cumulative mean as data are generatednt@oe number of crossings of the
mean, looking backwards to the beginning. If thenber of crossings reaches a pre-
specified value,” the resulting value is the praggbuncation point [17]. While the
method removes subjectivity from its applicatioraiparticular instance the method itself
remains highly subjective. It requires the usepredefine the number of crossings that
will be used, leading to arbitrary truncation psinfor instance, in a study performed by
Gafarian et al. (1978), a value of three was ud8fl however, little justification exists

for applying this results directly to the transpdidn application.

2.3.2.5 Replicated Batch Means

This method attempts to combine independent repies (IR) and batch means
(BM) to estimate steady state characteristics.ngyghe IR method, independent runs
are performed and the sample average is computeghéh run. Conversely, the BM
method consists of performing a single, long ruad dividing the output intd®
continuous batches [19]. There is a tradeoff betwesing a single, long run and making
many replications:

* Using IR, the replications are independent of ezbler; however, each trial is

influenced by initialization bias created from stag up the simulation run.

14



* With BM, initialization only occurs in the first beh, but adjacent batches are

usually correlated to each other [19].

Replicated batch means (RBM) combines the two otitliin an attempt to
benefit from each of the method’s advantages. Argal. (2006) propose conducting a
few independent replications, each including tmesaumber of batches[20]. Numerical
results from the 2006 study produced confidencerval estimates that were similar to

substantially better than results obtained by B®].[1

2.3.3 Statistical Methods
These methods rely on the statistics principlegetermine the warm-up period.
Disadvantages tend to include the complexity of¢herocedures, constraining

assumptions, and increased computing time.

2.3.3.1 Randomization Test

The Randomization test sets a null hypothesisthtgae is no initialization bias.
The sample is divided into batches and the grand mean of the first batcbrgared to
the grand mean of the remaining batches. If tfferénce is significant, the null
hypothesis is rejected, the batches are regrogpetithe second batch is added to the
first group. The grand means of the first two batchre compared to the remainreg
batches to see if they are significantly differdritis process is repeated until the
hypothesis is accepted and the transient is detedibe second group of batches

represents the steady-state simulation outputd1]Jz, As with the previous methods the

15



users must still make a number of subjective assiong for instance, the batch size can

significantly influence results.

2.3.3.2 Welch’s Regression-Based Method

The goal of this statistical procedure is idenéfyappropriate truncation point
and run length by fitting a straight regressiom lia the second half of the data. After the
output is grouped into batches, a straight lirfe t® the batch means of the second half
of the data using generalized least squares (&3) [If the slope of the line is
“significantly different from zero,” the run lengthust be increased. Once enough data
is collected, a reverse pass though the sequepesfe@med and the simulation is
consider to be in steady state as long as the fitte continues to have a zero slope [22].
However, Law and Kelton (2000) noted several thiacaklimitations of this approach,
such as the fundamental assumption that the praoes®rges tp monotonically, and
declined to test it further [3]. Other criticismsted by Hoad et al. (2008) are the high
number of parameters needed (nine), the procedwamputationally intensive and can

be complex to execute [23].

2.3.3.3 N-Skart

The purpose of the N-Skart method is to createnfidience interval (Cl) for the
mean with the desired coverage probability () specified by the user. This is achieved
by employing von Neumann’s Randomness test to sigaateh means to determine the
point after which the batches are independent antfluenced by the initial conditions

[15]. N-Skart makes modifications to the non-spblsatch means’ Cl to correct the
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underlying skewness and autocorrelation. “The siess adjustment is based on the
Cornish-Fisher expansion for the t-statistic, areldutocorrelation adjustment is based
on a first-order autoregressive approximation elihtch means autocorrelation
function” [15].

When compared to the MSER-5 method, N-Skart shaigadficantly less bias
and variance. However, N-Skart is significantlyrenoomplicated and more efficient

versions are needed to reduce processing time [15].

2.3.3.4 Automated Simulation Analysis Procedur8AR)

ASAP is an algorithm for simulation output analysésed on nonoverlapping
batch means. For ASAP3 (a refinement of ASAP aB8&R2), the batch size is
increased until the batch means pass the Shapillot@éi for multivariate normality,
ASAPS3 fits a first-order autoregressive time senmexlel to the batch means [24]. Next,
ASAP3 delivers a correlation-adjusted confidenderiral (Cl). In the case study
reported in Steiger et al. (2004), the simulat®mitially divided into 256 batches (with
400 long run independent replications being peréat)nThe first 4 batches are ignored
and every other group of 4 consecutive batchesaeeted and tested for multivariate
normality. If failed, the batch size is increassda factor of/2. Correlation between
adjacent batches is tested to ensure that it datesxceed 0.8. The confidence intervals
are then constructed and check to see if they thegdrecision requirements [24].

This method requires a large amount of replicatiangl an analyst with a great
amount of expertise to perform. ASAP also requar@secision requirement and at this

time, it would not be suitable for transportatigopbcations.
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2.3.4 Initialization Bias Tests

The goal of initialization bias testing is to detéme if bias is present in the data
due to the initial transient. The majority of taeaethods build upon the work of
Schruben (1982) [10]. The general procedure diuinle the output series intbbatches
of equal length and subsequently group into twe:s#tand b-b’[14]. The estimates of
the mean and variance are used to compute aatististwhich is compared to an
appropriate F distribution [14]. Hypothesis tegtia performed with the null hypothesis
that no initialization bias exists. These procedwan also be used in union with
previously described methods to determine if ih#ation bias has been successfully

removed

2.3.5 Hybrid Methods
Hybrid methods are a combination of two methodsallg initialization bias
testing and either a graphical or heuristic methtdese methods are typically complex

and can require large amounts of data [10].

2.3.5.1 Statistical Process Control

The statistical process control (SPC) method eaddssified as a hybrid; a
combination of a graphical and heuristic metholsthis approach a simulation model is
considered “out of control” while in its transigsttase and once it has reached steady-
state, “in-control”. The goal of the SPC methotbisletermine when a model is “in
control” and thus when the model is no longer iafloed by its initial state [10].

The 4 steps for the SPC method are:
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1. Perform experiment and collect data.
2. Test the second half of the data to check thatdistributed normally and not
correlated. The SPC approach must meet thesedmditons, therefore:

* As simulation output is typically a correlated tiseries batch means
represent one method to account for this autoadroel. However, one issue
with batch means is determining the batch sizeis procedure requires that
the batch size be doubled until the null hypothésiat there is no correlation
between batches) is accepted. The minimum batehfer which there is no
correlation is sought.

* The data must pass the test for normality at ealgtted batch size. Different
methods of testing for normality include:

o Chi-square test
o Kolmogorov-Smirnov test
0 Anderson-Darling test
» If the number of batches is less than 20, a losgeulation run is needed.
3. Construct a control chart.

» Itis assumed the process is stable during thenslealf of the data. Estimates
for the population mean and standard deviatioriadeen from this portion of
the time series.

» Three sets of control limits are calculated accuaylyi

CL=A+z6/vn forz=1,2,3

4. Determine the initial transient.
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* To plot the control chart, the mean, three setoatrol limits, and the time-

series output are graphed.

* Rules for determining when the series is “in colfitand “out of control” are

given that are based on where the data falls wttierthree sets of control
limits [10].

Montgomery and Runger (1994) established the follgwules to determine
when the process is “out of control”:

* A point plots outside a 3-sigma control limit.

* Two out of three consecutive points plot outsidesagma control limit.

* Four out of five consecutive points plot outside-sigma control limit.

» Eight consecutive points plot on one side of thamé0].

Bias, coverage, and the expected half-length o€timéidence interval are the
performance measures are evaluated by Robinsoing the SPC method easily
increased the accuracy of the steady-state paressyempared to not deleting any initial
data [10]. However, it is important to note tHastmethod (as well several others
discussed) assumes the model is in steady-statedf@econd half of the simulation run.
If the model fails to reach a steady state thishmetwill likely not identify this

condition, potentially erroneously identifying thad of the initial transient.

2.4 Methods currently used by simulation models
A survey of three traffic simulation models wasdocted. Technical support
for two of these models was contacted to see hew dpproached the warm-up problem

in their respective software, and if the simulatoadels had built-in methods of
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initializing the network. Two of the three modélsve a built in function to determine

when the network has reached “equilibrium”.

2.4.1 PTV Vision — VISSIM®

Correspondence was made with support at PTV-VI&MMne 7, 2010 to
inquire how they mitigate the initialization biasoplem. The response was the length of
the warm-up period is always dependent on theaidecharacteristics of the network,
and that this seeding period should be at lealstrgsas the travel time of the longest
possible path through the network. Further cowadpnce was made (August 2, 2010)
to ask if PTV was planning on implementing a binltmethod of determining
equilibrium in future releases, similar to sometefcompetitors. To their knowledge, no

such procedure is in progress.

2.4.2 McTrans — CORSIM’s Volume Balancing

No contact was made with CORSIM, however theifthoiequilibrium
procedures were studied. The Federal Highway Athtnation created a set of
guidelines for applying simulation analysis endtl§raffic Analysis Toolbox” with
Volume IV containing Guidelines for Applying CORSINM5]. Before it is acceptable to
start accumulating statistics, CORSIM first deterasi when the model has reached
equilibrium. To do this, there is a built-in hestit method that compares the number of
vehicles in the network at consecutive time intkxvdt determines equilibrium has been
reached “if the difference between the currentrigeand the previous interval is less

than eight percent and the difference between itiaqus interval and the one before it
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was less than 12 percent... If those conditions mavdeen met, but the difference
between the current interval and the previous vallas less than six percent” the model
has reached equilibrium [25]. The user has theoapb enter a maximum initialization
time and once it has been reached, the model tzar epllect data if it is in equilibrium,
or abort if it is not. It can be helpful to fortee maximum initialization time if the
model appears to incorrectly determine it is inikopum.

There are some disadvantages of using this methdetérmine equilibrium.
First, if a small time interval is chosen (sucloas second), this method could determine
equilibrium has began prematurely because the vedurould not be expect to change
significantly in such a short period. Similarlylaage model with high volumes could
terminate the initialization period too soon be@atlge percentage change in volume

would become less sensitive [25].

2.4.3 Caliper Corporation — TransModeler®

Contact was made with a transportation engine€alper Corporation August
10, 2010 in inquire about the equilibrium capaigitof TransModeler®. The response
was that TransModeler® does implement a methodwiparing the number of vehicles
in the network similar to CORSIM, however it is mptal. Caliper continually surveys

research literature for other possible methods.

2.5 Selection of Methods
Hoad et al. (2008) performed a seminal study erettisting methods of

estimating the length of the warm-up period in rpkeproducing an automated
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procedure to be included in simulation software.[ZBhe authors conducted a
comprehensive review of literature and found 42hoes for detecting the extent of the
warm-up. These methods were evaluated and gtzatestl on the following criteria:
accuracy and robustness of method, simplicity efrtfodel, ease of potential automation,
generality, number of parameters required, and coimgptime [23]. The list was
narrowed down to six methods for further evalugtmxcluding graphical methods due to
their need for human intervention. Of the six noetfy MSER-5 substantially
outperformed the rest while the other methods egbeerely underestimated the
truncation point or required an extremely large banof replications.

The criteria that were used to determine the ssdemethods for this study are
their ability to be implemented, their effectivesgand their popularity. While the
graphical methods were not included in the studfopmed by Hoad et al. (2008)
because of the difficulty automating the proced@8j this experiment will evaluate the
graphical procedure, Welch’s Method, based onimtpkcity and overwhelming
popularity. MSER-5 will also be implemented instistudy due to its effectiveness,
frequent use in the industry, and ease of impleatemt. A third method that will be
examined is the volume balancing method currerggduby CORSIM and

TransModeler®.
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CHAPTER 3

METHODOLOGY

The truncation methods discussed earlier werergeguhinto the following
categories: graphical, heuristic, statistical amtlalization bias testing. Of the graphical
procedures proposed, Welch’s Method is widely ws®tiperhaps the most referenced
method in literature. The steps needed to impléres procedure are detailed in this
chapter. For the heuristic approaches, it appfd&iSR-5 is the most effective method
and would be most applicable for this experimértie formula for the MSER heuristic is
listed in this chapter, as well as issues with engntation. The third method selected is
the volume balancing procedure used by CORSIM é&mdarly by TransModeler®),
which a simple mathematical heuristic. This iestdd as it is the only method identified
as commonly used in transportation microscopic k&tan applications. Each
methodology will first be performed on the numbg&vehicles in the network to
determine steady-state. Next, the network trawets will be examined and each

method reapplied.

3.1 Welch’'s Method
The steps and equations for calculating Welch’'shide of moving averages for a
window sizew are listed below [3, 6]:
1. A number of replications»5 is performed, each of lengtly wheremis much
larger than anticipated truncation point. The obestons are averaged over all

replications at each time-step to create the aeepagcessy.
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3. The moving averageg(w) are plotted for several values of widow siae,An

initial value forw is 1, and then increased in increments of 1, wiveta/4.

w
(1 > . )
2w+1ZYi+S ifi=w+1,... m—w
s=—w
Yi(w) = ) .
i
1 _
\21' —3 | Yieo ifi=1,..,w
s=—(i—-1) J

As shown above, a window sizeconsists of the average offz 1)
observations. The smallest valueaofor which the plots are “reasonable
smooth” is selected.

4. If no value ofw is satisfactory, the number of replications ig@ased.

5. The truncation point is selected visually frdre moving averages plot [3, 6].

Welch proposes starting with n = 5 or 10 replmasi, based on computing cost
and time. For this experiment, we started withrdilications and increased the number
of replications if a sufficient window size couldtrbe chosen. Based on the expected
truncation value, a simulation length of five howas selected. This run length should
be more than sufficient for all transportation misdested to reach steady state well
before the halfway point in the model. To impleméfelch’s Method an Excel™
spreadsheet was created to generate plots of ieateity increasing window sizes. The
data output was averaged over a defined numbeptitations (initially 10) using a

separate script. In this instance the data ouspaisnapshot of the number of vehicles in
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the network recorded every five seconds. Thesa pl@ visually inspected and if the
moving averages do not sufficiently converge t@mstant value, more replications are
performed. Once the desired number of replicataamswindow size are selected and it
is determined that the moving averages are reapsiaooth for the five hour period,
the initial portion of the plot is enlarged to examthe warm-up more closely.

An example graphical output for Welch’'s Method®wn in Figure 2 below. In
this example the window size and the number oficappbns were both increased until
the plots became sufficiently smooth, resulting window size of 100 time steps with
40 replications as the final parameters for truocapoint identification. In Chapter 4, a
complete discussion on the selection of the windme and number of replication is

provided.
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Figure 2. Welch’s Method for 8" Street Model, window size 100, five hour run
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As previously stated, to determine the point whkesmodel reaches steady-state,
the initial portion of the above moving averages 8 enlarged. A small time period is
chosen that exceeds the anticipated truncatiort pachallows the analyst to visually
detect the point at which the plot becomes smogthisual aid is also added to the plot
to help identify when the sequence reaches the pdiare the plot becomes smooth. A
horizontal line is added that is equal to the agyeraf Welch's values in the second half
of the time series. This removes some of the stibjiy of visually detecting when the
plots reach steady-state. Figure 3 below showspection of the warm-up, plotted for
the first 1200 seconds of the data shown in Figurdn this example, the truncation

point was determined to be 600 seconds.
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Figure 3. Welch’s Method Plot for Identification of Warm-up period
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3.1.1 Selecting Window Size

Law and Kelton noted that “choosimgis like choosing the interval widtkb for
a histogram” [6]. Ifwis too small the plots will appear ragged, and shapa window
size too large could over-aggregate the data.g8#s rule is proposed to choose the

interval widthAb for a histogram as follows:

k= 11+log,n|=|1+3.32210g;( n|

Using this formula for our case of 3600 observaiaould result in value of 12.8 for the
interval width. However, Law and Kelton do notibee such rules are useful and
recommend trying several different values and cimgothe smallest value that best
smoothes the plot [6]. In this study, it was sttt the window size needed to be
sufficiently large to smooth out the cyclic trerdise to the signalized intersections

timing plans.

3.1.2 Travel Times using Welch’s Method

As stated previously, in addition to performing [é¥és Method on the number of
vehicles in the network, Welch’s Method is appliedhetwork travel times. While the
same method is being applied to these output vallhese are some small differences in
the method application to the data. As noted tiraber of vehicles in the network is a
snapshot every five seconds during the simulatldowever, travel time is measured
along a pre-specified path through the networkhisles complete their traversal of this

path randomly, based on their arrival into the meknand in-network experience. Thus,
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travel time measures at specific time intervalsratenecessarily meaningful. Itis more
appropriate to consider the travel time measuresn@mnindividual observations. It is
noted that as an implementation issue in the dpetata collection technique utilized
that multiple vehicles existing the network durthg same five second interval will be

assigned the same travel time.

3.2 Marginal Standard Error Rule (MSER-5)
The Marginal Standard Error Rule is be implememetthis as it has been found
to an effective heuristic by multiple studies [8, 14, 23, 26]. The expression for the

optimal truncation point is given in White Jr. (IQ®s:

n
_ 2
d;" = argmin [— Z (Yi(]') - Yn,d(f)) ]
w420 (n() - d®)’
d; = Truncation point at proposed time (j )
n = Total number of batches

= Value at proposed truncationtime (j )

Y.« = The average value of remaining sequence (fromntod)

A major assumption of MSER is that the data onstond half of the sequence
is more characteristic of steady-state conditiofise width of the confidence interval
about the truncated sample mean is minimized tanal the tradeoff between improved
accuracy and decreased precision. For this rube wuccessful, the simulation length

must be long enough such that a false steadyistatg observed.
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3.2.1 Batch Size Selection

The first step to analyzing the MSER is to batehdata. The purpose being that
batching the observations “ensure the monotoniawieh of the decrease in confidence
interval width” [26]. It is important to recall # in the current application performance
statistics were collected every five seconds. Emepshot at the end of five seconds is
considered a single observation. Using this oalgiata in the application of the MSER
method will be referred to as MSER-1 because nchinag is undertaken. Next, the
MSER is performed for n = 5 batches, which cové&rsithulation seconds (i.e. five, 5-
second batches). Additional results for the MSERi#thanalyzed for batch sizes of 12
and 22, corresponding to 60 and 110 simulationrsscoMSER-22 was selected to
allow for a test of the method using a batch sqeaéto the cycle length of the major
network intersections. MSER-12 was selected mnafbr a testing of the method for an
equivalent simulation time period (i.e. 60 secomsltilized by default in the CORSIM

Volume Balancing procedure.

3.2.2 Using MSER on Multiple Replications

As with Welch’s Method multiple replications helfgsensure accuracy in the
identification of the end of the initialization treient. However, the approach for using
multiple replications is different for the MSER. hité Jr. (1997) noted that the Marginal
Confidence Rule (later named MSER) was not interiddz used over the average of
many replications. White stated “this rule apptesdividuated output sequences and
has the inherent advantage of specifying the beistation point for each such sequence,

rather than a single truncation point, which istloggy on average across a very large
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number of replications” [13]. Therefore, in thi$oet MSER is performed on each
individual replication, with 100 replications beipgrformed. The statistics that will be
collected for the MSER truncation points are theiimam, average, and 9%ercentile.

These results are shown in Chapter 4.

3.3 Volume Balancing (CORSIM)

This method could be considered a heuristic ambro#n the method the percent
difference in vehicles in the network between consiee intervals is analyzed. In
CORSIM if two consecutive percent differences &% lor less followed by 8% or less
the model is considered to be in steady state. calailations for this method are
straightforward; however the analyst is free toadethe interval size. The data for this
experiment was collected in five second incrememtdlow for flexible post processing.
This procedure will be performed on varying intérsizes as mentioned before,
including a multiple of the cycle length. CORSIMes an interval of 60 seconds to
determine equilibrium. It is noted that no litens was found regarding the background

or development of this method.

3.3.1 Multiple Replications

Similar to the MSER, averaging multiple replicasovould only smooth the
initial transient truncation point to an averagueawhereas we are interested in the
maximum amount of time needed to initialize induadiruns of the model. Thus, this
procedure will be performed on each individual iegilon and the maximum, average,

and 938" percentile truncation point will be collected.
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3.4 VISSIM® Model Characteristics
First, the characteristics of the VISSIM® simutatimodel are discussed. The
locations of the selected models are shown in ldmtal the performance measures used
to evaluate the model are discussed. The experidesign is explained to clarify which
models and conditions will be tested on Welch’s e, MSER, and the Volume

Balancing procedure.

3.4.1 VISSIM® Overview

VISSIM® is a microscopic, behavior based traffimglation model which uses
continuous time-step advancements to move thromghiation time [7]. Networks are
created using links and connectors, where linksessmt sections of the road and
connections allow the vehicles to move betweenrethaks. Signal controllers, stop
signs, reduced speed areas, priority rules and imgs&trtantly, the car following model
and lane changing logic control the movement ofctek. The accuracy of the model
depends highly on the quality of the vehicle mateknd the ability of the user to model
the respect network (e.g. intersection, arterrakday, etc.) geometry. VISSIM® uses a
complex psycho-physical driver behavior model depetl by Wiedemann (1974) [7].
This model is based on individual drivers’ perceptihresholds of slower moving
vehicles.

As VISSIM® creates a vehicle to be input into tiework, specific driver
behavior characteristics are assigned randomlgadb gehicle. Each driver in turn,
reacts based on the technical capabilities of éscle. Characteristics of each driver-

vehicle-unit can be classified into the followingtegories:
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1. Technical specifications of the vehicle: (lengtlaximum speed, potential
acceleration, actual position in the network, actpaed and acceleration).

2. Behavior of driver-vehicle-unit: (sensitivity thfeslds and ability to estimate,
aggressiveness, memory of driver, accelerationdbaseurrent speed and
driver’s desired speed).

3. Interdependence of driver-vehicle-units: (referetackeading and following
vehicles on own and adjacent travel lanes, referémcurrent link and next

intersection, reference to next traffic signal). [7]

3.4.2 Design of Experiment

This experiment compares the performance of lragion bias truncation
procedures in transportation microscopic simulajanilizing VISSIM® simulation
models as the example applications. Three modes$ siere developed for this study,
covering an increasing geographic area. A singieatized intersection was first
analyzed to determine the results for a small mobleixt, a corridor consisting of the
single intersection and four additional signalir@@rsections is tested. The corridor
model is referred to as the medium network sizéismstudy. Lastly, a large network
containing the previously analyzed corridor is sgddo determine the extent of the
initial transient for varying model sizes. This vidensure that the geometry and signal
timing of the small and medium segments are casisicross the experiment.

For each model the initial experiments set thetmplume at a medium demand
level, that is, non-congested traffic although oeable demand. The actual volumes

were set based on conducting several iteratiotiseofodel and the researchers’
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judgment of reasonable, uncongested flow. Theseasms allow for an analysis to test
the initialization bias truncation procedures vitie confounding influence of
congestion. Next, the models’ input volumes aoeaased to the represent the peak
volume of the model operating just below capackynally, each model will be loaded
over capacity to determine how each method hanldéesase where equilibrium is not

achieved.

3.4.3 ' Street and Spring Street Intersection

The area for this study is in Atlanta in closexpnaty to the Georgia Institute of
Technology (Georgia Tech) campus. The single settion to be studied is df Street
and Spring Street. Spring Street is a one-way mafman arterial with four lanes, while
5" Street is an urban local street with two lane (@ne each direction). Figure 4 on the

following page displays the VISSIM® representatafrthe intersection.

Figure 4. 8" Street and Spring Street Intersection

(Figure Credit: VISSIM® with Google Earth [27] overlay)
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3.4.4 ¥ Street Corridor

The 8" Street corridor (also known as Ferst Drive adjatethe Georgia Tech
campus) spans from Atlantic Drive on the west, test\Peachtree Street to the east. The
model consists of a mix of four-lane major artexriaith high volumes (including the
one-way pair of Spring Street and West Peachtnee$tand various two-lane local
roads with a relatively small amount of trafficrparily moving to and from the Georgia
Tech campus. Four travel time segments for thiwaord were defined for this network,
two eastbound and two westbound. Figure 5 ondheing page shows thé"Street

corridor in VISSIM®.

Figure 5. 8" Street Corridor

(Figure Credit: VISSIM® with Google Earth [27] overlay)
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3.4.5 Large Georgia Tech Network
The VISSIM® model of the Georgia Tech campus amdosinding area in
Atlanta, Georgia was developed by a graduate resetndent at Georgia Tech, Kate
D’Ambrosio. The network is bounded in each direatby the following streets:
* South: North Avenue
« North: 17" Street
» East: Peachtree Street
* West: Marietta Street/ Howell Mill Road
Existing geometry was extracted by overlayingreeseof scaled aerial
photographs to determine the number of lanes &t ieéersection and the spacing
between them. The signal timings for tfeSreet corridor were obtained from the City
of Atlanta to match the existing conditions. Mdetailed information on the
development of the VISSIM® model is included in tygpendix. Figure 6 shows the

VISSIM® model of the large Georgia Tech network.
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Figure 6. Large Georgia Tech VISSIM® model

(Figure Credit: VISSIM® with Google Earth [27] overlay)

3.5 Performance Measures
The performance measures chosen for this casg atachumber of vehicles in
the network and the network travel time. The nundferehicles in the network is
recorded every five seconds and is calculatedeamtitantaneous value at the end of
each five second interval. Travel time segment® lieen set up to record the time it
takes vehicles to pass entirely through the sy$terspecified routes. For these routes,
probe vehicles have been inserted in the modeldare a sufficient number of vehicles

complete the travel time segment and use the digsath. Figure 7 and Figure 8 below
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show the location of the vehicle inputs and trawee segments for the single
intersection and corridor model. Figure 9 showvesltitation of the travel time segment

for the large Georgia Tech model.
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Figure 7. Location of Performance Measures for Sirlg Intersection Model
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Figure 9. Location of Performance Measures for Larg Model
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3.6 VISSIM® Limitations

One major limitation of this research is the giggmulation model does not
include pedestrians. Pedestrians can have aisgmifimpact on the operation of
signalized intersections, especially near a colegapus. Additionally, bicycles were
not introduced into the model. The capabilitie¥t8SIM® to integrate pedestrians and
bicycles were not explored, but should be consitierduture research.

Another issue is the accuracy of the VISSIM® maoaligh respect to routing
decisions, signal timing, and traffic volumes. Tadibration process is an important
aspect of simulation analysis to ensure the intggfithe results. For this effort the
models were reviewed only for reasonable operaftirad is, vehicle behavior and
performance that was reasonable for the given rr&tgine), not necessarily calibrated to
match field conditions for the given locations. eElb models have generic traffic
demands and signal timings, although where poskimen field timings were utilized.
Thus, the simulations are not applicable to anatpmral analysis of actual conditions in
the modeled areas. However, the intent of thisref$ a study of initial transient, which
may be accomplished using the given models.

One concern encountered in VISSIM® is whetherairvehicles queued off
network or vehicles disappearing were counted eémilimber of vehicles in the network.
Several tests were performed to determine how \WEStounts the number of vehicles
in the network. A simple model was created wheeedemand greatly exceeded the
capacity and it was found that the vehicle coury arcludes the vehicles that have

entered the network, and not those queued off ¢hwark. Additional tests were
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performed to see if vehicles being removed fromntioelel are included in the vehicles in
the network count; which they were not.

There are two main reasons vehicles would be rechérom the network in our
study. The first reason is VISSIM® by default reras stalled vehicles that are unable to
make a lane change after 60 seconds to avoid istre&lackups [7]. The second reason
is that once a vehicle has been specified a cqritimon a routing decision, if that
vehicle is unable to change to a lane where itngake that turn, it will continue on
through the intersection searching for its spegipath. Once it reaches the end of the
link without finding that path it is removed frorne network. While this would present
an issue in measuring performance characteristiteeanodel, the occurrences of this

issue was minimal and is comparable to vehiclesngxihe network into a parking lot.
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CHAPTER 4

RESULTS

The results for Welch’'s Method, MSER, and the VatuBalancing Method are
presented in this chapter. The sensitivity of eaelthod’s parameters are tested and
discussed. The estimated truncation point wilgtven for the small, medium, and large

models, as well as a change from low volume to kighme.

4.1 Welch’s Method
For Welch’'s Method, the procedures for selectirgwindow size and number of
replications are first discussed. Next, the sesitsitto choosing different window sizes

and number of replications is analyzed.

4.1.1 Selection of Window Size

To perform Welch’s Method, the window si&e= 1 is initially evaluated and
incrementally increased until the plots become gmodncreasing the window size will
smooth the plots of the moving averages only tergam point; if the plots do not
sufficiently converge more replications are need€de figures on the following pages
show the progression of increasing the window armthe number of replications until a
plot with reasonable smoothness can be selected.

The numerical value of w represents the half-waftthe “window” that is used
to average the output. A window size of 10 coroesjs to the average of 21

observations centered on that point in the timeserThus, each graphed point in
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Welch’s Method is the calculated average of 2wob4dervations. As stated previously

an observation in this experiment represents atatd collected each 5 seconds of

simulation time Figure 10begins with 10 replications and a window size of ie

window size is increased sequentially before itamger becomes beneficial to increase

the window size. It is important to select the Besa possible window size that produces

a reasonably smooth graph as a window size unradgdarge will yield excessively

large initial transient truncation points.

The following plots are from the medium size mo@ Street Corridor) for low
volumes
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Figure 10. Welch’s Method for 10 Replications ané window size 1
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Figure 12. Welch’s Method for 10 Replications and avindow size 10
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Figure 15. Welch's Method for 10 Replications and wmdow size 30
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Figure 17. Welch's Method for 10 Replications and wmdow size 50
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Figure 18. Welch's Method for 10 Replications and wmdow size 75
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Figure 19. Welch's Method for 10 Replications and wdow size 100

Beyond a window size of 100, the advantages efctiely a larger window size
are no longer beneficial. Thus, the plots do ppear to converge to a smooth line with
the selected number of replications. Figures 1%&fonstrate the selection of the
number of replications needed to smooth the mosiregages. Similarly to the selection
of the window size, after a certain amount of megdion there is no longer significant
improvement in the smoothness of the plots. Aktereplications were examined, the
number of replications was increased by 10 each.tim

In this example, 40 replications were found sugt to result in convergence of
the moving averages. After 40 replications wetected, the process of determining the
window size was repeated and w = 100 was selegaid.aThe next step for Welch’s

Method is to plot the initial portion of the moviagerages series and visually determine
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when the plot is “reasonably smooth”.

average value over the second half of the datartineation point could be selected

easily.
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Figure 20. Welch's Method for 20 Replications and wmdow size 100
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Figure 21. Welch's Method for 30 Replications and wmdow size 100
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Clearly selecting the appropriate window size jgsdgment call and can vary
from user to user. Each user selects the smalkbssible window that can smooth (in
that users’ judgment) the data. For instanceji;iéxample a window size of 100 was
selected by the author. To analyze the impacsef judgment, results were obtained for
two window sizes below 100 and two above 100. Tadselow shows the truncation
points found at these different window sizes. Aportant trend was discovered: as the
window size increases, so does the estimated tiongaoint. Thus, the selection of the
window size has a significant impact on the locavbthe anticipated truncation point.
It is expected that some users will tend to deteennnore conservative truncations points

while other tend to determine short start-up period

Table 1. Sensitivity to Window Size, 8 Street Model

Number of Win'dow I_Tor\tjvncatlon P:ilg;

Replications| Size Volume Volume
40 60 400 400
40 80 500 450
40 100 600 550
40 120 700 650
40 140 800 750

4.1.2 Sensitivity to Number of Replications

Law and Kelton proposed starting with five or teplications, based on model
execution and cost [6]. In our study, ten repicra were used as a starting point and the
number of replications were increased until therddssmoothness is achieved. A total

of 100 replications were performed, each with &edi#nt random seed. Ten replications
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were randomly selected from the sample set andwbege value was computed at each
time step. This sampling method was repeated t@mthe averages of 20, 30, 40, and
50 replications. The entire set was used to firrdaberage over 100 replications. The
impact of using different numbers of replications the medium model size is shown in

Table 2 below.

Table 2. Sensitivity to Number of Replications, 8 Street Model

Number of | Window Truncation Point
Replications| Size Low High

Volume Volume

10 100 550 550

20 100 550 550

30 100 600 550

40 100 600 550

50 100 550 550

100 100 600 550

As the number of replications is increased, itdnees easier to determine the
truncation point as the moving average plots bessneother. However, the same
truncation time can be read from the graph of plications as that of 100 replications,
shown in Table 2 for the high volume case. Tkadrwas evident for both the small and
large model sizes (results included in Appendikiis indicates that Welch’s Method
can provide similar results as the number of repilin is increased for this model
scenario. However, it should be noted that 10 caibns was used as the minimum for
this experiment; it is not believed that using asregven five replications would produce

the same result as those from 100 replications.
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The major factor affecting the sensitivity of tinencation point found by Welch'’s
Method to the number of replications used is theabdity of the output data. For highly
variable data, a large amount of replications maynéeded to produce similar results.
More analysis is needed before this conclusionbeageneralized, but the fact that the

results obtained from 10 and 100 replications anda is an important finding.

4.1.3 Change in Model Size

Welch’s Method was applied to the three differmaidel sizes: a single
intersection, a small corridor, and a large gritlwoek. The results for the Welch’s
Method for each case are shown in Table 3 beloke tiuncation point was found using
replicated averages of the number of vehiclesemigtwork for both the low and high

volume case.

Table 3. Truncation Point for three models sizes,Greplications, w = 100

Volume Truncation Point (seconds)
Small Medium Large
Low 600 650 1800
High 550 550 1700

The small and medium network sizes have very aimiarm-up lengths, while
the warm-up period for the large network is alntbste times as large. One reason the
small and medium network have similar warm-up tinsetese two models are generally
dominated by the same intersection, Spring StregE4 Street. The small network
consists of solely this intersection while the nuedimodel contains an additional

intersection to the east (West Peachtree Stredt)haee signalized intersections to the
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west. Both Spring Street and West Peachtree Stoe¢din five times as much volume
as that on 8 Street. Thus, the time it takes to initialize #{eStreet corridor model
depends primarily on the time it takes to warm{upintersection at Spring Street. The
number of vehicles in the network is the perfornreameasure evaluated, and the
intersections with higher volumes dominate thewdations. For future research, it
would be beneficial to construct an experiment wribe volume difference between the
two cross streets is less drastic.

As expected the large model contains a longealiriansient period than the
smaller models. During its steady-state condititims large model contains fewer than
900 vehicles in the network, while the medium am@ls models contain an average of
84 and 41 vehicles (respectively) for the high woducase. The main factors that
determine the length of the initial transient dre distance and time a vehicle needs to
travel through the network. A model with a larganber of signalized intersections
would be expected to reach steady-state at atlaterbecause of delay encountered at
each intersection. Similarly, if the effective gnetime is reduced for major movements

in a network, the initial transient period wouldéeected to increase.

4.1.4 Welch’s Method using Travel Time

Network travel time was tested for Welch’'s Methodletermine if travel time is
a good indicator of the performance of corridonetwork. For each model size, a route
was selected that is considered representativeeaie¢twork and constitutes a large
amount of traffic. The input volume and routing@d@ns were modified before the

experiment was performed such that a minimum oféticles would complete the travel
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time segment per hour. This number was selectselban the desire to have a sufficient
amount of data to perform each method by creatingbservation interval of 60 seconds.

For the first iteration of Welch’'s Method, 10 riggtions were randomly selected
and averaged. The window size was initially set at 1 for the medium network as

shown in Figure 23 below.
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Figure 23. Welch's Method using Travel Time, mediummodel, 10 replications, w=1

Next, the window size is sequentially increasetil time plots become
“reasonably smooth”, which could not be achievethaut further replications. Using 20
replications, the window size was increased to %00 produce the desired smoothness.
The moving average plots from 20 replications aseldyed in Figure 24 on the

following page.
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The next step of analyzing Welch’s Method is taraine the initial portion of the

graph and visually select the truncation pointe Tirst 3600 seconds of the simulation

are shown in Figure 25 on the next page. Fronfiduse, there are two different

truncation points that can be selected. Thetimst the moving averages intersects the

mean (calculated over the second half of data) 6@ seconds and then again at 1100

seconds for the second time.
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Figure 25. Initial Warm-up of Welch's Method using Travel Time, medium model,

20 replications, w = 50

An argument could be made for choosing eithehe$¢ points. At 600 seconds,
the model could have reached equilibrium and iseggpcing a realistic spike in
demand. Or, the analyst could interpret this grapfirst reaching steady-state at 1100
seconds and the high values of travel time is eptasentative of the model. While both
interpretations are valid, the author selectediacition point of 600 seconds for this
case because it is not good practice to discaalttiat could be representative of a
realistic steady-state condition solely based erfdlot that it would have a negative
impact on the model performance statistics.

For the medium model size shown above, the pleteted from travel time
measurements are not as smooth as those geneyaisohg the network vehicle count.
An explanation is that travel time can be a sparesasurement for small networks. For
the large model, however, this is not the caselcit&Method for the large network is

57



shown below in Figure 26 as well as the warm-upoplen Figure 27 on the following

page.
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Figure 26. Welch's Method for Travel Time, large malel, 40 replications, w = 50
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For this model, 40 replications are necessarynsuee sufficient smoothness, and

a window size of 50 was selected. Table 4 beloswsha comparison of the truncation

values obtained by Welch’s Method from the threeletsizes.

Table 4. Comparing truncations point across threenodels sizes

Truncation Point (seconds) by model size

Number of -

o Small Medium Large
Replications

w =100 w =50 w =50

10 200 600 1700

20 200 600 1550

30 150 550 1650

40 175 600 1600

50 175 600 1600
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Figure 27. Welch's Method for Travel Times, large mdel, 40 replications, w = 50

From Figure 27, the truncation point was deterehiteebe at 1600 seconds. As a
comparison, Table 5 below shows the truncationtdound by applying the network

vehicle count versus using travel time to plotii@ving averages for the smaller

volumes.

Table 5. Comparing Vehicle Count and Travel Time ftuncations points

From this table, it can be inferred that traveldiand vehicle count both arrive at
similar estimates for the length of the initialrtséent. However, the single intersection

results varied substantially. One reason coulthBemeasuring one movement in an

300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600

Simulation Time (seconds)

Truncation Point (seconds)

Small | Medium | Large
Vehicle Count 550 650 1500
Travel Time 175 600 1600
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intersection (the southbound through for this cases not represent the entire network
sufficiently as the side street would have a singblact. For the medium and large
networks, as long as the travel time segment chggans the entire network and has
enough vehicles on the route, travel time can lee as a measure of equilibrium. More
research is needed to determine the sufficient mammbvehicles completing the route
that are needed, as well as comparing the resufteeasurements obtained from other

major routes in the network.

4.1.5 Analysis of Welch’s Method

An analysis of the issues that arose while usirggctWs Method will be discussed
in Chapter 5. The benefits of using the method valdiscussed, as well as a comparison
of the method’s performance compared to other nusthdastly, the criticisms and
disadvantages of using Welch’s Method will be dssad with future recommendations
being proposed.

4.2 Marginal Standard Error Rule (MSER)

As noted by White (1997), MSER specifies the ogtitruncation point when
applied to individual output sequences [13]. Thhbs method will be performed on each
replication rather than performing the method oaraged output from multiple runs. In
this study, 100 replications were generated fohyasof each model size and traffic
demand level. The formula given in Chapter 3 srbienplemented to select the local
minimum value of the MSER statistic. For comparipoirposes, the maximum
truncation point, average truncation point, andgﬁ%percentile truncation point are

recorded.
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The selected truncation value for the MSER isniimum value of the width of
the marginal confidence interval about the trundtat@mple mean. A sample plot of the
MSER statistic is shown in Figure 28 for tHR Street Corridor model using a batch size

of 5. The minimum value was calculated at 350 sdsdor this example.
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Figure 28. Sample plot of the MSER-5 statistic foan individual run

Figure 29 below shows the frequency of occurrentdise truncation values for
the 8" Street model at low demand calculated by findiegrhinimum of the MSER-5
statistic. The Cumulative Distribution Function (Efor the MSER-5 case is shown
below in Figure 30 on the next page for 100 repilices. Similar plots for the remaining

scenarios are given in Appendix C.
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Figure 30. Cumulative Distribution Function for MSER-5 truncation values

4.2.1 Sensitivity to Batch Size, Observation Size
The MSERR refers to performing the procedure on the avecdgebatches.
White Jr. et al. (2000) noted that using a batzh sf five greatly improves the results for

the MSER [14]. Itis recalled that in this studysingle observation consists of the
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network vehicle count obtained every five secontiansportation models containing
signalized networks can exhibit patterns when gedup different time intervals due to
the nature of traffic signals. Therefore, the MSkRcedure is repeated for varying
batch sizes to determine the impact batch sizéetrtincation value. The batch sizes
tested for the five-second observation data abe 12, and 22 batches, corresponding to
simulation time windows of 5, 25, 60, and 110 s&son

Table 6 on the next page demonstrates the satystaithe truncation value to the

selected batch size.

Table 6. MSERN: Number of Vehicles with different batch sizes, 8 Street Model

Optimal Truncation Time (seconds)

MSER-1 | MSER-5 | MSER-12 | MSER-22
Simulation time 5 o5 60 110
covered (seconds
Average 77 98 159 398
95" Percentile 175 275 360 1298

Table 6 shows that increasing the batch sizeiméhease the value of the
truncation point. This meets intuition becauséhasbatch size increases, the values for
the earliest possible truncation points are laseget also increase more rapidly. MSER-1
and MSER-5 produce comparable truncation pointsevthe batch sizes of 12 and 22

result in much larger truncation points.
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4.2.2 Sensitivity to Observation Length

As mentioned before, an observation interval wé 8econds was selected based
on experience and convenience before the experwesperformed. While obtaining
information for one second intervals is feasii€an be computationally intensive.

To determine the sensitivity of the determined ¢ation point to the observation
internal, the width of the observation is changednf5 seconds to 25, 60, and 110
seconds. The MSER-1 must be used in this setpdreaments as a larger batch size
would result in batch intervals that are unnecdlydarge. Table 7 below shows the

results of changing the observation size withoutgibatches (MSER-1).

Table 7. Number of Vehicles with different observaon lengths, 8" Street Model

Optimal Truncation Time (seconds)
MSER-1 | MSER-1 | MSER-1 | MSER-1
Simulation time
covered (seconds) 5 25 60 110
Average 77 97 162 370
95" Percentile 175 275 360 1254

The results for increasing the interval size fer humber of vehicles in the
network has the same effect as increasing the lsé#ehincreasing the interval size
increases the truncation point. The results obthfrom changing the observation size
were almost identical to those from changing thelbaize. The main reason is that the
same amount of simulation time is being covereédsh method. MSER-1 using 25-
second batches produced the same results as MS#&tR-five-second batches. The
difference between these two procedures is MSERtdking one measurement at the

end of the 25 seconds while MSER-5 is averaging dbservations.
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4.2.3 Sensitivity to Simulation Run Length

In each experiment discussed thus far the sinmmatin length is set to five hours
to ensure the models are given sufficient timeetich “steady-state”. In this analysis the
data is re-analyzed to determine the truncationtpais if the model had been run for a
shorter time period. That is, the later part afteraun is not included in the MSER
calculations. Table 8 below displays the trungapoints for run lengths of 1, 2, 3, 4,
and 5 hours for the MSER-5 case for the medium oitsize. For any run length over
2 hours, MSER-5 provides the same maximum trunegdant, and very similar average
truncation points. For any run length from twdite hours long, the 5percentile

truncation points are also nearly identical.

Table 8: MSER-5: Number of Vehicles in Network forchanging Run Length

Optimal Truncation Time (seconds)
MSER-5 | MSER-5 | MSER-5 | MSER-5 | MSER-5
ITe?]tgt'hS'(rsné‘éﬁﬂgrs‘) 3600 | 7,200 | 10,800/ 14,440 18,00
Average 93 103 99 98 95
95" Percentile 175 276 275 275 275

4.2.4 Change in Volume and Model Size

MSER was applied to the three selected model sizdstermine the average
truncation point of each model. All four batcheszhosen earlier were examined as
well as high and low volumes for the small and raednetwork sizes. These values are

shown in a bar graph in Figure 31 on the followpage.
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Table 9 on the following page shows the resultd=fgure 31 which consists of

the average truncation point over 100 replicate.ruiss anticipated, the small network

has the shortest warm-up time, closely followedHgymedium network, thé"SStreet

corridor. The results for the small and mediunwaek were extremely close, mainly

due to the similarities in the network charactersst For these two model sizes, MSER-5

remained consistent for an increase in the voluiifee large network’s average

truncation point is almost 12 times larger thanrtrelium case, which is reasonable due

to the size difference.
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Table 9. Average MSER-n Truncation Point for varyng model and batch sizes

Network size, volume MSER-1 MSER-5 | MSER-12 | MSER-22
(simulation time) (5) (25) (60) (110)
Small, Low Volume 60 71 115 365
Small, High Volume 64 74 133 261
Medium, Low Volume 77 98 161 395
Medium, High Volume 83 98 211 342
Large, Low Volume 1123 1159 1214 1238
Large, High Volume 1216 1221 1252 1527

In general, the higher volume scenarios havegathi longer initial transient
period than the lower volumes scenarios using MSERs follows intuition as a model

with 100 vehicles would be expected to take lorigéfill up” than a model with only

ten vehicles.

4.2.5 Travel Time Comparison

As mentioned before, travel time measurements g@ritinto observations
representing individual vehicles completing thevétdime segment. These observations
were grouped in batches of five and the MSER-5 peaiformed to compare the results to

those obtained from the number of vehicles in #vork, shown in Table 10 below.

Table 10. Average MSER-5 Truncation Point for numier of vehicles, travel time

. Average Truncation Point (seconds
Network size, volume ; -
Vehicle Count Travel Time

Small, Low Volume 71 59

Small, High Volume 74 50

Medium, Low Volume 98 453
Medium, High Volume 98 311
Large, Low Volume 1159 463
Large, High Volume 1221 463
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Based on the results from Table 10, MSER-5 doésypyear to give consistent
results for both travel time and number of vehiagrethe system, and it is unclear why
these two performance measures give such diffeesotts. MSER optimizes each data
set and based on minimizing the confidence intethalks if one performance measure is
more variable than the other, the different standi®viations would affect the truncation

point chosen.

4.2.6 Analysis of MSER

A full analysis of MSER will be discussed in Chexpb. The topics that will be
examined are the advantages and criticisms of #taad, the ease of implementation,
and the various issues encountered in this stcommendations will be offered on

applying this method to transportation models smib those analyzed in this study.

4.3 Volume Balancing Method
The Volume Balancing Method was the third procedested in this experiment.
The motivation behind selecting this method iiteent use of this simulation software
packages. Both CORSIM and TransModeler® have gorigthm for determining when
the model has reached equilibrium by comparingpireentage change in the number of
vehicles in the network over a specified time imédr In this section, the sensitivity of
selecting the interval over which to compare the@etage difference in volumes is

analyzed.
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4.3.1 Sensitivity to Interval Size

The impact of selecting the length of the timeial is tested in this experiment.
CORSIM compares the number of vehicles in the ndtweery 60 seconds as a default
value; however we are interested in analyzing sewelues to compare the results. Our
study begins with 5 second intervals, and contimiés 25, 60, and 110 second intervals.
The percentage difference algorithm is appliedaichandividual run and the average

value and 95 percentile are reported in Table 1dvhe

Table 11: Volume Balancing Method for §' Street Model, changing interval size

VB5s | VB25s| VB 60s VB 1105
Total simulation 5 25 60 110
length (seconds)
Average 57 121 301 388
95" Percentile 85 201 420 556

The small interval chooses the least amount ofmaap time while the large
interval selects the longest. The main reasothisris that shorter time intervals have
more chances to have a two consecutive percentagge less than 12% and 8%; the
first chance for the 110-second interval is at 886onds. There are no guidelines on
selecting the interval size, and no explanation feaad as to why CORSIM uses 60
seconds as a default value. The percent diffeseoceonsecutive time intervals are
shown in the Figure 32-35 on the following pagetfer medium network size, and
interval lengths of 5, 25, 60, and 110 seconds.

There are two main disadvantages of using thisiateto determine equilibrium.
First, choosing a time interval that is too shooitd cause the percentage differences to

be too small. Second, a network with high voluroel@d determine a truncation point too
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soon because the percentage change in volume wouftlictuate as much. At this time
we cannot recommend one interval over the other@adze insufficient guidelines for

determining the interval size is a disadvantagestog this method.
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CHAPTER 5

DISCUSSION AND CONCLUSION

The goal of this research is to explore diffeiaittalization bias truncation
methods for their potential implementation in tyamsation simulation models. The
initialization bias problem has often been neglédtepractice and unaccounted for it can
yield inaccurate results. After a survey of litera and the techniques used by
simulation models, Welch’s Method, MSER, and théuvite Balancing Method were
selected for implementation and tested on thrdereifiit network sizes using VISSIM®.
Throughout the process of implementing these pnaesg several issues arose that will
be discussed in this section. Advantages andisntis of each method will be listed in
an attempt to compare the methods. Based on shég®f this experiment,
recommendations for which method to use and hosetohe specific parameters will be

made.

5.1 Analysis of Welch’'s Method
Welch’s Method is the only one of the selectedhuds that could not be
implemented through automation and requires the mtevention from the analyst.
The theory behind Welch’s Method is intuitive ahd formula and methodology for
plotting the moving averages is easy to calculattimplement. Welch’s Method is
performed on multiple replications and therefore thee advantage of specifying the

truncation point that works best for the entire set
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One advantage of using Welch’s Method is the atadyable to visually inspect
the output data to verify the model reaches stestale. Other methods that can be
automated do not require plotting the data (howsueh plots are highly recommended
as it is critical for the analyst to observe tharagteristics of the output sequence).
Another advantage is that Welch’'s Method can pr@wadnsistent results for different
numbers of replications. Initial tests indicatattthe warm-up times selected from 10
replications were almost identical to those seteétem 20, 40, and 100 replications.
While increasing the number of replications doe&silitdn more smoothness in the
graphs, an extremely large number of replicatioasewot needed for the VISSIM®
models studied. Lastly, this method is popular athbntageous because the plots of the

moving average provide a clear picture of the moel@thing steady-state.

5.1.1 Issues/Criticisms of Welch’s Method

The most common criticism of graphical methodhesr subjectivity due to
visually selecting the truncation point. Individsiaould judge the plot to be “reasonably
smooth” at different locations in the time serieséxd on their expertise and individual
preferences. In addition to reading the truncati@uoe off the graph, there are two major
factors that lead to subjective results by influirgche smoothness of the plot. The first
is the selection of the window size; selecting adew size that is larger than necessary
will over-smooth the plots and result in a trungatpoint larger than needed. The rules
for selecting the best window size are very flexibhich can be a problem because
using different window sizes leads to a range stilts. Second, the selection of the scale

of the y-axis for the moving averages plots deteasihow rough or smooth the plot
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appears. There are no guidelines on how to setatge for the y-axis, however it is
important to keep the scale consistent. As aatitaumb for this study, the scale for the
y-axis was determined by setting the range to teheevariation observed from the
moving averages plotted withh= 1.

As mentioned earlier, an aid was installed to higlfermine when the plot reaches
the mean of the moving average function. An alieve to using this method, the
analyst could add a 95% confidence interval (or@hgr confidence band) to the mean
of the second half of the data and decide steaatg-bas been reached once the plot falls
within this region. This approach was appliedi® $ame plot shown in Figure 3 where a
warm-up time of 600 seconds was chosen. In Fig6reelow, a warm-up time of 550

seconds can be obtained using the confidence aiterv
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Figure 36. Confidence Interval (95%) added to Welr's Method
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Using this approach helps provide more considtentation values each time
and should be examined for future implementatiothisf method.

One disadvantage evident from this experimeritas Welch’'s Method has the
potential to overestimate the warm-up period whangivery large window sizes. A
window size of 100 with five-second observationsangethe sliding window first begins
to move through data at 500 seconds. The firsttfasually close to zero when the
system is started empty) is included in each catmr until the window reaches 100.
This issue would effectively set a minimum truneatpoint to the length of the window
size, which could overestimate the warm-up timedede Lastly, the inability to

automate this process could be a minor obstacliifore use of this procedure.

5.2 Analysis of MSER

The primary advantage of using MSER is that theshod optimizes the
truncation point by selecting the point that miraes the width of the confidence interval
about the truncated sample mean [12]. By assuthmgdata in the second half is more
representative of steady-state conditions, andoimam truncation point is found for
each individual run. This is potentially more rebthan Welch’s approach where a
single truncation point is determined and appleedlt replications.

Another advantage of MSER is the ability to auttenthe process with little
intervention from the user needed. In this eféoscript was made for Visual Studio
.NET to compute the MSER statistic for each repiocg then the minimum value and

the location in the time series was found. WHhils tnethod can be performed without
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plotting the data series, it is highly recommentiedxamine the output series to verify

the model is behaving correctly.

5.2.1 Issues/Criticisms of MSER

The biggest issue encountered with MSER is theetiecy to select the truncation
point at the end of the data series. The explandtir this problem is MSER can be
sensitive to a data series with very similar valaiethe end of the simulation output data
stream. This problem has been noted in literadndcean attempt to mitigate this problem
was suggested by Hoad et al. who proposed igntiimtast five simulation observations
when determining the minimum MSER statistic [28].this effort the application of this
rule was found to eliminate this issue in most saeewever several runs were still
reaching a minimum MSER statistic towards the dnti@set. Hoad et al. also
suggested increasing the amount of data beingatetleand only considering the
minimum values from the first half of the data esri This method was implemented as
well (with no additional data as 5 hours shouldbgiciently large). This almost
completely eliminated the problem. However, thera significant drawback to
imposing this restriction on the MSER. If the nmeaths not allowed to select a truncation
point in the last half of the data, this would piially miss the case where congestion
builds in the second half of the model or if thed®lonever reaches steady-state.

To mitigate this problem, we suggest first impgsdine restriction of not selecting
the truncation point in the last five observaticasd then run the method again by only
considering a truncation point in the first halftbé data. For series having a minimum

first determined near the end of the simulatiorpatitiata and then near the midpoint in
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the second application the individual replicatiblw@d be examined to see if there is
congestion in the model (due to high volume orrendient) or if MSER reported this
value because observations were close togethlee &nid of simulation output data. If
the latter is the case, the value obtained initeeHalf of the series can be used.
Another criticism of MSER is it can be sensitieeoutliers. This effect was
difficult to measure because outliers in transpgmtamodels can be hard to quantify.
However, this problem does exist, and Hoad etatkadthat using the average of
multiple replications (five in their experiment)rgally alleviated this problem [23]. The
idea of using multiple replications rather thaniwdlal replications is also an issue, as
Hoad et al. found that by averaging five replicasioa larger percentage of the bias could
be removed. This approach was not used in thisr@rent due to the fact that White
explicitly expressed MSER “applies to individualtput sequences”, but could be
considered for future implementation.
The last issue with MSER is whether to use thevgdttruncation point
calculated for each individual series, or to usengle point for the entire set that is equal
to the average value (or max, or 95%, etc. valb&gined from multiple replications.
The first case ensures each replication has reathady-state and utilized the maximum
possible amount of data from each replication. Ehmv, different simulation lengths
will result in truncated data sets of varying sjzastential complicating the processing of
the replication runs and their statistical analysising the average value will result in a
truncation point too small for the more variableesa Alternatively, the maximum value
could be used to ensure each case has reachgdimslbtruncation point, but this could

throw away significant amounts of steady-state dataany of the replications. Lastly,
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the 95" percentile truncation value could be selecte@thice the amount of
unnecessarily discarded data while ensuring thentapf replications will be in steady-

state.

5.3 Analysis of the Volume Balancing Method

After the Volume Balancing formula was examineakely, this method does not
appear to be a good indicator of when the modeléamshed steady-state. The intuition
behind determining equilibrium with this methodhst once the network is “full”, the
percent difference in the total number of vehigrethe system between observations will
be relatively small for the remainder of the sintiola run. However, experiments
conducted for this research have found that tHalgyeof the observations of the number
of vehicles in the network is largely dependenttenchosen time interval between
observations and the volume in the network. l[eéey\small interval is chosen, the
percentage difference can be small because theerurhkiehicles in the network at the
current time is highly dependent on the numberebiicies in the network in the previous
interval. For example, if the interval size is @eeond the observations between
consecutive intervals would be expected to be kigbatrelated with small absolute
differences. If a larger interval size is chodée, variation in the percentage difference
can be much higher. For example, in the caseeofitédium model size, a 60-second
interval (which is the default value CORSIM use=gults in a range of percent
differences of 0 to 113%, with many instances &3fr more differences between
observations seen throughout the simulation time@e Figure 34 displays these results

for the medium model size using 60-second intervidie graph of these percent
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differences illustrates why this method may noalgmod measure of equilibrium. Based
on the Volume Balancing methodology, the pointrtiadel reaches equilibrium would
occur at 900 seconds, when two consecutive poratbelow 12% and 8%. However,
the volume continues to fluctuate for the remairafehe simulation.

When examining a network with a large volume,grephs can look substantially
different. Figure 37 below shows the percentafferdénce in volume for the large
network. Due to the magnitude of the vehicle ceutite percentage difference in
volumes becomes very small, ranging from 0% to 6.%%4sed on the results from this

experiment, it is not believed this method canddied on as a measure of equilibrium.
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Using the Volume Balancing formula for the largawork, equilibrium is
obtained at 480 seconds. However, at this timetimeber of vehicles in the network is
632 while the model does not completely “fill” untireaches 762 vehicles (the average
number of vehicles in the network for second hathe data set). Once the network
reaches a certain size, a change in volume repgseaemaller percentage change. Based
on the results from this experiment, it is not &ea#id this method can be relied on as a

measure of equilibrium.

5.4 Limitations

One possible limitation would be the use of thenber of vehicles in the network
as an equilibrium measure. If our model was ga@&emand greater than capacity, the
traffic signals would effectively meter the incominehicles and only a certain number
of vehicles will be let in the system, no mattewhtugh the demand. Also, if a network
has a large volume, looking at the network veheclent may not be able to account for a
single intersection that fails and begins to forsmall queue. Thus, it is important to be
cautious if using only volume as a measure of dguim.

Travel time could be used to capture charactesiif the network that the
vehicle count would not account for, such as aéhiraffic signal. However, it has the
disadvantage of only analyzing the consistencyefdarticular route being considered,
as it would be extremely tedious to apply the metagy to every route in the network.
Another limitation of using travel time to detebetinitial transient is it can be a sparse

measurement. A route that spans the entire netisal&sired, however, longer routes
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could have a higher percentage of vehicles turafhgf the mainline, resulting in fewer

vehicles that complete the travel time segment fsteart to finish.

5.5 Conclusion

All three methods presented in this study prowdeparable results for the
truncation point of the steady-state mean. Agdrire value of the steady-state mean is
unknown, we are unable to measure the amount sfrbraoved from the results and at
what time in the sequence the correct truncationtmzcurs. However, the results from
implementing these procedures indicate that Welkleéthod provides the most
consistent results and would be the most desitallse in practice.

The most appealing characteristic of Welch’s Mdtlsthe ability to provide
extremely consistent results for an increasingiimaber of replications; consistent
truncation points can be obtained from 10 to 1@0cations. The same result was not
found for MSER and Volume Balancing methods. Aeoimportant aspect of Welch'’s
Method is its ability to determine the same lergftthe initial transient by using both
vehicle counts and travel times. This was not toudSER and the Volume Balancing
Method is limited to only looking at the networkhiele count.

It is also important to have the analyst involuethe decision so that they are not
completely removed from the process. MSER hagpditential to be a useful tool, but
additional efforts are needed to better guidestsia transportation applications. To
improve the application of Welch’'s Method, the dmbai of a confidence band for the

second half of the data is suggested.
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APPENDIX A: DEVELOPMENT OF VISSIM® MODEL

A main goal of this study was to perform the warmprocedures on three
distinctly different models sizes. However, we veahthe larger models to build upon a
small model so that we could have a similar areztopare at each level. This was
accomplished by first building the large networkl amputting the routing decisions and
signal timing information. Kate D’Ambrosio, a gruate research student at Georgia
Tech, created the VISSIM® model of the Georgia Teampus and surround area used
in this study. This was an extensive processtaokl several months of labor to code the
massive network. The default values for the rautiacision used for this study were for
80% of the vehicles to continue through, 15% tighty and 5% turn left. 27 vehicle
input were inserted into the network at all bougdaints.

The 87 signalized intersections were set up wiiirgy Barrier Controller (RBC)
in VISSIM® with a default value of 60 seconds fbetcycle length. Traffic count
information was obtained for thd'Street corridor and the routing decisions were
updated to reflect actual movements. Signal tiniamghe corridor was obtained and the
RBC controllers were adjusted accordingly. Fordbeidor, Spring Street and West
Peachtree both used 110 second cycle lengths, @haed Fowler, and"s and
Techwood Drive used 75 seconds. As the majorithefanalysis was performed on this
corridor, it was important to ensure it was asiséialas possible.

After the parameters had been updated for the I&eprgia Tech network, the
model was reduced in size to includéStreet from Dalney Street to West Peachtree

Street. This model was carved out of the largéwokk to ensure the signal timing and
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routing decisions were consistent across all thredel sizes. To create the single

intersection case, the model was further reducélf ®treet and Spring Street.

Figure 38. The three Model Sizes and relative lotian within the large model
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Vehicle Input Tables

Table 12. 5th Street at Spring Street Vehicle Inpis

Number of Vehicles/Hour
Link Name (per volume level)
Medium High
EB 5th Street 200 400
WB 5th Street 200 400
SB Spring Street 1000 2000

Table 13. 5th Street Corridor Vehicle Inputs

Number of Vehicles/Hour

Link Name (per volume level)
Medium High

EB 5th Street 200 400
WB 5th Street 100 100
SB State Street 100 100
SB Fowler Street 100 100
NB Fowler Street 100 100
SB Techwood Drive 100 100
NB Techwood Drive 100 100
Spring Street 1000 2000
West Peachtree Street 1000 2000
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Table 14. 5th Street Corridor Vehicle Inputs

Number of Vehicles/Hour

Link Name (per volume level)
Medium High
Ferst Dr. EB 100 100
Techwood Dr NB 100 100
5th Street WB 250 250
Peachtree St SB 500 700
Spring St SB 1500 2000
W. Peachtree St NB 1500 2000
7th Street WB 100 100
Cyprus St SB 100 100
Northside Dr NB 600 1000
North Ave EB 300 300
Tech Way WB 100 100
Strong Street NB 100 100
Donald Lee Holdwell Pkwy WE 200 200
West Marietta St SB 400 400
Dillian St SB 100 100
Holly Street SB 100 100
Ikea Exit SB 100 100
Northside Dr SB 600 1000
Howell Mill SB 300 300
Huff Rd EB 100 100
Ethel St EB 100 100
Peachtree St NB 500 700
Ponce De Leon WB 400 400
4th Street WB 200 200
10th Street WB 120 120
Travel Time probe vehicle 100 100
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APPENDIX B: ADDITIONAL PLOTS FOR WELCH'S METHOD
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Figure 39. Welch's method for small network, 40 rglications, w = 100
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Figure 40. Welch's Method for Identification of warm-up,

Small network, 40 replications, w = 100
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Figure 41. Welch's Method for large network, 50 relications, w = 150
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Figure 42. Welch's Method for Identification of warm-up,

Large network, 50 replications, w = 150
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APPENDIX C: MSER GRAPHS

The following section presents the graphs fromMISER truncation method.
The Frequency of Occurrences and Cumulative Diginh Function (CDF) are
displayed for each model size. First the CDF amdjfency plot are shown for the small
network size using MSER-5, followed by the CDF &mnelquency plot for the large
network using MSER-5. Figure 29 and Figure 30 sttbthe results of MSER-5 for the

medium network.
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Figure 44. Frequency of Occurrences: MSER-5, smathodel size, low volume
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Figure 45. Cumulative Distribution Function: MSER-5, large model, low volume
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Figure 46. Frequency of Occurrences: MSER-5, smathodel size, low volume
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APPENDIX D: VISUAL BASIC™ CODE

Two sets of Visual Basic™ scripts, written by GgarTech researcher Wonho
Suh are included. After the data collection powése set up in VISISM®, a script was
created to extract the desired information fromMI8®. There was one script written
for each network size, with the ability to adjust input volume. Next, a script was
written to perform the calculations for MSER andoe Balancing Method. Welch’s
Method differs because it requires plotting incrataéwindow sizes and observing the
smoothness of the plots. This procedure was peddrin a separate spreadsheet

designed to generate the plots.
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Visual Basic™ Script to collect statistics from VISIM® medium network size

Imports  System.Text

Imports  VISSIM_COMSERVERLIib
Imports  System.Runtime.InteropServices
Imports  Microsoft.Office.Interop

Imports  System.Convert

Imports  System.Math

Imports  System

Imports  System.IO

Public  Class Warmup
Delegate Sub VB_Reflect( ByVal a As Integer , ByVal b As String |,
ByVal ¢ As Integer )

Dim objApp  As Excel.Application

Dim objbook  As Excel._Workbook
Dim objBooks  As Excel.Workbooks
Dim objSheets As Excel.Sheets

Dim objSheetl  As Excel._Worksheet
Dim objSheet2  As Excel._Worksheet
Dim objSheet3  As Excel._Worksheet

Dim Vissim  As Vissim

Dim Simulation As Simulation
Dim Net As Net

Dim Vehicles As Vehicles

Dim Vehicle As Vehicle

Dim Links  As Links

Dim Link  As Link

Dim Eval As Evaluation

Dim LinkEval As LinkEvaluation

Dim TTimes As TravelTimes

Dim TTime(0 To 50) As TravelTime
Dim Delays As Delays

Dim Delay(0 To 50) As Delay

Dim Detectors As DataCollections
Dim Detec(0 To 50) As DataCollection
Dim Detector As DataCollectionEvaluation

Dim DataCollections As DataCollections
Dim DataCollection As DataCollectionEvaluation

Dim VissimRandom As Integer
Dim RunCount As Integer
Dim x As Integer

Dim xx As Integer

Dim xxx As Integer

Dim xxxx As Integer

Dim SimTime As Long

Dim Start As Date
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Dim Start2 ~ As Date
Private Sub Forml1_Load( ByVal sender As System.Object, Byval e As
System.EventArgs) Handles MyBase.Load
Console.WriteLine(Now())
Start = Now()
Start2 = Now()
Randomize()
objApp = New Excel.Application
objBooks = objApp.Workbooks
objbook = objBooks.Add
objSheets = objbook.Worksheets
objSheetl = objSheets(1)
objApp.Visible = True
While RunCount < 100 ' Total Number of Runs
RunCount = RunCount + 1
VissimRandom = Int(Rnd() * 1000)
Vissim = CreateObject( "vissim.vissim" )
Simulation = Vissim.Simulation
Vissim.LoadNet( "C:\Tmp3\vissim\5th st luke.inp" )
objSheetl.Cells(1 + 4000 * (RunCount - 1),1) = "Run NO"
objSheetl.Cells(1 + 4000 * (RunCount - 1),3) = "VISSIM
seed"
objSheetl.Cells(1 + 4000 * (RunCount - 1),5) = "Spring
Vol"
objSheetl.Cells(1 + 4000 * (RunCount - 1),7)= "5th Vol"
objSheetl.Cells(2 + 4000 * (RunCount - 1),1) =
Dimi As Integer
For i=0 To 6
objSheetl.Cells(2 + 4000*(RunCount -1),2+26*
i)= "Time"
Next
objSheetl.Cells(2 + 4000 * (RunCount - 1),3) = "In system"
objSheetl.Cells(2 + 4000 * (RunCount - 1),55) = "SBT
Ttime"
objSheetl.Cells(2 + 4000 * (RunCount - 1), 56) = "NO VEH"
objSheetl.Cells(2 + 4000 * (RunCount - 1),57) = "Total"
objSheetl.Cells(2 + 4000 * (RunCount - 1),81) = "EB1
Ttime"
objSheetl.Cells(2 + 4000 * (RunCount - 1),82) = "NO VEH"
objSheetl.Cells(2 + 4000 * (RunCount - 1), 83) = "Total"
objSheetl.Cells(2 + 4000 * (RunCount - 1), 107) = "EB2
Ttime"
objSheetl.Cells(2 + 4000 * (RunCount - 1), 108) = "NO VEH"
objSheetl.Cells(2 + 4000 * (RunCount - 1), 109) = "Total"
objSheetl.Cells(2 + 4000 * (RunCount - 1), 133) = "WB1
Ttime"
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objSheetl.Cells(2 + 4000 * (RunCount - 1), 134) = "NO VEH"
objSheetl.Cells(2 + 4000 * (RunCount - 1), 135) = "Total"

objSheetl.Cells(2 + 4000 * (RunCount - 1), 159) = "WB2
Ttime"

objSheetl.Cells(2 + 4000 * (RunCount - 1), 160) = "NO VEH"

objSheetl.Cells(2 + 4000 * (RunCount - 1), 161) = "Total"

Run()
Console.WriteLine(Abs(DateDiff(Datelnte rval.Second, Start2,
Now())) & " sec " & RunCount)
Start2 = Now()
End While

Console.WriteLine(Abs(DateDiff(Datelnterval .Second, Start,
Now()) & " " & RunCount)

End Sub

Sub Run()

Vissim.LoadLayout( "c:\tmp3\vissim\lukemedium.ini" )
Vissim.ShowMinimized()

Vissim.Graphics.AttValue( "visualization" )=0

Net = Vissim.Net

Vehicles = Vissim.Net.Vehicles

Links = Net.Links

Simulation.Period = 999999999999
Simulation.RandomSeed = VissimRandom
Simulation.Resolution = 1

Eval = Vissim.Evaluation

Eval.AttValue( "delay" )= True
Eval.AttValue( "datacollection” )= True
Eval.AttValue( "vehiclerecord" )= True
Eval.AttValue( "traveltime" )= True

TTimes = Vissim.Net. TravelTimes
Delays = Vissim.Net.Delays

Detector = Vissim.Evaluation.DataCollection Evaluation
Detector.LoadConfiguration( "c:\tmp2\gt.qmk" )
Detectors = Vissim.Net.DataCollections

Dim controllers As SignalControllers

Dim controller As SignalController

controllers = Vissim.Net.SignalControllers

Dim groups  As SignalGroups
Dim group  As SignalGroup

For x=1  To controllers.Count
controller = controllers(x)

groups = Vissim.Net.SignalControllers(x ).SignalGroups
Next

Dim Inputs  As Vehiclelnputs
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Inputs = Vissim.Net.Vehiclelnputs

For x=1  To Inputs.Count
If Inputs(x).Name =
Inputs(x).AttValue(

"gR"

' Change input volume here
Then

"volume" )= 1000

Elself Inputs(x).Name = "EB" Then
Inputs(x).AttValue( "volume" ) =200
Elself Inputs(x).Name = “"NB" Then
Inputs(x).AttValue( "volume" ) =200

End If
Next X

objSheetl.Cells(1 + (RunCount - 1) * 4000,

objSheetl.Cells(1 + (RunCount - 1) * 4000,
Simulation.RandomSeed

objSheetl.Cells(1 + (RunCount - 1) * 4000,

objSheetl.Cells(1 + (RunCount - 1) * 4000,

For xx=1 To TTimes.Count
If TTimes(xx).Name =
TTime(1) = TTimes(xx)
End If
Next

n

While 1>0
Simulation.RunSingleStep()
SimTime = Simulation.AttValue(

If SimTime = 18001
Simulation.Stop()
Vissim.Exit()

Exit

End If

Then

While

Dim tempcount
Dim ii

As Integer
As Integer

xxx =1
If (SimTime - xxx) Mod5 =
For ii=0 To 6
objSheetl.Cells((SimTime - xxx)
- 1) *4000, 1 +ii * 26) = Int((SImTime - xxx) / 5
objSheetl.Cells((SimTime - xxx)
- 1) * 4000, 2 +ii * 26) = SimTime - Xxx
Next

objSheetl.Cells((SimTime - xxx) / 5
1) * 4000, 3) = Vehicles.Count

objSheetl.Cells((SimTime - xxx) / 5

1) * 4000, 55) = TTime(1).GetResult(SimTime - 1,
objSheetl.Cells((SimTime - xxx) / 5

1) * 4000, 56) = TTime(1).GetResult(SimTime - 1,
objSheetl.Cells((SimTime - xxx) / 5

1) * 4000, 57) = TTime(1).GetResult(SimTime - 1,

TTime(1).GetResult(SimTime - 1,
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2) = RunCount

4) =
6)= "
8)
Then
"elapsedtime" )
0 And SimTime >1 Then

/5 + 2 + (RunCount

/5 + 2 + (RunCount

+ 2 + (RunCount -

+ 2 + (RunCount -
"traveltime" , "0
+ 2 + (RunCount -
"nvehicles" , "™ ,0)
+ 2 + (RunCount -
"traveltime" " 0)*
nn , 0)



End If
End While
End Sub
End Class
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VB Script to perform MSER and Volume Balancing Method on vehicle count and

Imports
Imports
Imports
Imports
Imports
Imports
Imports

Public

travel time for medium model size

System.Text
System.Runtime.InteropServices
Microsoft.Office.Interop
System.Convert

System.Math

System

System.lO

Class Warmup

Delegate Sub VB_Reflect( ByVal a As Integer , ByVal b As String |,
ByVal ¢ As Integer )

Dim objApp  As Excel.Application

Dim objbook  As Excel._Workbook
Dim objBooks  As Excel.Workbooks
Dim objSheets As Excel.Sheets

Dim objSheetl  As Excel. Worksheet

Dim objApp2  As Excel.Application
Dim objbook2  As Excel._ Workbook
Dim objBooks2  As Excel.Workbooks
Dim objSheets2 As Excel.Sheets
Dim objSheet2  As Excel._Worksheet

Dim Start As Date
Dim Start2 As Date

Private  Sub Forml1_Load( ByVal sender As System.Object, Byval e As
System.EventArgs) Handles MyBase.Load

Console.WriteLine(Now())

Start = Now()

Start2 = Now()

objApp = New Excel.Application
objBooks = objApp.Workbooks
objbook = objBooks.Add

objSheets = objbook.Worksheets
objSheetl = objSheets(1)

objApp.Visible = True
objApp2 = New Excel.Application
objbook?2 =
objApp2.Workbooks.Open(  "C:\tmp3\output\medium_original.xIsx" )
objApp2.Visible = False
objSheet2 = objbook2.Worksheets( "sheetl" )

Dim RunNo As Integer
Dim Interval As Integer
Dimb As Integer

Dimi As Integer

Dimii  As Integer
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Dim iii As Integer
Dim Cutoff(0 To 5)

Cutoff(1) = 1800 ' x5 =9000s
Cutoff(2) = 360 ' x25 = 9000s
Cutoff(3) = 150 ' X60 = 9000s
Cutoff(4) = 82 'x110 = 9020s

For i=0 To 19

objSheetl.Cells(1, 1 + i * 10).value = "Run NO"

Next
objSheetl.Cells(1, 2).value = "VC M1 5s"
objSheetl.Cells(1, 3).value = "VC M5 25s"
objSheetl.Cells(1, 4).value = "VC M12 60s"
objSheetl.Cells(1, 5).value = "VC M22 110s"
objSheetl.Cells(1, 22).value = "VC M1 5s"
objSheetl.Cells(1, 23).value = "VC M1 25s"
objSheetl.Cells(1, 24).value = "VC M1 60s"
objSheetl.Cells(1, 25).value = "VC M1 110s"
objSheetl.Cells(1, 42).value = "VC M5 1hr"
objSheetl.Cells(1, 43).value = "VC M5 2hr"
objSheetl.Cells(1, 44).value = "VC M5 3hr"
objSheetl.Cells(1, 45).value = "VC M5 4hr"
objSheetl.Cells(1, 46).value = "VC M5 5hr"
objSheetl.Cells(1, 62).value = "VB 58"
objSheetl.Cells(1, 63).value = "VB 25s"
objSheetl.Cells(1, 64).value = "VB 60s"
objSheetl.Cells(1, 65).value = "VB 110s"
objSheetl.Cells(1, 66).value = "5s NO"
objSheetl.Cells(1, 67).value = "25s NO"
objSheetl.Cells(1, 68).value = "60s NO"
objSheetl.Cells(1, 69).value = "110s NO"
objSheetl.Cells(1, 102).value = "“TT M1"
objSheetl.Cells(1, 103).value = “TT M5"
objSheetl.Cells(1, 104).value = "TT M10"
objSheetl.Cells(1, 105).value = "TT M20"
objSheetl.Cells(1, 112).value = “TT M5 1hr"
objSheetl.Cells(1, 113).value = “TT M5 2hr"
objSheetl.Cells(1, 114).value = "“TT M5 3hr"
objSheetl.Cells(1, 115).value = "“TT M5 4hr"
objSheetl.Cells(1, 116).value = "TT M5 5hr"

Dim Count(0 To 0,0 To100,0 To5,0 To 4000)

Dim TTime(0 To5,0 To0100,0 To5,0 To 10000)

Dim TTimeWhen(0 To 5,0 To100,0 To5,0 To 10000)
For RunNo=1 To 52

Dim TempCount(0 To 10)
ReDim TempCount(0 To 10)
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Console.WriteLine(RunNo & "start " & Now())

For i=0 To 19
objSheetl.Cells(1 + (RunNo), 1 +i * 10).value = RunNo
Next

'read from excel
For i=1 To 3599
Count(0, RunNo, 1, i) = objSheet2.C ells(2 + i + (RunNo
- 1) * 4000, 3).value

For ii=1 To1l "™ total route
number
If objSheet2.Cells(2 +i + (RunNo - 1) * 4000, 30 +
26 *ii).value > 0 Then
For iii=1 To objSheet2.Cells(2 + i + (RunNo -
1) * 4000, 56).value
TempCount(ii) = TempCou nt(ii) + 1
TTime(ii, RunNo, 1, Tem pCount(ii)) =
objSheet2.Cells(2 + i + (RunNo - 1) * 4000, 55).val ue 'travel time
TTimeWhen(ii, RunNo, 1, TempCount(ii)) =i
*5  'simulation time
objSheetl.Cells(TempCou nt(ii) + 150, 1) =
TempCount(ii)
objSheetl.Cells(TempCou nt(ii) + 150, RunNo
* 2) = TTime(ii, RunNo, 1, TempCount(ii))
objSheetl1.Cells(TempCou nt(ii) + 150, RunNo
* 2 + 1) = TTimeWhen(ii, RunNo, 1, TempCount(ii))
Next
End If

Next
Next

Dim IntCount(0 To 10)
IntCount(1) = 1
IntCount(2) =5
IntCount(3) = 12
IntCount(4) = 22

Dim Temp0O As Integer

For Temp0=2 To4
Interval = IntCount(TempO)

Fori=1 To Int(3599 / Interval)
Dim Templ As Single =0
Dim Temp2 As Single =0

For iii=1 To Interval
Templ = Templ + Count(0, Ru nNo, 1, (i-1) *
Interval + iii)
Next
Count(0, RunNo, Temp0, i) = Tem pl/ Interval
Next

Next
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objSheetl.Cells(RunNo + 1, 7) = Count(0 , RunNo, 1, 3599)

Dim IntTT(O To 10)
IntTT(1) =1
IntTT(2) =5
IntTT(3) = 10
IntTT(4) =20

For Temp0=2 To4
Interval = IntTT(TempO0)

For ii=1 To1l
For i=1 To Int(TempCount(ii) / Interval)
Dim Temp3 As Single =0

For iii=1 To Interval
Temp3 = Temp3 + TTime(i i, RunNo, 1, (i- 1)
* Interval + iii)
Next
TTime(ii, RunNo, Temp0, i) = Temp3 / Interval
TTimeWhen(ii, RunNo, Temp0, i) = TTimeWhen(ii,
RunNo, 1, i * Interval)
Next

Next
Next

For TempO=1 To4
Interval = IntCount(TempO)
Dim CountTerm1(0  To Int(3599 / Interval)) As Single
Dim CountTerm2(0  To Int(3599 / Interval)) As Single

ReDim CountTerm1(0  To Int(3599 / Interval))
ReDim CountTerm2(0  To Int(3599 / Interval))

For i=0 To Int(3599 / Interval) - 1
Dim Temp4 As Single =0
Dim Temp5 As Single =0
Dim Temp6 As Single =0
Dim Temp7 As Single =0
Dim Temp8 As Single =0

For ii=1 To Int(3599 / Interval) - 1 -i+ 1
Temp4 = Temp4 + Count(0, Ru nNo, TempO, i + ii)
Temp6 = Temp6 + 1

Next

CountTerml(i) = Temp4 / Temp6

For iii=i+1 To Int(3599 / Interval)
Temp7 = Temp7 + (Count(0, R unNo, TempO, iii) -
CountTerm1(i)) * (Count(0, RunNo, Temp0, iii) - Cou ntTerma(i))
Next
CountTerm2(i) = Temp7 / (Int(35 99/ Interval) - i)

/ (Int(3599 / Interval) - i)
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Next

Dim Temp9 As Single = CountTerm2(1)
Dim Templ0 As Single =Interval*5

Fori=1 To Int(3599 / Interval) - 1 - Cutoff(Temp0)
If CountTerm2(i) < Temp9 Then
Temp9 = CountTerm2(i)
Templ0 =i * Interval * 5
End If
Next
objSheetl.Cells(RunNo + 1, TempO + 1) = Templ0
Next

For TempO=1 To4
Interval = IntCount(Temp0)
Dim CountTerm1(0  To Int(3599 / Interval)) As Single
Dim CountTerm2(0  To Int(3599 / Interval)) As Single

ReDim CountTerm1(0  To Int(3599 / Interval))
ReDim CountTerm2(0  To Int(3599 / Interval))

For i=0 To Int(3599 / Interval) - 1 'O<=d<n
Dim Temp4 As Single =0
Dim Temp5 As Single =0
Dim Temp6 As Single =0
Dim Temp7 As Single =0
Dim Temp8 As Single =0

For ii=1 To Int(3599 / Interval) - 1 -i+ 1
Temp4 = Temp4 + Count(0, Ru nNo, 1, i * Interval
+ii * Interval)
Temp6 = Temp6 + 1
Next

CountTerml(i) = Temp4 / Temp6

For iii=i+1 To Int(3599 / Interval)
Temp7 = Temp7 + (Count(0, R unNo, TempO, iii) -
CountTerm1(i)) * (Count(0, RunNo, Temp0, iii) - Cou ntTerma(i))
Next
CountTerm2(i) = Temp7 / (Int(35 99 / Interval) - i)
/ (Int(3599 / Interval) - i)
Next

Dim Temp9 As Single = CountTerm2(1)
Dim Templ0 As Single =Interval*5
Dim Templ2 As Single =Interval*5

For i=1 To Int(3599 / Interval) - 1 - Cutoff(Temp0)
If CountTerm2(i) < Temp9 Then
Temp9 = CountTerm2(i)
Templ0 =i * Interval * 5
End If
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Next

objSheetl.Cells(RunNo + 1, TempO +

Next

Dim RunLength(0  To 10)

144 x 25 = 3600s or 1lhr
'288 x 25 = 7200s or 2hr
'432 x 25 = 10800s or 3hr
'576 x 25 = 14400s or 4hr
'720 x 25 = 18000s or 5hr

RunLength(1) = 144
RunLength(2) = 288
RunLength(3) = 432
RunLength(4) = 576
RunLength(5) = 720

For TempO=1 Tob5

Dim Length  As Integer

Length = RunLength(Temp0)

Dim CountTerm1(0
Dim CountTerm2(0

ReDim CountTerm1(0
ReDim CountTerm2(0

21) = Templ0

To Length)  As Single
To Length)  As Single

To Length)
To Length)

For i=0 To Length - 1

Dim Temp4
Dim Temp5
Dim Temp6
Dim Temp7
Dim Temp8

For ii=1

Temp6 = Temp6 + 1
Next

As
As
As
As
As

Single =0
Single =0
Single =0
Single =0
Single =0

To Length-1-i+1
Temp4 = Temp4 + Count(0, Ru

CountTerml(i) = Temp4 / Temp6

For ii=i+1

To Length

Temp7 = Temp7 + (Count(0, R
CountTerm1(i)) * (Count(0, RunNo, 2, iii) - CountTe

Next

CountTerm2(i) = Temp7 / (Length

Next

Dim Temp9 As Single

Dim Templ0 As Single =25

Fori=1 To Length - 1 - Cutoff(2)

If CountTerm2(i) < Temp9

Temp9 = CountTerm2(i)
TemplO =i* 25
End If
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Next
objSheetl.Cells(RunNo + 1, TempO + 41) = Templ0
Next

'Volume Balancing with different interval
For TempO=1 To4
Interval = IntCount(Temp0)
Dim Temp4 As Single =0
Dim Temp5 As Single =0
Dim Temp6 As Single =0
Dim Temp7 As Integer =0

For i=3 To Int(3599 / Interval) - 1

Temp4 = Count(0, RunNo, 1, Inte rval * (i - 2))
Temp5 = Count(0, RunNo, 1, Inte rval * (i - 1))
Temp6 = Count(0, RunNo, 1, Inte rval * (i - 0))
If (Abs(Temp4 - Temp5) / Temp4) < 0.12 And
(Abs(Temp5 - Temp6) / Temp5) < 0.08 Then

Temp7 = Temp7 + 1
If Temp7=1 Then
objSheetl1.Cells(RunNo + 1, TempO + 61) =i
* Interval * 5
End If
End If
Next
Next

"Travel Time MSER with different batch sizes
For TempO=1 To4
Interval = IntTT(TempO)

Dim TTTerm1(0 To Int(TempCount(1) / Interval)) As
Single
Dim TTTerm2(0 To Int(TempCount(1) / Interval)) As
Single
ReDIm TTTerm1(0 To Int(TempCount(1) / Interval))
ReDIm TTTerm2(0 To Int(TempCount(1) / Interval))
For i=0 To Int(TempCount(1) / Interval) - 1 '0<=d
<n
Dim Temp4 As Single =0
Dim Temp5 As Single =0
Dim Temp6 As Single =0
Dim Temp7 As Single =0
Dim Temp8 As Single =0
For ii=1 To Int(TempCount(1) / Interval) - 1 - i
+1
Temp4 = Temp4 + TTime(1, Ru nNo, TempO, i + ii)
Temp6 = Temp6 + 1
Next

TTTerml1(i) = Temp4 / Temp6
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For iii=i+1 To Int(TempCount(1) / Interval)

Temp7 = Temp7 + (TTime(1, R unNo, TempO, iii) -
TTTerm1(i)) * (TTime(1, RunNo, TempO, iii) - TTTerm 1(i))
Next
TTTerm2(i) = Temp7 / (Int(TempC ount(1) / Interval)
- i)/ (Int(TempCount(1) / Interval) - i)
Next

'Find the minimum value
Dim Temp9 As Single =TTTerm2(1)
Dim Templ0 As Single = TTimeWhen(1, RunNo, Temp0, 1)

For i=1 To Int(TempCount(1) / Interval) - 1 -
Cutoff(Temp0)
If TTTerm2(i) < Temp9 Then
Temp9 = TTTerm2(i)

Templ0 = TTimeWhen(1, RunNo , TempO, i)
End If
Next
objSheetl.Cells(RunNo + 1, TempO + 101) = Templ0
Next

‘Travel Time MSERS5 with different run lengths
For i=1 To Int(TempCount(1) / 5)

If TTimeWhen(1, RunNo, 2, i) <= 3600 Then
RunLength(1) =i

Elself TTimeWhen(1, RunNo, 2, i) <= 7200 Then
RunLength(2) =i

Elself TTimeWhen(1, RunNo, 2, i) <= 10800 Then
RunLength(3) =i

Elself TTimeWhen(1, RunNo, 2, i) <= 14400 Then
RunLength(4) =i

End If

RunLength(5) = Int(TempCount(1) / 5 )

Next

For TempO=1 To5
Dim Length  As Integer
Length = RunLength(Temp0)

Dim TTimeTerm1(0 To Length) As Single
Dim TTimeTerm2(0 To Length)  As Single

ReDim TTimeTerm1(0 To Length)
ReDim TTimeTerm2(0  To Length)

For i=0 To Length -1 'O<=d<n
Dim Temp4 As Single =0
Dim Temp5 As Single =
Dim Temp6 As Single =
Dim Temp7 As Single =
Dim Temp8 As Single =0

For ii=1 To Length-1-i+1
Temp4 = Temp4 + TTime(1, Ru nNo, 2, i + ii)
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Temp6 = Temp6 + 1
Next

TTimeTerml(i) = Temp4 / Temp6

For iii=i+1 To Length
Temp7 = Temp7 + (TTime(1, R unNo, 2, iii) -
TTimeTerm1(i)) * (TTime(1, RunNo, 2, iii) - TTimeTe rm1(i))
Next
TTimeTerm2(i) = Temp7 / (Length - i)/ (Length - i)

Next

'Finding the minimum value
Dim Temp9 As Single =TTimeTerm2(1)
Dim Templ10 As Single = TTimeWhen(1, RunNo, 2, 1)

For i=1 To Length - 1 - Cutoff(2)
If TTimeTerm2(i) < Temp9 Then
Temp9 = TTimeTerm2(i)

Templ0 = TTimeWhen(1, RunNo , 2, 1)
End If
Next
objSheetl.Cells(RunNo + 1, TempO + 111) = Templ0
Next
Next
Console.WriteLine(Abs(DateDiff(Datelnterval .Second, Start,
Now() & " "
End Sub
End Class
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