
A FEDERATED SIMULATION APPROACH TO MODELING PORT 
AND ROADWAY OPERATIONS 

 
 
 
 
 
 
 
 
 
 

A Thesis 
Presented to 

The Academic Faculty 
 
 
 
 

by 
 
 
 

Thomas A. Wall 
 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Masters of Science in the 
School of Civil and Environmental Engineering 

 
 
 
 
 
 
 

Georgia Institute of Technology 
May 2010 

 
 

COPYRIGHT 2010 BY THOMAS A. WALL 



A FEDERATED SIMULATION APPROACH TO MODELING PORT 
AND ROADWAY OPERATIONS 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Approved by: 
 
Dr. Michael P. Hunter, Advisor 
School of Civil and Environmental Engineering 
Georgia Institute of Technology 
 
Dr. Michael O. Rogers 
School of Civil and Environmental Engineering 
Georgia Institute of Technology 
 
Dr. Michael D. Meyer 
School of Civil and Environmental Engineering 
Georgia Institute of Technology 
 
 
 
Date Approved:  April 05, 2010 

 



 

iii 

ACKNOWLEDGEMENTS 

 

 I would like to thank my adviser, Dr. Michael P. Hunter for the knowledge and 

support he has provided throughout this study, and for his thorough review of this thesis.  

I would like to thank Dr. Michael O. Rodgers, the principal investigator for the Port of 

Savannah research project for the opportunity to be a part of this study, and for his review 

of this thesis.  I would to thank Dr. Michael D. Meyer for his review of this thesis and for 

his moral support throughout this study. 

I am indebted to Matthew Roe for contributing his time and deep knowledge of 

computer programming and databasing systems to support study.  I would like to thank 

Christopher Puglisi for his initial efforts in developing the basic federation method built 

upon in this study, and especially the method of time and management.  I would like to 

thank Lakshmi Peesapati for developing the initial version of the Arena© port model used 

in this study, and Franklin Gbologah for his continued support for that model throughout 

the study.  Lastly, I would like to thank Dwayne Henclewood for his informative 

discussions of VISSIM© modeling methods and his general support, both moral and 

technical, throughout this study.  

 

 



 

iv 

TABLE OF CONTENTS 

   Page 

ACKNOWLEDGEMENTS iii 

LIST OF TABLES x 

LIST OF FIGURES xi 

SUMMARY xvi 

CHAPTER 1: INTRODUCTION 1 

1.1  Problem and Motivation 2 

1.2  Modeling Approach Overview 3 

1.2.1  Port of Savannah and Arena© 4 

1.2.2  Roadway Network and VISSIM© 5 

1.3  Study Overview 5 

CHAPTER 2: LITERATURE REVIEW & BACKGROUND 7 

2.1  Computer Simulation 7 

2.2  Transportation-Specific Simulation 9 

2.3  Methods for Federating Simulators 11 

2.3.1  Distributed and Parallel Simulation 11 

2.3.2  Motivation for Federated Simulation 12 

2.3.3  Federated Simulation Implementation 13 

2.3.4  Current Research in Transportation Simulation Federation 16 

2.3.5  Relevance of this Study Given Current Research 16 

CHAPTER 3: METHODOLOGY 20 

3.1  Port System Operational Overview 20 



 

v 

3.1.1  Port Container Origins and Destinations 21 

3.1.2  Port and Roadway Trucks 22 

3.1.3  Port Roadway Network 23 

3.2  Federation Model Components Overview 24 

3.2.1  Study Terminology 25 

3.2.2  Arena© Federate 29 

3.2.2.1  Arena© Port Model Federate – Truck Object Generation and Deletion

 31 

3.2.2.2  Arena© Port Model Federate – Container Object Generation and 

Deletion 32 

3.2.2.3  Arena© Port Model Federate – Truck and Container Object Attributes

 32 

3.2.2.4  Arena© Port Model Federate – Submodel Object Processing 36 

3.2.3  VISSIM© Federate 39 

3.2.4  Runtime Infrastructure (RTI) 41 

3.2.5  Federation Database 42 

3.2.5.1  Example – Movement of a Container Object Generated at the GCT 44 

3.2.5.2  Example – Movement of a Container Object Generated at the I-16 

Junction 48 

3.3  Description of Federation Model Components 50 

3.3.1  Arena© Port Model Federate 51 

3.3.1.1  Garden City Terminal (GCT) Gate Submodel 51 

3.3.1.1.1  Garden City Terminal Outgoing Operations Logic 53 



 

vi 

3.3.1.1.2  Garden City Terminal Incoming Operations Model 63 

3.3.1.1.3  Garden City Terminal Empty Long-Distance Truck 

Release 70 

3.3.1.1.4  Vehicle and Container Input Block Template 

Development 73 

3.3.1.2  Distribution Center Submodel 77 

3.3.1.2.1  Distribution Center Entering Vehicle Creation 79 

3.3.1.2.2  Distribution Center Submodel Vehicle and Container 

Routing 80 

3.3.1.2.3  Distribution Center Submodel Queuing/Rerouting 83 

3.3.1.2.4  Distribution Center 1 Submodel Outgoing Vehicle Logic 85 

3.3.1.2.5  Distribution Center 1 Submodel Vehicle Rerouting Logic 85 

3.3.1.3  I-16 Junction Submodel 88 

3.3.1.3.1  I-16 Junction Submodel Truck with Container 

Generation from Interstate Logic 90 

3.3.1.3.2  I-16 Junction Submodel Truck Generation From 

Interstate Logic 94 

3.3.1.3.3  I-16 Junction Submodel Truck Exiting to Interstate 

Logic 96 

3.3.1.4  Vehicle Diffusion Module 98 

3.3.2  Visual Basic Runtime Infrastructure 102 

3.3.2.1  Time Management 104 

3.3.2.2  Object Management and Passing Objects Between Federates 105 



 

vii 

3.3.2.2.1  RTI Management of Port Model to Roadway Model 

Entity Exchange 106 

3.3.2.2.2  RTI Management of Roadway Model to Port Model 

Entity Exchange 112 

3.3.2.2  Management and Recreation of Trucks Diffused by VISSIM© 118 

3.3.3  Federation Database Structure and Query Method 123 

3.3.3.1  Container Table and Container Log Data Table Structures 125 

3.3.3.2  Vehicle Table and Vehicle Log Data Table Structures 128 

3.3.3.3  Index Table Data Table Structure 130 

3.3.3.4  Queue Data Table Structure 132 

3.3.3.5  Dispersion Data Table Structure 134 

3.3.3.6  Federation Database Query Methods – Table Adapters 136 

3.3.4  VISSIM© Roadway Network Model Federate 140 

3.3.4.1  General Model Overview and Design Considerations 140 

3.3.4.2  Port and Roadway Truck Routing Method 144 

3.3.4.3  Roadway Detectors at Destination Links 147 

3.3.4.4  Roadway Network Model – Special Considerations 148 

3.3.4.4.1  Diffusion of Vehicles From the Roadway Network 148 

3.3.4.4.2  Vehicles Not Detected by Destination Link Detectors 150 

3.4  Known Model Limitations 155 

3.4.1  Arena© Port Model Federate Limitations 155 

3.4.2  VISSIM© Roadway Network Model Federate Limitations 157 

3.4.3  Runtime Infrastructure (RTI) Limitations 158 



 

viii 

3.5  Chapter Summary 159 

CHAPTER 4: DESIGN OF EXPERIMENT 160 

4.1  Time-Lag Experiment Background 160 

4.2  Experimental Design 163 

4.2.1  Experimental Overview 163 

4.2.2  Independent Input Variables 166 

4.2.2.1  Transient Independent Variables 166 

4.2.2.2  Constant Independent Variables 167 

4.2.3  Dependent Variables and Data Output 170 

4.2.3.1  Queue Length Data 170 

4.2.3.2  Roadway Travel Time Data 171 

4.2.3.3  Truck Utilization and Location Data 173 

4.2.3.4  Submodel Facility Processing Data 173 

4.2.4  Data Analysis Methods 175 

4.2.4.1  General Approach to Statistical Output Analysis 175 

4.2.4.2  Determination of Steady State Simulation 178 

4.2.4.3  Determination of Time-Lag or the Initial Transient Phase 179 

CHAPTER 5: RESULTS, ANALYSIS AND DISCUSSION 181 

5.1  General Results and Data Trends 181 

5.1.1  Queue Length Data 182 

5.1.2  Travel Time Data 187 

5.1.3  Truck Location and Utilization Data 189 

5.1.4  Facility Processing Data 195 



 

ix 

5.2  Analysis of Results 196 

5.2.1  Queue Data Analysis 196 

5.2.2  Travel Time Data Analysis 199 

5.2.3  Truck Location and Utilization Data Analysis 208 

5.2.3.1  Road Truck Location and Utilization Data Analysis 209 

5.2.3.2  Port Truck Location and Utilization Data Analysis 210 

5.3  Discussion of Results 213 

5.3.1  Effect of Background Traffic Volume Variations 213 

5.3.2  Effect of Container Volume Variations 214 

5.3.3  Effect of Limited Port Truck Resources 215 

5.3.4  Steady State Behavior and Initial Transient Phases 216 

CHAPTER 6: CONCLUSION 219 

6.1  Federated Transportation Simulation Development and Implementation 220 

6.2  Dynamic Interaction of Model Federates 221 

6.3  Challenges and Future Research Needs 222 

APPENDIX A: RUNTIME INFRASTRUCTURE COMMAND CODE 224 

APPENDIX B: ARENA© GLOBAL VARIABLES 245 

APPENDIX C: ROADWAY NETWORK INTERSECTION SIGNALIZATION PLANS

 248 

REFERENCES 249 



 

x 

LIST OF TABLES 

Page 

Table 1.  Attribute Names and Object Assignments 33 

Table 2.  Federation Destination ID Numbers 34 

Table 3.  Attribute Names and Class Identifier Numbers 60 

Table 4.  Database Queue Types and Corresponding Arena© Queues 134 

Table 5.  Federation Database Table Adapter Queries 136 

 



 

xi 

LIST OF FIGURES 

Page 

Figure 1.  Components of an HLA in federation 15 

Figure 2.  Port of Savannah Geographical Orientation 21 

Figure 3.  Port of Savannah Roadway Network 23 

Figure 4.  Spatial Relationship between VISSIM© and Arena© Federates 30 

Figure 5.  Port and Roadway Model Federation Structure 43 

Figure 6.  GCT Gate Submodel Logical Series Overview 52 

Figure 7.  GCT Gate Submodel Vehicle and Container Generation 54 

Figure 8.  GCT Gate Submodel Container and Vehicle Batching Logic 56 

Figure 9.  Visual Basic Commands for VBA 1 Block 59 

Figure 10.  Visual Basic Commands for VBA 4 Block 59 

Figure 11.  Port GCT Submodel Global Variable Reset and Entity Disposal 60 

Figure 12.  Visual Basic Commands for VBA 3 Block 61 

Figure 13.  GCT Gate Submodel Outgoing Variable Graphics 63 

Figure 14.  GCT Gate Submodel Incoming Vehicle and Container Logic 64 

Figure 15.  Visual Basic Commands for VBA 10 Block 65 

Figure 16.  Visual Basic Commands for VBA 9 Block 66 

Figure 17.  Visual Basic Commands for VBA 7 Block 66 

Figure 18.  GCT Gate Submodel Entering Container and Vehicle Routing 67 

Figure 19.  GCT Gate Submodel Entering Variable Graphic 70 

Figure 20.  GCT Gate Submodel Long-Distance Truck Release 70 

Figure 21.  Visual Basic Commands for VBA Block 13 71 



 

xii 

Figure 22.  Visual Basic Commands for VBA 14 Block 72 

Figure 23.  GCT Gate Submodel Truck Release Variable Graphic 73 

Figure 24.  Vehicle Input v2 Block Template Logic 74 

Figure 25.  Vehicle Input v2 Template Interface Window 76 

Figure 26.  Distribution Center Submodel Logical Series Overview 78 

Figure 27.  Distribution Center Submodel Entering Vehicle Creation 79 

Figure 28.  Distribution Center Submodel Entity Routing 81 

Figure 29.  Distribution Center Submodel Vehicle Queuing/Rerouting Logic 83 

Figure 30.  Distribution Center 1 Submodel Outgoing Vehicle and Container Logic 85 

Figure 31.  Distribution Center 1 Submodel Vehicle Rerouting Logic 86 

Figure 32.  I-16 Junction Submodel Logical Series Overview 88 

Figure 33.  I-16 Junction Submodel Truck-Container Generation 90 

Figure 34.  I-16 Junction Submodel Container and Vehicle Batching Logic 93 

Figure 35.  I-16 Junction Submodel Empty Truck Generation 94 

Figure 36.  I-16 Junction Submodel Empty Truck Global Variable Logic 96 

Figure 37.  I-16 Junction Submodel Incoming Vehicle Generation 97 

Figure 38.  Vehicle Diffusion Module Vehicle Generation Logic 99 

Figure 39.  Vehicle Diffusion Module Vehicle Routing Logic 101 

Figure 40.  RTI Time Advancement Code 105 

Figure 41.  RTI Commands for Vehicles Exiting Port to Roadway Model 107 

Figure 42.  RTI Commands for Vehicles Exiting Roadway to Port Model – Part 1 113 

Figure 43.  RTI Commands for Vehicles Exiting Roadway to Port Model – Part 2 116 

Figure 44.  RTI Commands for Diffused Vehicle Detection and Recreation – Part 1 119 



 

xiii 

Figure 45.  RTI Commands for Diffused Vehicle Detection and Recreation – Part 2 121 

Figure 46.  Federation Database Container Table and Container Log Structure 125 

Figure 47.  Federation Database Example Container Log 126 

Figure 48.  Federation Database Vehicle Table and Vehicle Log Structure 128 

Figure 49.  Federation Database Example Vehicle Log 129 

Figure 50.  Federation Database Index Table Structure 131 

Figure 51.  Federation Database Example Index Table 132 

Figure 52.  Federation Database Queue Table Structure 133 

Figure 53.  Federation Database Example Queues Table 133 

Figure 54.  Federation Database Showing RTI Table Adapter Queries 137 

Figure 55.  Port of Savannah Roadway Network Geometry 140 

Figure 56.  Roadway Network Model Signalized Intersections 142 

Figure 57.  VISSIM© Roadway Network Sample Routing Decision Window 145 

Figure 58.  VISSIM© Detector Location for Distribution Center 1 148 

Figure 59.  VISSIM© Roadway Model GCT Exiting Link 151 

Figure 60.  VISSIM© Roadway Model I-16 Junction Exiting Link 152 

Figure 61.  Hydrograph Characteristics and Time Relationships 162 

Figure 62.  Sequencing of Independent Variable Changes 164 

Figure 63.  Partial Travel Time Segments for Background Traffic 172 

Figure 64.  GCT Gate Submodel Average Port Queue Lengths 182 

Figure 65.  GCT Gate Submodel Average Road Queue Lengths 184 

Figure 66.  Distribution Center 1 Submodel Average Port Queue Lengths 185 

Figure 67.  Distribution Center 1 Submodel Average Road Queue Lengths 186 



 

xiv 

Figure 68.  Highway 21 Background Traffic Travel Times – Partial Segment 187 

Figure 69.  Dean Forest Rd. Background Traffic Travel Times 189 

Figure 70.  Road Truck Location Count – System Total 190 

Figure 71.  Road Truck Location Count – On Roadway Total 191 

Figure 72.  Road Truck Utilization – With Container Total 192 

Figure 73.  Port Truck Location Count – On Roadway Total 193 

Figure 74.  Port Truck Utilization – With Container Total 194 

Figure 75.  GCT Gate Port Vehicle Average Queue Length (K=15), Day 1 197 

Figure 76.  Distribution Center 1 Port Vehicle and Container Average Queue Length 

(K=15), Day 1 198 

Figure 77.  Highway 21 Background Traffic Average Travel Times (K=7), Day 1 200 

Figure 78.  Highway 21 Background Traffic Average Travel Times (K=7), Day 2 201 

Figure 79.  Highway 21 Background Traffic Average Travel Times (K=7), Day 3 202 

Figure 80.  Highway 21 Background Traffic Average Travel Times (K=7), Day 5 203 

Figure 81.  Dean Forest Rd. Background Traffic Average Travel Times (K=7),    Day 1

 204 

Figure 82.  Dean Forest Rd. Background Traffic Average Travel Times (K=7),    Day 3

 205 

Figure 83.  Dean Forest Rd. Background Traffic Average Travel Times (K=7),    Day 4

 206 

Figure 84.  Dean Forest Rd. Background Traffic Average Travel Times (K=7),    Day 5

 207 

Figure 85.  Average Road Truck Location and Utilization (K=15), Day 1 209 



 

xv 

Figure 86.  Average Port Truck Location and Utilization (K=15), Day 1 211 

Figure 87.  Average Port Truck Location and Utilization (K=15), Day 2 212 



 

xvi 

SUMMARY 

 

This research develops a computer simulation method for federating an Arena© 

port operations model and a VISSIM© roadway network operations model.  The 

development of this method is inspired by the High Level Architecture (HLA) standard 

for federating simulations, and incorporates several elements of the HLA principles into 

its design.  The federated simulation model is then tested using a time-lag experiment to 

demonstrate the presence of feedback loops between federated model components 

wherein changes to input parameters of one model during runtime can be shown to affect 

the operational performance of the other model.  This experiment also demonstrates how 

several initial transient phase and steady state operating characteristics of the federated 

system can be determined from the federation output data. 

The results indicate that the method developed in this study is capable of 

capturing the dynamic interaction of two models in federated simulation.  It is shown that 

feedback loops can exist between two models in federated simulation.  Most notably, the 

federation output shows that increased traffic volume in the roadway network model 

influences the accumulation of containers in the port terminal queue of the port model.  

The federation output also shows that increased container volume leaving the port 

terminal model affects both port and road truck utilization, as well as the total number of 

port trucks in the roadway network model.  

Challenges and future directions for research in federating transportation-related 

simulations are also presented. 
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CHAPTER 1 

INTRODUCTION 

 

Advances in computer simulation methods over the past decades have allowed 

engineers to construct meaningful models of increasingly complex systems.  These 

simulation modeling techniques enable engineers to better understand and analyze real-

world systems in a risk-free environment, to test assumptions and to preview possible 

outcomes [1].  In doing so, simulation modeling provides an analytically based decision 

tool to better inform engineers and planners prior to implementing designs in the real-

world environment.  Transportation engineering, where infrastructure systems and 

components can be costly to design and implement, has especially benefitted since the 

advent of computer-based simulation.  The simulation of traffic movement enables 

engineers and planners to model potentially multi-million dollar systems and arrive at 

meaningful conclusions prior to any real-world design implementation.  Similarly, 

computer simulation has enabled the modeling of complex logistics systems such as 

railway networks, air traffic operations, and freight facilities.  This, in turn, allows system 

managers to analyze system performance and identify areas where operational efficiency 

can be enhanced. 

As modeling techniques have become increasingly capable, so too has the level of 

system complexity they are able to model.  However, the focus of work in computer 

simulation – particularly in engineering applications – has primarily centered on 

individual models or individual modeling software packages.  This effectively limits the 

breadth and complexity of simulation modeling endeavors, especially for transportation 
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systems.  Furthermore, it inhibits the ability to explore the interaction between 

transportation systems in a modeling environment.  

The objective of this study is to develop and test a technique to effectively 

combine, or federate, a seaport operation logistics model and a traffic network simulation 

model, each constructed using different simulation software packages.  For now, a 

federated simulation can be broadly defined as “a composable set of interacting 

simulations.” [2]  The model federation is then tested to determine if a feedback loop can 

be established between the two models and to determine time-based characteristics of that 

interaction.   

 

1.1  Problem and Motivation 

The projected expansion of the Port of Savannah over the coming decades will 

increase the container traffic moving through the port, as well as on the surrounding 

roadway network.  The current throughput capacity of the Garden City Terminal, at the 

Port of Savannah, is 2.62 million twenty-foot equivalent units (TEUs) per year.  Standard 

shipping containers are typically 40 feet in length, or two TEUs.  By 2018, the Georgia 

Port Authority projects that that terminal’s throughput capacity will grow to 6 million 

TEUs per year [3]. 

The Port of Savannah employs trucks to transport containers both within the port, 

and between the port and nearby intermodal facilities (i.e., distribution centers and rail 

facilities).  Container transportation by truck within the port exclusively utilizes the port’s 

private roads and facilities.  However, truck transport of containers to nearby intermodal 
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facilities utilizes the public roadway network surrounding the port, and is therefore mixed 

with public traffic.   

A 100% increase in the Port of Savannah container traffic within the next decade 

will necessitate an increase in the number of trucks required to carry the additional 

containers to and from nearby intermodal facilities.  Therefore, the question arises, how 

will this related increase in truck traffic generated by the port impact the surrounding 

roadway network?  Similarly, it is unknown how the performance of the surrounding 

roadway network will impact the operational efficiency of the Port of Savannah, given 

the context of this growth in freight volume. 

 

1.2  Modeling Approach Overview 

The operations of a port and surrounding roadways are typically modeled in 

disparate simulation software packages that provide no dynamic feedback between the 

two models.  The modeling challenge is to effectively combine these two models into a 

larger federated simulation that encompasses both systems.  Puglisi (2008) proposed an 

initial effort to federate a port simulation and traffic simulation [4].  This study will 

therefore build upon Puglisi’s work to develop a fully federated, large scale platform for 

modeling both roadway transportation and port operations systems.   

 The following will introduce and briefly discuss these two computer modeling 

software packages.  A more complete discussion of the specific models used in this study 

is presented in Chapter 3 – Methodology. 
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1.2.1  Port of Savannah and Arena© 

To simulate the operations of the Port of Savannah, a model was created using 

Rockwell Automation Arena© 12.0.  Arena© is a discrete event-based, object-oriented 

simulation software package that implements the SIMAN language, a general purpose 

simulation language [5, 6].  An object-oriented simulation is one in which one “considers 

the software in terms of objects and how those objects interact with each other.” [6]  

When considering the port’s operations, one can reasonably treat containers and trucks as 

objects that interact with one another through various processes in a series of sequential 

events.  These events, detailing not only with an object’s movements through the system, 

but also with the underlying operation of the system itself, are carried out in sequential 

order according to an event calendar.  The event calendar is essentially a very detailed 

timeline that specifies the sequence of events that need to occur as the simulation steps 

forward through time.  As the events for the current time step are completed, future 

events are scheduled on the event calendar for future time steps, and the simulation clock 

is advanced [7].  By this method, the simulation clock advances “to the next scheduled 

event, regardless of the amount of time between events.” [6]  This is an important 

distinction from the commonly utilized traffic simulation models in that that Arena© does 

not employ a continuous simulation clock, but advances through time from one event to 

the next.  Therefore, whereas one time step in Arena© may be a tenth of a second, other 

time steps may be several seconds in length; this simply depends on the time-spacing of 

events on the event calendar.   

The major components of this Arena© port model, capturing seaport terminal, 

storage, inspections and railroad operations were developed by Lakshmi Peesapati and 
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Franklin Gbologah as part of a companion Georgia Tech Research Institute research 

effort [8].  Other components of the port model capturing roadway, trucking and 

intermodal facility operations were constructed specifically for this federated modeling 

effort.  These components will be identified and discussed in greater detail in later 

sections of this document. 

 

1.2.2  Roadway Network and VISSIM© 

A model of the roadway network surrounding the Port of Savannah was created 

using PTV-VISSIM© 5.10.  VISSIM© is a microscopic, behavior based traffic 

simulation model [9].  It differs from Arena© in that it employs a continuous simulation 

clock that institutes a consistent, continuous time-step advancement through simulation 

time [4, 9].   

Networks in VISSIM© are constructed by means of links (representing sections 

of roadway) and connectors (connecting vehicle movements between links, typically at 

intersections).    

 

1.3  Study Overview 

The remainder of this study is broken into the following sections.  First, a 

discussion of general computer simulation, transportation-specific simulation and 

federated simulation approaches will be presented to give context to this study and 

provide a base of knowledge for the methodological approach.  Second, each of the study 

methodology and federated model elements will be presented in detail.  Third, after 

acquainting the reader with the finished model, the design of experiment will be 
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presented.  This experiment will test the presence of feedback loops between each model 

and determine time-related characteristics of how the federation readjusts to steady-state 

operation following changes in operational parameters of each federate during runtime.  

Fourth, the results of the experiment will be presented.  Fifth, a discussion of these results 

will be presented, accompanied by a discussion of potential sources of error in the 

experiment.  Lastly, conclusions from this study and future research needs will be 

presented.  
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CHAPTER 2 

LITERATURE REVIEW & BACKGROUND 

 

To provide context for this study, this section will introduce simulation, as well as the 

motivation and methods for federating simulations.  This will include a discussion of the 

evolution of simulation, distributed simulations and parallel simulations, and the high-

level architecture (HLA).  It will then discuss simulations in a transportation-specific 

context and the state of current research in that area. 

 

2.1  Computer Simulation 

Chung (2004) describes simulation modeling and analysis, in its most basic form, 

as “the process of creating and experimenting with a computerized mathematical model 

of a physical system.” [10]  These physical systems typically fall within one of three 

categories: manufacturing systems (e.g., warehousing, machining, assembly, materials 

handling and production facilities), service systems (e.g., medical, retail, food service, 

information technology, and customer service facilities), and transportation systems (e.g., 

traffic operations, airport operations, port operations, rail and transit, and distribution 

logistics) [10].   

Ni (2006) suggests that there are four primary reasons for “generating an 

electronic version of the real world.” [1]  Namely, it provides: (1) a tool for learning and 

understanding the physical world and its phenomena, (2) a basis on which it is risk-free to 

experiment and test assumptions, (3) a means to predict by allowing preview of possible 
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outcomes, and (4) a decision tool to show the effects by means of visualization [1].  

These four motivating factors are similar to those identified in [5, 7, 10, 11]. 

In the evolution of computer simulation since its advent in the 1960s, Pegden 

(2005) describes the shift from time-driven modeling to event-driven, and now process-

driven modeling [12].  One consequence of this is that the prevalence of event and 

process driven modeling approaches has motivated a more object-oriented approach to 

modeling – that is, the interaction among physical objects with other objects and 

processes in a system.   

Another distinction – one of special importance to this study – is the treatment of 

time in the simulated model world, namely event-based versus continuous or time-

stepped simulations.  Simulation time refers to the representation of time within the 

model, or the simulated world.  Within the simulation model, simulation time is 

controlled and measured by the simulation clock [5].  Conversely, real time refers to the 

actual, real-world time outside of the simulation.  Because of the speed of computer 

processors and current simulation modeling software, simulation time can occur at 

several times the speed of real time.  In some cases, the execution of several simulation 

hours of a complex system model can be completed in mere minutes, or even seconds, of 

real time [13]. 

As mentioned above, Arena© is an event-driven simulation software package.  

This means that events on an event calendar are executed for the current time step, future 

events are scheduled on the event calendar, and the simulation clock advances the current 

simulation time to the next event on the calendar.  Because simulation time is broken into 

intervals according to the time-spacing of events on the event calendar, the advancement 
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of simulation time, via the simulation clock, may not be continuous.  For example, if one 

event occurs at time t = 10 seconds and the next event on the event calendar occurs at 

time t = 15 seconds, the simulation clock effectively “skips” from t = 10 seconds to t = 15 

seconds.  As there are no events occurring in the intervening five seconds of simulation 

time, there is no need – in the context event-driven simulation – to step through each of 

the five intermediate seconds of simulation time during which no events occur.   

In the realm of traffic simulation, the underlying nature of event-based simulation 

is a significant limitation in modeling vehicle queuing habits and the continuous nature of 

traffic flow [6].  For this reason, VISSIM© and other commercially available traffic 

simulators utilize a time-stepped approach to simulate the continuous nature of time 

necessary for traffic simulation.  Time-stepped simulation subdivides the time between 

the beginning and end of a simulation into equally sized time step intervals.  As the 

model advances continuously from one equal interval to the next, the entire state of the 

simulation is recomputed [14].  The resolution of a continuous time-stepped model is 

defined by the length of each equal time-step.  In traffic simulation, these time-step 

intervals are commonly on the order of seconds or tenths of seconds.   

 

2.2  Transportation-Specific Simulation 

Transportation and traffic flow simulation modeling are typically broken into 

three categories according to the levels of model detail: macroscopic, mesoscopic and 

microscopic [1, 13].  The spectrum from macroscopic to microscopic modeling largely 

reflects the evolution of computer technology and its ability to process large amounts of 

data. 
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Macroscopic models are time-driven simulation processes that treat traffic as a 

compressible fluid.  Through the law of mass conservation, that which enters a system 

should be equal to that which exists, plus any storage within the system [1].  So, by 

inputting traffic density, speed and volume characteristics, system characteristics and 

traffic phenomena can be calculated during each time interval using fundamental traffic 

flow theory and differential calculus [13].   

Mesoscopic traffic models treat traffic as “discrete particles without mass and 

personality,” rather than as a continuous fluid [1].  While this does give some greater 

level of detail (and requires greater computing power than macroscopic simulation), 

mesoscopic traffic simulation operates using some pre-defined set of local rules to govern 

traffic flow.  One such example would be maximum-speed constraints on traffic flow [1].   

Microscopic traffic simulation diverges from macroscopic and mesoscopic traffic 

simulation in that it incorporates behavior-based vehicle following algorithms to model 

the movements of individual vehicles.   Behavior-based vehicle following simulation 

implies that the behavior of each individual vehicle is based on its interaction with the 

vehicle immediately ahead [13], the lane configuration, traffic composition and traffic 

signals [9].  Because of the large volume of calculations entailed for each successive time 

step of continuous microscopic simulation, this method reflects the most recent evolution 

of traffic simulation and the need for greater computing power than for macroscopic and 

mesoscopic simulation.  VISSIM© 5.10 is a microscopic traffic simulation modeling 

program.    

 

 



 

11 

2.3  Methods for Federating Simulators 

This sub-section will introduce the concept of federated simulation and discuss 

motivations and methods for federating distributed and parallel simulations.  Although 

this study does not utilize distributed or parallel computing techniques, methods of 

federating such simulations provide an excellent framework for federating multiple, 

disparate simulation models on a single-processor computing platform.  The primary 

federation method discussed is high-level architecture (HLA). This sub-section will also 

discuss transportation-specific motivations for implementing federated simulations and 

the current state of research in this area. 

 

2.3.1  Distributed and Parallel Simulation 

One of the primary limitations of computer simulation is the time required to 

execute a simulation.  While advances in computing and information processing 

technologies have significantly reduced simulation execution times, there has been a push 

to investigate other techniques to reduce simulation time.  Central to this effort has been 

the development of parallel simulation and distributed simulation.  These methods have 

significantly evolved since their initial investigation by Chandy and Misra (1979) in their 

seminal case study of distributed simulation [15, 16]. 

Fujimoto (2000) distinguishes parallel and distributed simulation as “technologies 

that enable a simulation program to execute on a computing system containing multiple 

processors, such as personal computers, interconnected by a communication network.” 

[11]  Parallel simulation refers generally to simulation conduced on a computing platform 

with multiple processors in close physical proximity.  These processors are connected by 
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a central, customized switch and can have either shared or distributed system memory.  

Distributed simulation refers to simulation conducted on a computing platform with 

multiple processors distributed among multiple workstations, each with its own memory.  

These workstations can be located within close physical proximity to one another or great 

physical distance, and are connected by local area networks (LANs) or wide area 

networks (WANs) [11]. 

In addition to the significant reductions in simulation execution time by 

subdividing simulation computation across multiple processors, Fujimoto (2000) 

identifies three additional benefits of parallel and distributed simulation [11]: (1) 

geographical distribution (i.e., physical space constraints may be overcome as computers 

may be distributed across multiple, different locations), (2) integrating simulators that 

execute on machines from different manufacturers, and (3) fault tolerance (i.e., should 

one processor in the system fail, its workload can be shifted to the remaining processors). 

 

2.3.2  Motivation for Federated Simulation 

Thus far, the discussion of parallel and distributed simulations has been with the 

implication that multiple simulations, utilizing either similar or disparate software, can be 

conducted across multiple processors for the purposes of increasing simulation speed.  

However, there is another important motivation for such simulations.  Kewly et al (2008) 

notes that “large single models that enable analysis of systems of systems are not 

effective because no single modeling effort can account for all of the [system’s] 

complexities.” [17]  The suggestion is that “subsystem [simulation] models that 
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effectively analyze different domains” be constructed and then combined in a federated 

simulation to analyze the larger system of federated simulations [17].   

However, different from the parallel and distributed computing methods outlined 

above, this type of federation could combine disparate simulation modeling software 

packages on either multiple or single processor computing platforms.  This insight is 

particularly relevant as this study will federate two disparate simulators on a single 

processor computing platform.  

 

2.3.3  Federated Simulation Implementation 

Synchronization and simulation time management, data management and efficient 

information exchange, and architecture independence [18] are central to the methods of 

parallel and distributed simulation.  The management of these functions can be conducted 

through the federation of simulations. 

Multiple methods have emerged to standardize federated simulations.  These 

methods include parallel discrete event simulation (PDES), Distributed Interactive 

Simulation (DIS), Aggregate Level Simulation Protocol (ALSP) and the High Level 

Architecture (HLA) [19],  to name a few. 

Most notably, High Level Architecture (HLA) was developed by the US 

Department of Defense (DoD) Modeling and Simulation Coordination Office (formerly 

the Defense Modeling Simulation Office)  [20] to establish a common and broadly 

applicable technical architecture for simulation federation by merging DIS and ALSP 

into a single architecture [11].  Dahman (1997) notes that the motivation for developing 

the HLA is “based on the premise that no one simulation can solve all the…functional 
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needs for modeling and simulation.” [2]  To that end, the primary goal of the HLA is to 

provide a common architecture standard to “facilitate the interoperability among 

simulations and promote reuse of simulations and their components.” [21]   

Specific to the HLA, Dahman and Lutz (1998) define a federation as “a named set 

of simulations interacting via the services of the HLA Runtime Infrastructure (RTI) and 

in accordance with a common object model and a common HLA rule set to achieve some 

desired purpose.” [21]  Put more plainly, individual simulations, called federates [22], are 

aggregated together to form a larger, more cohesive system simulation called a 

federation.  Under the HLA, these federates interface according to the structural basis of 

(1) the HLA Rules, (2) the HLA Infrastructure Specification, (3) the Object Model 

Template (OMT) [2, 21-23].   

Broadly, the HLA rules define the underlying design principles used in the HLA 

[11].  Chief among those design principles are ensuring proper communication and 

synchronization during runtime [22]. 

The HLA Interface Specification defines how the federates should communicate 

amongst themselves, as well as interface with the runtime infrastructure (RTI).  Tan 

(2005) describes the RTI as “a supporting software which provides services that the 

federates use to coordinate their operations and data exchange during a federation 

execution.” [22]  Dahmann (1997) defines six classes of services [2]: (1) federation 

management, to support basic functions of the federation, (2) declaration management, to 

define the data provided by federates during execution, (3) object management, to 

manage creation, deletion and identification services at the object level (4) ownership 

management, to manage the dynamic ownership of objects and attributes during 
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execution, (5) time management, to support synchronization of data exchange during 

runtime simulation, and (6) data distribution management, to facilitate the efficient 

routing of data among federates.   

The Object Model Template (OMT) is intended to provide a standard by which 

shareable elements, or objects, of the simulations should be defined.  The primary goal of 

the OMT is to facilitate reusability and interoperability of simulation models [21].  The 

two types of object models specified in the OMT are the HLA Federation Object Model 

(FOM) and the HLA Simulation Object Model (SOM).  For simplification, the FOM 

describes objects and elements that are common across the federation.  The SOM defines 

objects and elements of individual federates, in terms of the types of information that 

they can provide.  Dahmann (1998) notes that the SOM is distinct from information 

internal to each federate; the SOM instead defines the information available from  

 

 

Figure 1.  Components of an HLA in federation 

(Figure Credit: Parallel and Distributed Simulation Systems [11]) 
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federates for the purpose of assessing a federate’s appropriateness for incorporation into 

future federated simulations [21].  Figure 1 shows the relationship of components in an 

HLA federation. 

As noted, the HLA is applicable to both federations utilizing parallel and 

distributed multi-processor computing methods, and to federations of multiple disparate 

models using a single-processor computer.   

 

2.3.4  Current Research in Transportation Simulation Federation 

In the field of transportation, current research in federating simulations is 

somewhat limited in scope and extremely focused.  The primary objective of most recent 

studies is to increase simulation speed [13, 14, 24, 25] by breaking one single monolithic 

model into several distributed sub-models and distributing these federates across multiple 

processors.  Notably, Klein et al (1998) investigates and tests an HLA-based prototype 

distributed simulation of an urban traffic model [26].  Other applications have been to 

increase simulation speed by employing distributed traffic simulation techniques for real-

time traffic analysis [13].  Federating disparate simulation software packages has not 

been a focus in current transportation simulation research. 

 

2.3.5  Relevance of this Study Given Current Research 

As noted, most recent research in federating traffic simulators has been to break 

one monolithic simulation model into several distributed sub-models.  Nonetheless, the 

statement by Kewly et al (2008) that large single models cannot account for all of the 

complexities when modeling a system of systems is extremely relevant given the context 
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of multimodal transportation [17].  Accurately modeling the Port of Savannah operations 

and those of the surrounding roadway network introduces such complexity and 

specialization that it is beyond the capabilities of a single, monolithic simulation model.  

Port operations are most effectively modeled using a discrete, event-based logistics 

simulator.  As noted, such a simulator is ineffective at modeling the nature of traffic flow, 

and so a continuous, time-step traffic microscopic simulator is a more appropriate 

application for the roadway system surrounding the port.   

The challenge is then to integrate these two disparate system models into a larger, 

federated system model; and to ensure that the larger model captures not only the 

interaction of the two smaller system sub-models, but also the operation of the larger 

system as a whole.  The HLA structure provides an excellent backdrop to federate 

multiple sub-models for this effort.   

Because of the nascent nature of research in federating disparate transportation 

simulators, it would be overly ambitious for initial investigations to employ parallel or 

distributed multi-processor simulation.  As such, this study employs a method utilizing a 

single-processor workstation computer as the computing platform.  Also, this study is not 

intended to be fully HLA compliant.  Still, the principal concepts of the HLA are 

employed, such as standardization of object data types and the use of an RTI to govern 

synchronization, time management and data management.   

The future of the HLA in transportation simulation holds much promise for the 

reuse and interoperability of simulation models.  It is the intention that this study will 

provide the basis for future work in federating disparate transportation models with 

greater or full HLA compliance.    
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2.3.6  Previous Efforts in Federating Port and Transportation Models 

Initial efforts to create a federated port and transportation simulation were 

undertaken by Puglisi (2008) using the Port of Savannah terminal model developed by 

Peesapati and Gbologah [4].  In his study, Puglisi used Microsoft Excel© spreadsheet 

software as a federation database.  He then built the federation RTI utilizing the Visual 

Basic for Applications© capabilities built in to the Microsoft Excel© federation database.  

Puglisi then tested and validated his federation using a simplified roadway network 

model federate before incorporating the more expansive roadway network model 

surrounding the Port of Savannah. 

The federation effort of this study builds on three cornerstone elements of the 

Puglisi study: (1) the method of time management, (2) the database-oriented method of 

data and object management, and (3) the custom-built Arena© Vehicle Input and 

Container Input entity creation blocks (these will be discussed in Chapter 3).   

To manage time, Puglisi effectively allowed the VISSIM© model federate and 

Arena© model federate to sequentially step forward through simulation time.  The RTI 

first allowed the VISSIM© model to advance by one uniform time step (1 second) before 

pausing the VISSIM© simulation clock.  The RTI then allowed the Arena© model 

federate to advance through as many simulation events as was necessary for its 

simulation clock to catch up to, or match, the time of the VISSIM© simulation clock, 

before pausing.  The process was then repeated for the next time-step by advancing the 

VISSIM© model federate, and so on.  As will be discussed later, this study utilizes the 

same time management methodology. 
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Object and data management in the Puglisi study was done using multiple 

worksheets in a Microsoft Excel© spreadsheet.  When transactions of containers and 

vehicles occurred between federates, the details of those transactions were logged in the 

spreadsheet.  This study utilizes the same methodology of tracking and recording object 

and federation data only when transactions between federates occur.   

The final major contribution of the Puglisi study was the construction of custom 

vehicle and container input blocks in the Arena© model.  Arena© has no standard 

module that allows for the real-time creation of an entity (e.g., a vehicle or container) 

during simulation execution.  To circumvent this deficiency, Puglisi utilized the Template 

Development capability of Arena© and custom-built an ad hoc logical process that allows 

entities to be created in real-time during simulation by the RTI.  These blocks were 

slightly modified and then widely used in this study.  The exact construction of these 

blocks will be discussed in Section 3.3.1.1.4.   
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CHAPTER 3 

METHODOLOGY 

 

This section will describe the methodology behind the federated simulation used 

in this study.  The first subsection will present a conceptual overview of the system being 

modeled.  It will describe the physical system and then describe the federation – the roles 

of each component and the ways in which they interact.  The subsections that follow will 

provide a deeper description or each individual model component.  These will include the 

Port of Savannah model, constructed in Arena©; the roadway network, constructed in 

VISSIM©; the RTI, constructed using Microsoft Visual Studio©; and the database 

system constructed using Microsoft Access©. 

 

3.1  Port System Operational Overview 

The physical system being modeled is the Port of Savannah, located in Savannah, 

GA, and the surrounding state and local roadway network.  Operations of the port system 

are distributed across several geographically spaced components, including the Garden 

City Terminal (GCT), three major distribution centers, and the Interstate 16 (I-16) 

junction.  Each of these port system components are interconnected by the state highway 

and surface roadway network.  Figure 2 shows an aerial photograph depicting the 

geographical layout and orientation of the port facilities that are incorporated into this 

study’s model.  Note that in the case of the three distribution centers and the I-16 

junction, many components of the Port of Savannah system are separated from one 

another by several miles.   
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Figure 2.  Port of Savannah Geographical Orientation 

(Figure Credit: Background image from Google Earth [27]) 

 

3.1.1  Port Container Origins and Destinations 

The primary focus of the port model is to reasonably reflect the flow of containers 

into and out of the Port of Savannah by truck.  There are five container 

origins/destinations in the port model: (1) distribution center 1, (2) distribution center 2, 

(3) distribution center 3, (4) the GCT, and (5) the I-16 Junction.   

Containers are generated at two of these origin locations: (1) the GCT, where they 

are offloaded from container ships, or (2) Interstate 16 (I-16), where long-distance 

trucking carriers enter the model from the interstate highway system.  Similarly, 
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containers are deleted from the model at these two locations: (1) the GCT where they are 

loaded onto ships, and (2) the I-16 Junction where they leave the local roadway network 

to enter the interstate highway system. 

 Distribution Centers 1, 2, and 3 serve as intermediate destinations for containers.  

Containers are neither created nor deleted at the distribution centers.  Instead, they are 

offloaded from trucks, processed for some interval of time, and reloaded on to outgoing 

trucks in route to their next destinations. 

When containers are generated at the GCT, they can have one of four 

destinations: one of the three distribution centers or the I-16 junction.  Similarly, when 

containers are generated at the I-16 Junction from long-distance trucking, they can have 

one of four destinations: one of the three distribution centers or the GCT. 

 

3.1.2  Port and Roadway Trucks 

As noted, the transport of containers among Port of Savannah facilities is done by 

truck.  There are two truck categories: (1) port trucks and (2) privately owned, long-

distance roadway trucks (or simply, “roadway trucks”).  Port trucks exclusively move 

containers among the four port facilities (i.e., the GCT and Distribution Centers 1, 2, and 

3).  Port trucks are initially generated at the GCT during simulation initialization.  The 

quantity of port trucks generated is specified by the user.  As these port trucks only carry 

containers among the four port destinations, they remain in circulation and are never 

removed from the federated system during simulation. 

Private long-distance roadway trucks exclusively transport containers between 

one of the four port facilities and the I-16 junction, where trucks and containers exit the 
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simulation.  An initial, user-specified quantity of long-distance roadway trucks is also 

generated at the GCT during simulation initialization.  Throughout simulation execution, 

empty roadway trucks and roadway trucks carrying containers are also randomly 

generated at the I-16 Junction to simulate arrival from the interstate highway system.  

During simulation execution, roadway trucks are removed from the simulation at the I-16 

junction where they enter the interstate highway system.  

 

3.1.3  Port Roadway Network 

The major roadways included in this study are GA Highway 21, South Coastal 

Highway, Dean Forest Rd./Bourne Ave. and Jimmy de Loach Parkway.  Figure 3 shows 

these roads in relation to the port, distribution centers, and the I-16 junction.  All traffic 

 

 

Figure 3.  Port of Savannah Roadway Network 
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flow between the three distribution centers and the port is routed along Bourne Ave, GA 

Hwy 21 and Jimmy de Loach Pkwy.  All traffic flow between the port and the long 

distance trucking/I-16 junction is routed along Bourne Ave. and Dean Forest Rd.  All 

roads contain non-port related “background” traffic.   

 

3.2  Federation Model Components Overview 

As stated, the focus of this federation is the movement of container objects to, 

from, and within each of the four port locations and the I-16 junction.  The utilization of 

trucks to facilitate this movement is of particular interest.   

As has been stated in Section 2.1, the Arena© software package is best suited to 

model the movement and interaction of simulated objects in industrial systems and 

processes.  Because of its object-oriented approach, Arena© can very reasonably simulate 

the system operations of the Port of Savannah.  Therefore, Arena© is used to simulate the 

operations of the five major port system components: Distribution Centers 1, 2, and 3, the 

GCT, and the I-16 Junction   

However, for reasons described in Section 2.1, the object-oriented, event-based 

nature of Arena© cannot reasonably approximate the complex movements and 

interactions of vehicles in a roadway environment.  For this reason, VISSIM© – a 

continuous time-step, behavior based vehicle following simulator – is used to simulate 

the operations of the local highway and surface roadway network surrounding the Port of 

Savannah.   

The Arena© model of the Port of Savannah system components used in this study 

is actually an aggregation of several smaller models, called submodels, each of which 
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simulates one of the five port system components (distribution centers, GCT and I-16 

junction).  This aggregation of submodels, which comprises the entire port system, is 

referred to as the “port model.”  Individually, each of these port system components 

within the aggregate port model is referred to as a submodel, identified specifically by the 

name of the component which they simulate (e.g., “Distribution Center 1 submodel”). 

The next four subsections will provide an overview of the simulated operation of 

the port and roadway network systems.  Subsection 3.2.1 introduces relevant terminology 

used throughout this study and document.  Subsection 3.2.2 provides an operational 

overview of each port submodel.  Subsection 3.2.3 provides a brief operational overview 

of the roadway network model.  Subsection 3.2.4 provides a brief overview of the RTI 

developed for this federation.  Subsection 3.2.5 provides a brief overview of the database 

system developed for this federation.  Lastly, Subsection 3.2.6 brings these four 

federation elements together to give an overview of their interactions, providing 

illustrative examples of the simulated movement of trucks and containers through the 

federation. 

 

3.2.1  Study Terminology 

To maintain clarity and consistency throughout this document, specific 

terminology is used, and therefore must be defined.  This section briefly introduces terms 

and text formatting elements relevant to this study and document. 
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Simulation – This refers to the general method of “using computer models to imitate, or 

simulate, the operations of…real world facilities or processes.” [5]  In the context of this 

study, Arena© and VISSIM© are simulation software packages. 

 

Model or Computer Model – This refers to the specific instances of the simulation 

software, or models, built to imitate the real world system or process.  In this study, the 

roadway network model built in VISSIM© is an example of a computer model, as is the 

port model built in Arena©. 

 

Federation – This refers to the integration, or combination, of several specific models in 

a system simulation using an RTI.  This encompasses both the models themselves, as 

well as any other software or programs required to combine the models.  In this study, the 

federation is comprised of the port model, the roadway network model, the RTI and the 

federation database.  

 

Federate – This term is used interchangeably with the term “model,” as a federate simply 

refers to a model in the context of a federation.  In this study, the term federate is 

generally paired with the model name (e.g., port model federate) and is used only when a 

model is being discussed in the context of the federation. 

 

Container – When used alone, the term “container” refers to a physical, real-world 

freight container whose movement throughout the Port of Savannah system is being 

simulated.   
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Truck – When used alone, the term “truck” refers to a physical, real-world freight truck 

whose movement and carriage of containers throughout the Port of Savannah system is 

being simulated.   

 

Object – An object is a generalized term that refers to the simulated instance of a real-

world item with associated data, attributes and methods.  In this study, the term “object” 

is used only in conjunction with the terms “container” or “truck” (e.g., container object, 

or truck object) to identify a simulated container or truck within the federation.  Because 

the term “object” is generalized to the context of the federation – that is, it refers to 

simulated truck and containers located anywhere within the federation – truck objects, for 

example, can be instantiated in both the port model federate and the roadway network 

model federate. 

 

Entity – An entity refers to the specific instance of an object located in the Arena© 

model.  Like the term “object,” the term “entity” is generally used in conjunction with 

either “truck” or “container” to denote what it represents (e.g., truck entity, container 

entity). 

 

Vehicle – In the Arena© model, the term vehicle is used somewhat interchangeably with 

the term truck.  This is because at this point in the development of the port model, the 

only vehicles interacting with containers are trucks.  In future versions, vehicles may be a 

generalized term that can refer to trucks, forklifts, trains, etc.  In the VISSIM© model, the 
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term vehicle refers to both trucks (not including port or roadway trucks described 

previously) and cars from the general public circulating throughout the network. 

 

Block – This term generally refers to a logical construct, or logic, in Arena© that 

interacts with entities.  For example, a Queue block is a logical construct that holds 

entities in a queue.  Similarly, a Delay block is a logical construct, or block, that delays 

an entity’s passage through that block for some user-defined time interval.   

 

Process – For the purposes of this study and only in the context of Arena©, the term 

“process” will be used to refer to a collection or series of several logic blocks with which 

entities interact.   

 

Submodel – A submodel refers to a collection of processes in Arena© that imitate the 

functionality of a real-world system.  For example, in this study, the port model is 

composed of several submodels.  Each distribution center is a submodel.  The I-16 

Junction is a submodel.  The GCT is several submodels that have been aggregated to 

simulate the operation of the GCT (e.g., a dockside operations submodel, a customs 

processing submodel, etc.).  Only one of these aggregated GCT submodels– the GCT 

Gate submodel – interacts with the federation.  Accordingly, only the structure of the 

GCT Gate submodel is discussed. 

 

Arena© Global Variable – A global variable is a readable/writeable numerical variable 

within Arena© that is accessible to all submodels in an Arena© model.  Global variables 
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are not specific to any single entity, block or process, however each variable is unique 

from other variables.  In this study, unique sets of global variables have been created and 

set aside for use by specific processes and submodels.  This avoids the erroneous 

duplicate use or re-writing of global variables by more than one process or submodel.   

 

Attribute – In Arena©, an attribute is “a common characteristic of all entities, but with a 

specific value that can differ from one entity to another.” [5].  For example, all truck 

entities are assigned an attributed called ‘Vehicle_ID,’ however the value of this attribute 

is unique to each entity.   Also, although attributes are assigned to truck and container 

objects when each entity is created in Arena©, the unique attribute values assigned to that 

entity follow that truck and container object as it moves throughout the federation and 

between federates.   

 

As stated, specific syntax has also been incorporated.  All Arena© block types are 

written in bold print (e.g., Queue block).  Names of Arena© blocks are written in single 

quotations.  For example, if a Queue block represents the instance of the 

“Port_RoadVeh_Queue,” it is written as: Queue block ‘Port_RoadVeh_Queue.’    

Similarly, entity attribute names are written in single quotations (e.g., ‘Vehicle_ID,’ 

‘Vehicle_Type’). 

 

3.2.2  Arena© Federate 

In language consistent with the HLA, the Arena© port model is one of the 

federates being combined into the federated simulation.  Figure 4 shows a spatial 
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representation for this relationship in terms of the port system’s geographical layout.  The 

dashed blue line represents the boundary between the port and roadway federates.  

Everything contained within the dashed blue line is part of the Arena© port model 

federate.  Everything outside of the dashed blue line is part of the VISSIM© roadway 

model federate, which is discussed in the Subsection 3.2.3.  There are five transaction 

points between the two federates, one at each distribution center, one at the GCT (port) 

terminal and one at the I-16 junction.   

 

  

Figure 4.  Spatial Relationship between VISSIM© and Arena© Federates 
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3.2.2.1  Arena© Port Model Federate – Truck Object Generation and Deletion 

Port and roadway truck objects are created at one of two locations in the 

federation: the GCT Gate submodel and the I-16 Junction submodel.  Port trucks are 

never removed during simulation execution, but instead circulate throughout the 

federation.  Road trucks, however, are removed from the federation at one location: the I-

16 Junction submodel.  This is because the I-16 Junction simulates a truck object’s entry 

into the interstate highway system, which is outside of the realm of this federation.  Truck 

objects are neither created nor deleted at the Distribution Center submodels.   

During the initialization of the port model federate, initial quantities of port and 

roadway truck entities are created at the GCT Gate submodel.  The exact quantities of 

these truck entities are specified by the user prior to simulation execution.  Because port 

truck objects circulate within the federation during simulation execution, this initial 

quantity of port trucks neither grows nor diminishes during simulation execution.  The 

initial quantity of roadway trucks generated at the GCT Gate submodel during model 

initialization serve to transport container objects from the GCT Gate submodel to the I-16 

Junction submodel.   

Because the initial quantity of simulated roadway trucks depart the federation 

during its execution as roadway truck objects are deleted upon arrival at the I-16 Junction 

submodel, it is necessary to replenish the supply of roadway truck objects available for 

transport.  Therefore, roadway truck objects are created (representing the arrival of a 

truck from the freeway system) at the I-16 Junction during simulation execution.  As will 

be discussed later, both empty roadway truck objects and roadway truck objects carrying 

container objects are created at the I-16 Junction.    
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3.2.2.2  Arena© Port Model Federate – Container Object Generation and Deletion 

Container objects are created at one of two locations in the federation: the GCT 

submodel and the I-16 Junction submodel.  Note that container objects are not created at 

the GCT Gate submodel, but are created within the aggregated GCT submodels and then 

assigned to the GCT Gate submodel, which interacts directly with the federation.  

Container objects are neither created nor deleted at the Distribution Center submodels.   

The creation of container objects at the GCT submodel simulates the arrival and 

offloading of containers from oceangoing freight ships.  Within the aggregated GCT 

submodels, the arrival rate of oceangoing ships and the quantity of containers onboard 

those ships are user specified.  For example, ship interarrival time could be set to 2 hours, 

and the quantity of containers objects onboard could be set to 250.  Once the GCT 

submodel generates the oceangoing ship and simulates the offloading of all onboard 

container objects, the container objects are then processed among the aggregated GCT 

submodels before finally arriving at the GCT Gate submodel.   

Container objects are also created at the I-16 Junction submodel to simulate the 

arrival of containers to the port system from the interstate highway system.  A container 

object is only created with an associated truck object to simulate a container arriving on a 

truck.  The creation rate of container objects in the I-16 Junction submodel is a user-

specified parameter that is set prior to simulation execution.   

   

3.2.2.3  Arena© Port Model Federate – Truck and Container Object Attributes 

When truck and container objects are generated, these objects are assigned several 

attribute values.  As stated in Section 3.2.1, attributes can be a common class of 
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characteristics shared among all objects or entities, but hold unique values when assigned 

to specific objects or entities.   Table 1 shows the seven attribute class names and the 

object types to which those attribute names can be assigned.   

 

Table 1.  Attribute Names and Object Assignments 

Attribute Name Object Assignment 
Vehicle ID Truck 

Vehicle Type Truck 
Reroute Destination Truck 

Container ID  Container  
Destination ID Container 

Destination ID2 Container  
Origin ID Container 

 
 

Immediately upon creation in either the GCT Gate submodel or the I-16 Junction 

submodel, all truck objects are assigned attribute values for the ‘Vehicle ID’ and ‘Vehicle 

Type’ attributes.  ‘Vehicle ID’ values are unique to each truck object and are never 

repeated during simulation execution.  That is, if a truck object is deleted during 

simulation, its ‘Vehicle ID’ attribute value is not assigned to subsequent truck objects.  

‘Vehicle Type’ attribute values are also assigned to truck objects immediately upon 

creation.  A ‘Vehicle Type’ attribute value equal to 1 denotes a roadway truck and a 

‘Vehicle Type’ attribute value equal to 2 denotes a port truck. 

The ‘Reroute Destination’ attribute class is used to route or reroute empty truck 

objects from port model locations (e.g., I-16 Junction, distribution centers, etc.) to other 

destinations in the port model.  This attribute only applies to empty trucks as the 

destination of trucks carrying containers is determined by the ‘Destination ID’ or 

‘Destination ID2” attributes of the container.  Use of the ‘Reroute Destination’ attribute 
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class will be discussed further in section 3.3.1.1.3.  Attribute values for the ‘Reroute 

Destination’ attribute class is assigned to truck objects, as needed, upon departure from 

port submodels.  Therefore, the ‘Reroute Destination’ attribute value for a truck object 

may change during the course of simulation as empty truck objects are rerouted to other 

locations in the port model. 

Container objects are similarly assigned attribute values immediately upon 

creation in both the GCT aggregated submodels (when offloading from ships is 

simulated) and the I-16 Junction submodel.  ‘Container ID’ values are unique to each 

container object and are never repeated during simulation execution.  That is, if a 

container object is deleted during simulation, its ‘Container ID’ attribute value is not 

assigned to subsequent container objects. 

The ‘Destination ID’ and ‘Destination ID2’ attribute values are also assigned to 

container objects immediately upon creation in both the GCT submodels and the I-16 

Junction submodel.  The value of a container’s ‘Destination ID’ attribute denotes the first 

destination to which a container object will be routed.  The value of a container’s 

‘Destination ID2’ attribute denotes the second destination to which a container object will 

be routed.  An example of this routing is detailed in Section 3.2.6.  Table 2 shows the 

‘Destination ID’ values and the associated port model destinations/interaction points that  

 

Table 2.  Federation Destination ID Numbers 

 

 

 

Interaction Point Destination ID 
Distribution Center 1 1 
Distribution Center 2 2 
Distribution Center 3 3 

I-16 Junction 6 
GCT 7 
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these values represent. For the purposes of this study, only two destinations (one 

intermediate and one final destination) were assigned to each container; however, the 

model is capable of being expanded to allow for processing containers with more than 

two destinations.   

Container objects are also assigned an attribute value for the ‘Origin ID’ attribute 

class during simulation.  ‘Origin ID’ attribute values correspond to the same values for 

locations associated with the ‘Destination ID’ attribute values shown in Table 2.    Every 

time a container object is passed from an Arena© port submodel to the roadway network 

model federate, it is assigned the ‘Origin ID’ attribute value associated with the port 

submodel that it is leaving.  If a container object has an intermediate destination and a 

final destination, its ‘Origin ID’ attribute value will be reassigned when the container 

object leaves the intermediate destination.  Therefore, a container object may have 

multiple ‘Origin ID’ values associated with it over the course of simulation, but its 

original destination is tracked in the federation database.  It is noted that the federate 

maintains a complete history of the container (and truck) history allowing for detailed 

post-analysis of a complete trip within the federation, to be discussed in detail in Sections 

3.3.2 and 3.3.3. 

It is important to note one characteristic of ‘Destination ID’ and ‘Destination ID2’ 

attributes as they are assigned to container objects.  Although all container objects are 

assigned both attribute values, the final destination value (‘Destination ID2’) is not 

always utilized by the federation for some number of container objects.  This occurs for 

two cases in the federation.   
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The first instance is when the first destination value (‘Destination ID’) assigned to 

container/truck object pairs entering the roadway network model at the GCT Gate 

submodel is equal to 6, the I-16 Junction.  Doing so routes container objects directly to 

the I-16 Junction, without an intermediate destination, where they are deleted from the 

simulation immediately upon arrival.  This deletion simulates their entry into the 

interstate highway system.  Therefore, there is no need for a second (i.e., final) 

destination as the container’s first destination is a terminating location (in this case, the 

interstate). 

The second instance is when the first destination value (‘Destination ID’) 

assigned to container/truck object pairs entering the roadway network model at the I-16 

Junction submodel is equal to 7.  Doing so routes container objects directly to the GCT 

Gate, without an intermediate destination.  Again, there is no need for a second (i.e., 

final) destination as the container’s first destination is a terminating location (in this case, 

the GCT). 

In all other instances, container objects are assigned ‘Destination ID’ attribute 

values equal to 1, 2, or 3 (denoting an intermediate destination at one of the three 

distribution centers) and a ‘Destination ID2’ attribute value equal to either 6 or 7 

(denoting a final destination at either the I-16 Junction or the GCT, respectively). 

 

3.2.2.4  Arena© Port Model Federate – Submodel Object Processing 

While objects are created at the GCT submodel and the I-16 Junction submodel, 

all submodels process both truck and container objects in some way.  This subsection will 
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provide a brief overview of the ways in which truck and container objects are processed 

at each of the five port model submodels.   

While container objects are created by the aggregated GCT submodels, their 

processing, in the context of ground transportation pertaining to this federation, is 

accomplished at the GCT Gate submodel.  At this submodel, outgoing container objects 

(those leaving the port model for the roadway network model) are paired with available 

truck objects for release to the roadway network model where they are transported to a 

distribution center or the freeway, i.e. I-16 Junction.   

Truck and container object pairs entering the GCT gate submodel are first 

separated and then processed.  The container objects are routed within the aggregated 

GCT submodel and assigned to simulated outgoing freight ships.  The truck objects are 

routed within the GCT Gate submodel to a queue to await assignment with a new 

outgoing container object.  Port truck objects will wait in this queue indefinitely, 

regardless of the queue size, until pairing with an outgoing container object occurs.  

Roadway truck objects, however, may be released to the roadway network model without 

containers (destined for the I-16 Junction submodel) if it is found that there is a sufficient 

supply of roadway truck objects in the GCT Gate submodel.  That is, surplus roadway 

trucks are sent to the I-16 Junction submodel where they are deleted from the simulation.  

All of these container/truck object transactions with the roadway network model are 

logged by the RTI and federation database.  This is discussed in greater detail in Sections 

3.3.2 and 3.3.3.   

Little object processing is undertaken by the I-16 Junction submodel.  The 

primary function of the I-16 Junction submodel is simply to create empty truck objects 
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and paired truck and container objects to be released to the roadway network model, 

bound for one of the port destinations.  The I-16 Junction submodel also receives truck 

and paired truck/container objects that are leaving the roadway network model at the I-16 

junction.  All of these container/truck object transactions with the roadway network 

model federate are logged by the RTI and federation database.  As stated, this is 

discussed in greater detail in Sections 3.3.2 and 3.3.3. 

The primary function of the distribution center submodels is to process container 

and truck objects.  As container or truck objects are neither created nor deleted in the 

distribution center submodels, the distribution centers can be viewed as intermediate 

destinations for containers in route to their final destinations.  Upon arrival at a 

distribution center, truck and container object pairs are separated.  The container objects 

are then processed for some user-defined time delay interval.  Container objects are then 

sent to a queue where they await pairing with available outgoing truck objects to be 

transported to their final destinations.  Separate container queues are maintained in 

relation to a containers final destination and the type of truck necessary to carry that 

container.  For example, container objects destined for the I-16 Junction submodel (to be 

carried by a roadway truck) are sent to a separate queue than container objects destined 

for the GCT Gate submodel (to be carried by a port truck). 

Similarly, incoming truck objects are processed for some user-defined time delay 

interval.  Truck objects are then sent to a truck queue to be paired with outgoing 

container objects.  Separate truck queues are maintained for port truck objects and 

roadway truck objects.   
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All distribution center submodels also have the capability to reroute surplus port 

and roadway truck objects.  If the queue of roadway truck objects at a distribution center 

is sufficient, empty roadway truck objects are assigned a ‘Reroute Destination’ attribute 

value corresponding to either the GCT Gate submodel or the I-16 Junction (depending on 

the need for additional roadway vehicles at the GCT) and rereleased to the roadway 

network model.  Similarly, if the queue of port truck objects at a distribution center is 

sufficient, empty port truck objects are assigned a ‘Reroute Destination’ attribute value 

corresponding to the GCT Gate submodel and rereleased to the roadway network model.  

Upon arriving at the GCT Gate submodel, these empty surplus port truck objects enter 

the queue of port truck available for pairing with outgoing container objects.   

 

3.2.3  VISSIM© Federate 

As stated, Arena© is limited in its capability to reasonably simulate the 

movement of vehicles on a roadway network.  That is, given the multitude of variables 

that affect the travel of vehicles in a roadway environment, Arena© cannot reasonably 

simulate the delay experienced by containers that are being transported on a roadway 

network. 

A traditional monolithic Arena© model would maintain the container/truck 

objects within the model and simply route them from one submodel directly to another 

submodel (e.g., directly from the GCT Gate submodel to a distribution center submodel).  

A user-specified time delay value representing transport time would be assigned to the 

container object.  However, this delay assignment in Arena© would not accurately 

capture the dynamic nature of the traffic environment and the delays associated with 
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fluctuations in traffic volume, congestion and traffic signalization.  To overcome this 

limitation of the Arena© modeling environment, the federation instead “passes” the truck 

and container object pairs from submodel in the Arena© port model to the VISSIM© 

model of the roadway network.   

For example, a truck exits the GCT Gate submodel of the Arena© model and 

enters the roadway network at the origin link associated with the GCT.  After completing 

its route through the VISSIM© roadway network to the destination link associated with 

one of the distribution center submodels, the container/truck object pair is then “passed” 

back to the Arena© model.  More specifically, the container/truck combination is 

recreated in the specific distribution center submodel of the Arena© port model.  The 

difference in simulation time between when the container/truck combo leaves the Arena© 

port model at the GCT and when it reenters the Arena© port model at Distribution Center 

2 represents the transport time.   

There are several types of delay that truck objects could experience while 

traveling the simulated roadway network model.  Several intersections incorporate 

simulated traffic control devices.  Therefore, some control delay could be attributed to 

these signals.  Also, the roadway network model is populated with “background” traffic 

vehicles to represent non-port traffic associated with the general public.  The volume of 

background traffic, and therefore the level of network congestion, could influence the 

travel of port and roadway truck objects through the roadway network model.   

When a container/truck object pair is passed from the port model to the roadway 

network model, the object carries with it the two destination-related attribute values: 

‘Destination ID’ and ‘Destination ID2.’  These attribute values are utilized by the 
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roadway network model’s routing decisions to correctly route the container/truck object 

pair to the relevant destination.  Similarly, empty truck objects released to the roadway 

network model for rerouting carry with them a value for the ‘Reroute Destination’ 

attribute.  In this case, the roadway network model’s routing decisions use this attribute 

value to appropriately route the truck object to its destination.  Section 3.3.4 discusses the 

development and structure of the roadway network model in greater detail.   

 

3.2.4  Runtime Infrastructure (RTI) 

The “passing” of container and truck objects between the two federates is 

facilitated by the runtime infrastructure (RTI).  In this application, the three primary 

purposes of the RTI are time management, object management, and data management. 

Time management is concerned with the synchronization of simulation time 

between the two federates.  As Arena© is a discrete, event-based simulator and 

VISSIM© is a continuous, time-step simulator, effective time management is 

fundamentally critical to the success of the federation.  Also, most performance measures 

for port and roadway operations are time-based metrics.  Therefore, time management is 

also important to collect accurate and meaningful measures of system performance. 

Object management in the RTI ensures that simulation objects are correctly 

passed between federates.  For example, when a truck exits the port model federate and 

enters the roadway model federate, the RTI ensures that all object attributes of the truck 

created in the roadway federate correctly match those of the corresponding truck that has 

just exited from the port federate.  The object management role of the RTI also ensures 
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that truck and container objects are neither erroneously duplicated between the two 

federates, nor deleted when passing between federates.   

In this federation, data management primarily refers to the recordkeeping of all 

transactions between the two federates by bringing together elements of both time and 

object management. A time-stamped record is created to log each transaction; that is, 

instance of an object crossing one of the transaction points (shown in Figure 4) between 

federates.  Recordkeeping will be further discussed in subsection 3.2.3.        

The RTI for this study was constructed in the Visual Basic© (VB) programming 

language using Microsoft Visual Studio 2005©.  The primary motivation for using VB in 

this study is that both VISSIM© and Arena© have built-in component object model 

(COM) interfaces that utilize the VB programming language.  These interfaces allow the 

objects, methods and properties of each simulator to be dynamically accessed, assigned 

and run from within other applications (e.g., Visual Studio©) [28]. 

 

3.2.5  Federation Database 

As stated, the role of the RTI is primarily one of time, object and data 

management.  Accordingly, the RTI does not store any of the data or records associated 

with these management tasks.  Instead, the data is recorded to a federation database 

consisting of time-stamped entries for each container and/or truck transaction between 

federates.   

 In this study, the database software used is Microsoft Access©.  This choice was 

motivated by the inherent interoperability between Microsoft Access©, the Microsoft© 

based RTI, and VB-based federate COM interfaces.   
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3.2.6  Federation Structure, Interaction and Examples  

 The above subsections have provided an operational overview of the Arena© 

port model federate and its respective submodels, as well as the VISSIM© roadway 

network model federate.  This subsection provides a brief discussion of the interaction of 

these model components.  This subsection also provides several illustrative examples of 

truck and container objects moving within the federation.  

The interaction among the VISSIM© and Arena© model federates, the federation 

RTI, and the federation database is shown below in Figure 5.  The RTI facilitates the 

movement of data between port and roadway network model federates.  When data is 

collected from one model federate, it is recorded in the federation database and then 

disseminated to the other model federate involved in the transaction.  For example, when 

a truck leaves the port terminal for the roadway, all object and data information  

 

 

Figure 5.  Port and Roadway Model Federation Structure 



 

44 

pertaining to that truck is collected by the RTI from the Arena© port model federate and 

written to the federation database.  The RTI then disseminates that collected information 

to the VISSIM© model federate, which recreates that truck in the simulated roadway 

network.   

 

3.2.5.1  Example – Movement of a Container Object Generated at the GCT 

This subsection provides an example of the simulated movement of a container 

object from its generation at the GCT to its deletion at the I-16 Junction.   

A container object is generated at the aggregated GCT submodel (the model 

created by Peesapati and Gbologah) and assigned unique attribute values.  Among these 

attributes are ‘Container ID,’ ‘Destination ID,’ and ‘Destination ID2.’  For this example, 

the ‘Container ID’ value will be equal to 123, the ‘Destination ID’ value will be equal to 

2 (denoting the container object’s first destination is Distribution Center 2) and the 

‘Destination ID2’ value will be equal to 6 (denoting the container object’s second and 

final destination is the I-16 Junction).  The container object is sent to the GCT Gate 

submodel for pairing with a truck object and release to the roadway network model 

federate.   

Upon entering the GCT Gate submodel, the container can enter one of two 

queues: one for container objects assigned directly to the I-16 Junction (to be paired with 

roadway truck objects), or one for container objects assigned to an intermediate 

destination at a distribution center (to be paired with port truck objects).  In this example, 

the container object enters the queue associated with the local distribution centers to 

await being paired with an outgoing port truck object. 
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When a port truck object becomes available, the truck and container objects are 

paired together.  Once paired together, all attributes associated with both the container 

object and the truck object are written to a unique set of Arena© global variables (making 

those values accessible to the RTI via the COM interface) that are specifically associated 

with port truck objects and container objects exiting the GCT Gate submodel.  Once these 

attribute values are written to the unique set of global variables, the values are collected 

by the RTI.  The RTI then writes these values to the federation database, including a 

transaction time-stamp equal to the current simulation time.  The truck/container object 

pair is then deleted from the Arena© port model federate and recreated as a truck object 

in the VISSIM© roadway network model federate on the link associated with the GCT 

Gate submodel.  This truck object created in the roadway network model federate carries 

with it a unique identifier value that relates the truck object with the corresponding truck 

and container object attribute values that have been logged in the federation database. 

The roadway network model federate utilizes the ‘Destination ID’ attribute value 

equal to 2 to route the truck object through the roadway network model to the destination 

link associated with Distribution Center 2.  Upon arrival at the end of the roadway link 

associated with Distribution Center 2, the roadway network model federate notifies the 

RTI of the truck arrival.  The RTI then uses the truck object’s unique identifier value to 

recover from the federation database all relevant attribute values for both the truck and 

container objects in the pair.  The RTI then writes these attribute values to a unique set of 

Arena© global variables (different from the set used above when exiting the GCT Gate 

submodel) that are specifically associated with truck and container objects entering the 

Distribution Center 2 submodel. 
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The RTI logs the arrival of the truck and container objects as a new record in the 

federation database and then removes the truck object from the roadway network model 

federate.  The RTI then signals the Arena© submodel for Distribution Center 2 to create a 

container object and a truck object and to reassigns the container and truck objects their 

attribute variables being held in the global variable set.  The container and truck objects 

are then separated. 

Once separated, the port truck object is first processed for some time-delay 

interval to simulate unloading and then routed, within the submodel, to a process that 

decides if there are a sufficient number of port trucks available in the Distribution Center 

2 submodel.  If there is not a sufficient number, the port truck object is sent to a queue to 

await pairing with outgoing containers bound for the GCT Gate submodel.  If there are a 

sufficient number of port truck objects in the Distribution Center 2 queue, the surplus 

port truck object is assigned a ‘Reroute Destination’ attribute value equal to 7 and 

released to the roadway to be routed back to the GCT Gate submodel. 

The separated container object is first processed for some time-delay interval to 

simulate unloading.  Because the container object’s ‘Destination ID2’ value is equal to 6 

(denoting the I-16 Junction as its final destination) the container object is then routed 

within the Distribution Center 2 submodel to a queue for outgoing container objects 

bound for the I-16 Junction.  The container objects waits in the queue until a roadway 

truck object becomes available, at which point it is paired with the outgoing roadway 

truck object. 

Once paired with the roadway truck object, all attributes associated with both the 

container object and the truck object are written to a unique set of Arena© global 
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variables that are specifically associated with roadway truck objects and container objects 

exiting the Distribution Center 2 submodel.  Note that these global variables are different 

from those identified above and are unique to this location and scenario.  Once these 

attribute values are written to the unique set of global variables, the values are collected 

by the RTI.  The RTI then writes these values as a time-stamped record to the federation 

database.  The truck/container object pair is then deleted from the Arena© port model 

federate and recreated as a truck object in the VISSIM© roadway network model federate 

on the outgoing link associated with the Distribution Center 2 submodel.  Again, this 

truck object created in the roadway network model federate carries with it a unique 

identifier value that relates the truck object with the corresponding truck and container 

object attribute values that have been logged in the federation database. 

The roadway network model federate then utilizes the ‘Destination ID2’ attribute 

value equal to 6 to route the truck object through the roadway network model to the 

destination link associated with the I-16 Junction submodel.  Upon arrival at the 

destination roadway link associated with the I-16 Junction, the roadway network model 

federate notifies the RTI of the truck arrival.  The RTI then uses the truck object’s unique 

identifier value to recover from the federation database all relevant attribute values for 

both the truck and container objects in the pair.  These attribute values are written to a 

unique set of Arena© global variables (again, different from the set used above) that are 

specifically associated with truck and container objects exiting the roadway network 

model federate at the I-16 Junction submodel. 

The RTI logs the arrival of the container and truck object pair at the I-16 Junction 

as a time-stamped record in the federation database and then removes the truck object 
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from the roadway network model federate.  The RTI then signals the Arena© I-16 

Junction submodel to create a container object and a truck object.  The I-16 Junction then 

reassigns these container and truck objects their associated attribute variables currently 

being held in the unique global variable set.  The container and truck objects are then 

separated and deleted from the simulation. 

 

3.2.5.2  Example – Movement of a Container Object Generated at the I-16 Junction 

This subsection provides an example of the simulated movement of a container 

object from its generation at the I-16 Junction submodel to its arrival at the GCT Gate 

submodel. 

A container object is generated at the I-16 Junction submodel and assigned unique 

attribute values.  Among these attributes are ‘Container ID,’ ‘Destination ID’ and 

‘Destination ID2.’  For this example, the ‘Container ID’ value will be equal to 456, the 

‘Destination ID’ value will be equal to 7 (denoting the container object’s first destination 

is the GCT).  Although the I-16 Junction submodel will assign the container object an 

attribute value for ‘Destination ID2,’ this value is irrelevant in this example as the 

container object is being directly routed to the GCT Gate submodel without any 

intermediate destination.   

Simultaneously, a roadway truck object is generated at the I-16 Junction 

submodel and is paired with the container object.  Once paired together, all attributes 

associated with both the container object and the roadway truck object are written to a 

unique set of Arena© global variables that are specifically associated with roadway truck 

objects and container objects entering the roadway network model federate from the I-16 
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Junction submodel.  Once these attribute values are written to the unique set of global 

variables, the values are collected by the RTI.  The RTI then writes these values to the 

federation database.  The truck/container object pair is then deleted from the Arena© port 

model federate and recreated as a truck object in the VISSIM© roadway network model 

federate on the link associated with the I-16 Junction submodel.  This truck object created 

in the roadway network model federate carries with it a unique identifier value that 

relates the roadway truck object with the corresponding truck and container object 

attribute values that have been logged in the federation database. 

The roadway network model federate utilizes the ‘Destination ID’ attribute value 

equal to 7 to route the truck object through the roadway network model directly to the 

destination link associated with GCT Gate submodel.  Upon arrival at GCT Gate, the 

roadway network model federate notifies the RTI of the truck object’s arrival.  The RTI 

then uses the truck object’s unique identifier value to recover from the federation 

database all relevant attribute values for both the truck and container objects in the pair.  

These attribute values are written to a unique set of Arena© global variables that are 

specifically associated with truck and container objects entering the GCT Gate submodel. 

The RTI logs the arrival of the truck and container objects as a time-stamped 

record in the federation database and then removes the truck object from the roadway 

network model federate.  The RTI then signals the Arena© GCT Gate submodel to create 

a container object and a truck object.  The GCT Gate submodel then reassigns these 

container and truck objects their attribute variables that are currently being held in the 

unique global variable set.  The container and truck objects are then separated. 
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Once separated, the roadway truck object is processed for some time-delay 

interval to simulate unloading.  The truck object is then routed to a process within the 

submodel that decides if there are a sufficient number of roadway truck objects available 

in the GCT Gate submodel.  If there is not a sufficient number, the roadway truck object 

is sent to a queue to await pairing with outgoing containers bound directly for the I-16 

Junction submodel.  If there are a sufficient number of roadway truck objects in the GCT 

Gate submodel roadway queue, the surplus roadway truck object is assigned a ‘Reroute 

Destination’ attribute value equal to 6 and released to the roadway to be routed to the I-16 

Junction submodel where it will be deleted from the simulation. 

The separated container object is processed for some time-delay interval to 

simulate unloading.  The container object is then directed within the aggregated GCT 

submodel to a submodel that simulates the container object’s loading onto an outgoing 

freight ship and then deletes the container from the simulation.  

 

3.3  Description of Federation Model Components 

This section will provide a detailed description of the construction and operation 

of each federation component.  This discussion starts with a description of the Arena© 

port model federate, and its respective submodels, where containers and trucks are 

generated, processed, and deleted.  Next, the VB-based RTI that manages time, data and 

objects, and facilitates the passage of simulation objects between federates is discussed.  

Then the VISSIM© roadway network model is discussed.  Finally, the Access© 

federation database is discussed. 
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3.3.1  Arena© Port Model Federate 

Within the port model, there are five submodels: the GCT/GCT Gate, Distribution 

Centers 1, 2, and 3, and the I-16 Junction.  The following will provide a detailed 

discussion of both the GCT Gate submodel and the I-16 Junction submodel, and a general 

discussion of the standardized Distribution Center submodel.  Recall that the term 

“entity” is used to refer specifically to truck and container objects interacting with the 

logical blocks and processes within the Arena© port model federate. 

 

3.3.1.1  Garden City Terminal (GCT) Gate Submodel 

To simulate the operations of the entire GCT (e.g., customs, container inspection, 

bonded storage, forklift and crane resource utilization, truck transfer, etc.) several 

Arena© submodels were constructed and aggregated together.  This comprehensive Port 

of Savannah model was constructed as part of a previous study of the Port of Savannah 

operations by Lakshmi Peesapati and Franklin Gbologah for the Georgia Tech Research 

Institute.   

For the purposes of this study, the larger GCT operations port model serves to 

simulate the arrival and handling of containers at the Port of Savannah from oceangoing 

container vessels and landside railroad networks.  However, this study focuses on the 

interaction of the port with the surrounding roadway network.  Therefore, the structure 

and operation of these aggregated submodels will not be discussed. 

Instead, this discussion of the aggregated GCT submodel specifically focuses on 

the “GCT Gate” submodel, constructed specifically for this study, which simulates 

operations at the terminal’s roadway gate, or point of interaction with the roadway 



 

52 

network.  There are three primary logical functions in the GCT Gate submodel: (1) one 

associated with outgoing trucks (i.e., exiting the GCT to the roadway), (2) one associated 

with incoming trucks (i.e., entering the GCT from the roadway), and (3) one to release, or 

reroute, unneeded empty trucks to the roadway.  Figure 6 shows the relationship between 

these three functions.  Elements shown in teal represent logic processes for the outgoing 

function, elements shown in purple represent logic processes for the incoming function, 

and the element in grey represents logic processes for the rerouting function.    

 

 

Figure 6.  GCT Gate Submodel Logical Series Overview 

 

The outgoing process series consists of three general processes.  In the first 

process, containers ready for transport enter the GCT Gate submodel from the port 

submodels built by Peesapati and Gbologah to represent containers that have recently 

arrived on freight ships.  In the second process, these containers are paired, or “batched,” 

with available trucks waiting in a queue for release to the roadway.  This second process 

is where exiting truck/container batched pairs are detected by the RTI and are “passed” 

to, or recreated in the roadway network model federate.  The third process then resets the 



 

53 

previous process for the next truck/container pair and disposes of (i.e., deletes) the 

current batched pair that has just been passed to the roadway. 

The incoming logic process series consists of two basic processes.  In the first 

process, trucks and containers entering the port from the roadway are created in the GCT 

Gate submodel and assigned their appropriate attribute values.  In the second process, 

containers are processed and routed for appropriate batching with outgoing trucks for 

future destinations.  This second process also routes trucks to appropriate queues.  Port 

trucks are automatically sent to the submodel’s port vehicle queue (denoted by the arrow 

connecting to the first process in the outgoing logical process series).  However, if the 

roadway vehicle queue has excessive numbers of available trucks, the unneeded trucks 

are sent to a logical process to be released back to the roadway network model federate, 

destined for the I-16 Junction. 

The rerouting logic simply takes the unneeded or excess long-distance road trucks 

and passes, or releases, them back to the roadway network model federate, destined for 

the I-16 Junction.   

  

3.3.1.1.1  Garden City Terminal Outgoing Operations Logic  

Figure 7 shows the logical process used to generate and route trucks and 

containers in the GCT gate submodel.  Container entities that have been offloaded from 

ships, routed through the GCT freight handling submodels (constructed in the Peesapati  

and Gbologah study) and sent to the GCT Gate submodel arrive at the red Station block 

‘Receiving From Truck Transfer.’  Upon arrival at the ‘Receiving From Truck Transfer’ 
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block, container entities will have already been assigned attribute values for ‘Container 

ID,’ ‘Destination ID’ and ‘Destination ID2.’   

 

 

Figure 7.  GCT Gate Submodel Vehicle and Container Generation 

 

Container entities then proceed to a Count block ‘Port_Cont_From_GCT’ which 

increments a counter internal to Arena© that is associated with containers entities 

arriving to the GCT Gate submodel from the aggregated GCT submodel.  Container 

entities then proceed to the Assign block ‘Assign Origin ID’ where they are assigned an 

‘Origin ID’ attribute value.  Recall that the GCT ‘Origin ID’ value is equal to 7. 

Container entities then proceed to the Decide block ‘Port Destination Road or DistCtr.’  

As there are two types of trucks – port trucks and long-distance roadway trucks, this 

decision block directs the container entities to the correct queue to await batching with 

the relevant truck type. The Decide block ‘Port Destination Road or DistCtr’ evaluates 

each container based on its ‘Destination ID’ attribute value.  If the container has a local 
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destination, i.e., if the if/then decision statement [‘Destination ID’ ≠ 6], then the entity is 

routed to the Queue block ‘Port_ContToOther_Queue’ to await batching with a port 

truck for transport to one of the distribution centers.  If the statement is false and the 

destination is long distance trucking (i.e., Destination ID = 6), container entities are sent 

to the Queue block ‘Port_ContToRoad_Queue.’ 

The GCT Gate submodel also contains the logic that creates port and long 

distance truck objects during simulation initialization.  The Create block ‘Create Port 

Vehicles’ creates the initial supply of port truck entities during simulation initialization.   

Port truck entities then proceed to the Assign block ‘Assign Port VehicleID and 

Vehicle_Type’ where they are assigned ‘Vehicle ID’ and ‘Vehicle_Type’ attribute 

values.  Port trucks all are vehicle type 2.  Also, port truck Vehicle ID values are assigned 

sequentially beginning at 200.  Once attributes are assigned, the port truck entities 

proceed to the Queue block ‘Port_PortVeh_Queue’ to await batching with containers.  

As port truck objects circulate through the federation, port trucks that return to the port 

from the roadway are routed to the Station block ‘Port Veh From Road.’  As these port 

trucks already have attribute values associated with them, these port trucks proceed 

directly to the Queue block ‘Port_PortVeh_Queue’ to await batching with outgoing 

container entities. 

The Create block ‘Create Roadway Vehicles’ creates the initial supply of 

roadway truck entities during simulation initialization.  Roadway truck entities then 

proceed to the Assign block ‘Assign Roadway VehicleID and Vehicle_Type’ where they 

are assigned a ‘Vehicle ID’ and ‘Vehicle_Type’ attribute values.  Roadway trucks all are 

vehicle type 1.  Also, roadway truck Vehicle ID values are assigned sequentially 
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beginning at 1000.  Roadway truck entities then proceed to the Queue block 

‘Port_RoadVeh_Queue’ to await batching with outgoing containers.   

As roadway trucks arrive at the GCT Gate submodel from the roadway model 

federate, these arriving entities are eventually (following simulated unloading, etc.) 

routed to the Station block ‘Road Veh From Road.’  The roadway truck entities then 

proceed to the Queue block ‘Port_RoadVeh_Queue’ to await batching with outgoing 

container entities bound for the I-16 Junction. 

The next set of logic blocks in outgoing operations logic series is concerned with 

ensuring that trucks and containers are correctly paired, or “batched.”  This logic is 

shown in Figure 8, and is a continuation of the logic shown in Figure 7.  In Figure 8, the 

top set of logic is for port truck and container batching, while the bottom set of logic is  

 

 

Figure 8.  GCT Gate Submodel Container and Vehicle Batching Logic 
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for long-distance roadway truck and container batching.  As both series of logic operate 

in the same way, only the top set of logic for port trucks will be described.   

To ensure that containers and trucks are properly batched in pairs of two, the 

container must arrive first at the yellow Batch block.  To accomplish this, a series of 

blockages are sequentially put in place and removed, causing a container entity to arrive 

first.  The Proceed blocks are analogous to a physical gate or blockage.   The Proceed 

block labeled ‘Port_PortVeh_Block’ has an initial blockage value of 1 (i.e., it is 

“closed”), restricting passage of port truck entities from the previous queue 

‘Port_PortVeh_Queue’ (shown in Figure 7).  However, the Proceed block labeled 

‘Port_ContToOther_Block’ has an initial blockage value of zero – or no blockage – and 

can be considered “open.”  Therefore, a port container entity from the previous queue, 

‘Port_ContToOther_Queue,’ (see Figure 7) may freely pass through the 

‘Port_ContToOther_Block’ Proceed block.  It then passes through the Block block 

labeled ‘‘Port_ContToOther_Block.’  This creates a blockage equal to 1 –  effectively 

closing the gate – at the Proceed block immediately upstream.  The container entity then 

passes through the Unblock block labeled ‘Port_PortVeh_Block,’ which lifts the 

blockage that is restricting truck entities from passing through the Proceed block labeled 

‘Port_PortVeh_Block.’  The container entity then passes through the VBA 1 block and 

proceeds to the Batch block ‘Port_Batch To Dist Ctrs’ to await the arrival of a truck 

entity.   

As the blockage at the Proceed block ‘Port_PortVeh_Block’ was lifted by the 

container entity passing through the corresponding Unblock block, the truck entity 

waiting in the queue (Figure 7) is now free to pass.  The truck entity then immediately 
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passes through the Block block labeled ‘Port_PortVeh_Block,’ resetting the blockage at 

the Proceed block immediately upstream.  The truck entity then passes through the VBA 

4 block and proceeds to the Batch block ‘Port_Batch To Dist Ctrs.’   

The batch size at the Batch block has been set to 2, ensuring that only one 

container entity is paired with one truck entity.  This number could be adjusted to 

simulate larger trucks capable of transporting more than one container simultaneously.  

However, doing so would require that the initial blockages at the Block and Unblock 

blocks be adjusted to allow more than one container to pass through for every one truck.   

In order for the truck and container entity attributes to be accessible by the RTI 

via the Visual Basic© COM interface (and thus pass to the roadway model federate), they 

must first be written to global variables.  Attributes (e.g., ‘Container ID’ and 

‘Vehicle_Type’) hold values specific to each entity, whereas global variables hold values 

that are general to the entire simulation and are accessible through the COM interface.  In 

this case, when a container entity passes through the VBA 1 block, a Visual Basic for 

Applications© (VBA) command is triggered.  Note that the code for the VBA blocks 

throughout the port model are internal to Arena© and are separate from the RTI 

commands.  The VBA commands associated with the VBA 1 block are shown in Figure 

9.   

In Arena©, global variables are identified and accessed according to unique 

number identifiers associated with each variable, not by their variable names.  Similarly, 

attributes are referred to, within Arena© VBA commands, according to unique number 

identifiers associated with an attribute class.  In the commands shown in Figure 9, for  

example ‘5011’ corresponds to a unique global variable specifically used to hold 
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Figure 9.  Visual Basic Commands for VBA 1 Block 

 

Container ID numbers of outgoing container entities.  Similarly, ‘ActEnt’ refers to the 

entity actively passing through the associated VBA block at that moment, and the number 

‘1001’ refers to the attribute class ‘Container ID.’  While this attribute class is common to 

all container entities, its value is unique to each individual container entity.  This 

command line sets the global variable with identifier number ‘5011’ equal to the 

‘Container ID’ attribute value, ‘1001,’ for the active entity.  A more complete discussion 

of how these global variable values are accessed by the RTI from the Arena© model will 

be discussed in Section 3.3.1.  The code for the VBA 4 block concerning truck entities is 

shown in Figure 10.  Also, Table 3 shows the attribute class name associated with each 

 

 

 

 

 

 

Figure 10.  Visual Basic Commands for VBA 4 Block 

Private Sub VBA_Block_1_Fire() 
Dim s As SIMAN 
Dim m As Model 
Set m = Arena.ActiveModel 
Set s = m.SIMAN 
ActEnt = s.ActiveEntity 
s.VariableArrayValue(5011) = s.EntityAttribute(ActEnt, 1001) 
s.VariableArrayValue(5014) = s.EntityAttribute(ActEnt, 4004) 
s.VariableArrayValue(5019) = s.EntityAttribute(ActEnt, 5005) 
s.VariableArrayValue(5111) = s.EntityAttribute(ActEnt, 7007) 
End Sub 

Private Sub VBA_Block_4_Fire() 
Dim s As SIMAN 
Dim m As Model 
Set m = Arena.ActiveModel 
Set s = m.SIMAN 
ActEnt = s.ActiveEntity 
s.VariableArrayValue(5012) = s.EntityAttribute(ActEnt, 2002) 
s.VariableArrayValue(5013) = s.EntityAttribute(ActEnt, 3003) 
End Sub 
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attribute class number.  Appendix B has a complete list of all variable names and 

associated unique variable identifier numbers.  Note that each of the VBA blocks shown 

in Figure 8 writes the attribute values of the active entities to separate sets of global 

variables that are uniquely associated with each VBA block.   

 

Table 3.  Attribute Names and Class Identifier Numbers 

Attribute Name Attribute Class Number 
Container ID 1001 
Vehicle ID 2002 

Vehicle Type 3003 
Destination ID 4004 

Destination ID2 5005 
Reroute Destination 6006 

Origin ID 7007 
Dispersion Destination 8008 

 
 
 

Once batched at the Batch block, the container/truck entity pairs then proceed to a 

series of logic blocks that reset the blockages to their original states and global variable 

sets to zero-values.  This final series of logic is shown in Figure 11.  The Delay block  

 

 

Figure 11.  Port GCT Submodel Global Variable Reset and Entity Disposal 
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delays the batched entities for 1 second.  During this delay, the RTI has one full time step 

during which to collect the variable values associated with the pair of batched container 

and truck entities before the global variables containing these values are reset to zero.  

The batched entities pair then passes through the VBA 3 block.  This executes a series of 

commands that reset the global variables for exiting port trucks and containers to zero.  

Note that these are the two unique sets of global variables to which the active 

entity’sattribute values were assigned by the VBA 1 and VBA 4 blocks in Figure 8.  The 

resetting VBA commands for the VBA 3 block are shown in Figure 12.  The commands 

for the VBA 6 block are similar to those shown in Figure 12, but reference two different 

unique sets of global variable array values. 

 

 

 

 

 

 

 

 

Figure 12.  Visual Basic Commands for VBA 3 Block 

 

The batched entity pair then passes through the Unblock block 

‘Port_ContToOther_Block.’  This lifts the blockage at the upstream Proceed block 

‘Port_ContToOther_Block’, shown in Figure 8, by assigning it a blockage value of zero. 

Private Sub VBA_Block_3_Fire() 
Dim s As SIMAN 
Dim m As Model 
Set m = Arena.ActiveModel 
Set s = m.SIMAN 
s.VariableArrayValue(5011) = 0 
s.VariableArrayValue(5012) = 0 
s.VariableArrayValue(5013) = 0 
s.VariableArrayValue(5014) = 0 
s.VariableArrayValue(5019) = 0 
s.VariableArrayValue(5111) = 0 
End Sub 
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This allows the entire batching process just described to occur again, having reset all 

global variable values to zero and blockages to their original state.   

The batched pair of container and truck entities then passes through the Count 

block ‘Port_Cont_to_Road’ which increments a counter internal to Arena© that is 

associated with the combined number of containers entities departing the GCT Gate 

submodel.  The batched pair of container and truck entities then passes through the 

Separate block ‘Separate 14’ and then to the Dispose block ‘Dispose 110’ where they 

are removed from the Arena© model.  The Separate block is only necessary as Arena© 

does not allow entities to be disposed of while still batched.   

As stated, when a truck entity (which arrives second to the ‘Batch’ block) passes 

through the VBA 4 block its ‘Vehicle ID’ attribute value is written to the associated 

global variable and a 1 second delay is assigned.  During this time, the RTI first collects 

all variable values for the batched pair of entities.  It then writes those values to the 

federation database.  A truck object with the same attributes is then created in VISSIM© 

roadway network model (see Section 3.3.2.2.1).  Thus, the truck/container pair is 

effectively “passed” to the VISSIM© federate.  Exactly how this is handled by the RTI 

and federation database will be discussed in Sections 3.3.2 and 3.3.3 respectively.   

During simulation, a dynamically updated visual representation is displayed in the 

GCT Gate submodel window.  This graphical display shows the current values of the 

global variables as assigned by the VBA blocks.  The display is updated when an entity 

passes through one of the corresponding VBA blocks.  This display is shown in Figure 

13.  Note that the ‘Destination ID’ attribute class is associated only with containers.  This 

is because during simulation, individual containers have a fixed destination path through  
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Figure 13.  GCT Gate Submodel Outgoing Variable Graphics 

 

the system whereas port trucks and roadway trucks do not.   Also note in the ‘Roadway 

Trucks’ display in Figure 13 that there is only one ‘Destination ID’ variable.  Recall from 

Figure 7 that containers at the GCT with an immediate destination (Destination ID) equal 

to 6 are assigned to long-distance roadway trucks and that the only destination for long 

distance trucks is the I-16 Junction.  Conversely, containers assigned to port trucks will 

have an intermediate destination (Destination ID) at one of the three distribution centers, 

and a final destination (Destination ID2) of either the GCT or the I-16 Junction for long-

distance trucking. 

 

3.3.1.1.2  Garden City Terminal Incoming Operations Model 

The previous section described the Arena© model logic underlying how outgoing 

container and truck entities are created and batched, and how their attributes are written 

to global variables for access by the RTI.  This section will describe the logic for creating 

and assigning attributes to incoming truck and container entities in the GCT Gate 
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submodel.  The logic series associated with incoming container and truck entity creation 

in the GCT Gate submodel is shown in Figure 14.   

When a truck in the VISSIM© roadway network model federate approaches the 

end of the destination link associated with the GCT Gate entrance, it triggers a series of 

commands in the RTI (this triggering is discussed in Section 3.3.2.2).  The RTI first 

collects the attribute values, which have been stored in the federation database, associated 

with the specific truck and container pair entering the GCT submodel.  It then writes 

those attribute values to a unique set of global variables in the Arena© port model that are 

 

 

Figure 14.  GCT Gate Submodel Incoming Vehicle and Container Logic 

 

specifically associated with truck and container objects entering the GCT Gate submodel.  

The RTI then momentarily changes a “switch variable” in the GCT gate submodel from 0 

to 1 to trigger container and/or truck entity creations in the submodel.  There are separate 

switch variables for entering containers and trucks as some trucks may be not be carrying 

a container when entering the GCT gate submodel.  A non-zero switch variable value 

triggers a container and/or truck creation in the GCT gate submodel at the ‘Container 

Input v2’ and ‘Vehicle Input v2’ blocks, respectively.  These Input blocks were custom 
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made using the Arena© Template Developer.  Their construction will be discussed in 

greater depth in Section 3.3.1.1.4, but for now they can be considered analogous to a 

“triggerable” Create block. 

When a container entity is created at the ‘Container Input v2’ block, it then passes 

through the VBA 10 block.  This executes a VBA command that immediately resets the 

associated switch variable value to zero to prevent erroneous duplicate container 

creations.  The VBA command for the VBA 10 block is shown in Figure 15.  The 

container entity then passes through the Count block ‘Port_Cont_Creation’ which 

increments an internal Arena© counter.  This internal counter serves only to collect 

model statistics for later evaluation.  The container entity then passes through the VBA 9 

block.  Prior to arriving at this block, the container entity has no associated attribute 

values; it is effectively a “blank” entity.  However, recall that just prior to the entity’s  

    

 

 

 

 

Figure 15.  Visual Basic Commands for VBA 10 Block 

 

creation, the RTI collected that specific entering container entity’s attribute values from 

the federation database.  The RTI then wrote those values to a specific set of global 

Arena© variables set aside for container entities entering at the GCT Gate submodel.  

Therefore, when an entity passes through the VBA 9 block, it triggers a series of VBA 

Private Sub VBA_Block_10_Fire() 
Dim s As SIMAN 
Dim m As Model 
Set m = Arena.ActiveModel 
Set s = m.SIMAN 
s.VariableArrayValue(8011) = 0 
End Sub 



 

66 

 

 

 

 

 

 

Figure 16.  Visual Basic Commands for VBA 9 Block  

 

commands that assign the values currently held in the global variable set to the active 

container entity as attribute values.  Note that the attribute variable classes are consistent 

with Table 2.  The VBA commands for the VBA 9 block are shown in Figure 16.  The 

container entity then passes through the VBA 7 block which triggers a series of VBA 

commands that resets to zero all of the global variables associated with entering container 

attribute values.  Figure 17 shows the Visual Basic commands associated with the VBA 7 

block.  

 

    

 

 

 

 

Figure 17.  Visual Basic Commands for VBA 7 Block 

Private Sub VBA_Block_9_Fire() 
Dim s As SIMAN 
Dim m As Model 
Set m = Arena.ActiveModel 
Set s = m.SIMAN 
ActEnt = s.ActiveEntity 
s.EntityAttribute(ActEnt, 1001) = s.VariableArrayValue(1011) 
s.EntityAttribute(ActEnt, 4004) = s.VariableArrayValue(1014) 
s.EntityAttribute(ActEnt, 5005) = s.VariableArrayValue(1015) 
s.EntityAttribute(ActEnt, 7007) = s.VariableArrayValue(1016) 
End Sub 

Private Sub VBA_Block_7_Fire() 
Dim s As SIMAN 
Dim m As Model 
Set m = Arena.ActiveModel 
Set s = m.SIMAN 
s.VariableArrayValue(1011) = 0 
s.VariableArrayValue(1014) = 0 
s.VariableArrayValue(1015) = 0 
s.VariableArrayValue(1016) = 0 
End Sub 
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The series of logic that has been described to create container entities at the 

‘Container Input v2’ block and assign attribute values is the same logical construction 

used to assign attribute values to truck entities created at the ‘Vehicle Input v2’ block 

shown in Figure 14.  The only difference is that a separate set of unique global variables 

is used to hold truck attribute values collected by the RTI from the federation database 

for the GCT Gate submodel.   

Once entering container and truck entities have been assigned attribute values, the 

entities then proceed to a series of logical blocks that directs them from the GCT Gate 

submodel to other locations within the larger, aggregated GCT model.  The series of logic  

for this entity routing is shown in Figure 18.   

 

 

Figure 18.  GCT Gate Submodel Entering Container and Vehicle Routing 

 

The container entity then proceeds directly to the Delay block ‘900’.  This block 

delays the container entity’s passage for some user- defined time interval (in this instance 
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it is set to 900 seconds, or 15 minutes).  This delay is optional and serves to simulate the 

delay time associated with unloading a container from its truck.  The container entity then 

proceeds to the Route block ‘Route To STA 140 Port Truck Receiving.’  This routes the 

container entity to a truck receiving submodel that is part of the larger, aggregated GCT 

submodel.  This truck receiving submodel processes entities for loading on to outgoing 

freight ships.  For the purposes of this federated simulation, this can be considered as a 

terminal destination for containers arriving at the GCT. 

Arriving truck entities first proceed to the Decide block ‘Decide 158’ where the 

truck’s ‘Vehicle_Type’ attribute value is evaluated according to the if/then decision 

statement [Vehicle_Type = 2].  If the statement is found to be true (i.e., the truck is a port 

truck type) then the port truck entity proceeds to the Delay block ‘900’ which delays the 

port truck entity’s passage for some user- defined time interval (in this instance it is set to 

900 seconds, or 15 minutes).  Again, this delay is optional and serves to simulate the 

delay time associated with unloading a container from its truck.  The port truck entity 

then proceeds to the Route block ‘Route to Sta 126 Port Queue.’  This Route block sends 

the entity to the Station block ‘Port Veh From Road,’ shown in Figure 7, which sends the 

entity to the queue of port trucks available to be batched with outgoing containers. 

However, if the decision is evaluated at the Decide block ‘Decide 158’ is found to 

be false (i.e., the truck is a road truck) it proceeds to the Delay block ‘900’ which delays 

the road truck entity’s passage for some user-defined time interval (in this instance it is 

set to 900 seconds, or 15 minutes).  Again, this delay is optional and serves to simulate 

the delay time associated with unloading a container from its truck.  The road truck entity 

then proceeds to the Decide block ‘Decide159.’  This Decide block effectively evaluates 
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direction according to the length of roadway truck queue available for batching with 

outgoing containers (this queue is shown in Figure 7).  If the queue contains an 

insufficient number of trucks, the Decide block directs the truck entity to the Route block 

‘Route to Sta 127 Road Queue.’  If the queue contains a sufficient number of trucks, the 

Decide block directs truck entities to the Route block ‘Route to Sta 129 Release to 

Road.’  This Route block routes these empty, unneeded long-distance truck entities to a 

series logic that then passes them back to the roadway network model, bound for the I-16 

Junction.  This so called ‘Release to Road’ logic will be discussed in the next section.   

The ‘Decide 159’ block evaluates the statement [NQ(Port_RoadVeh_Queue) 

<=X], where ‘NQ(Port_RoadVeh_Queue)’ represents the number of trucks in the 

referenced Queue block – ‘Port_RoadVeh_Queue’ (see Figure 7).  The ‘X’ represents 

some user input criterion for acceptable minimum queue length.  By examining the port 

road truck object queue length, this logic ensures that queue does not grow to an 

unrealistic size and maintains a balance of road trucks within the federation system.  

Note that Figure 18 also shows a Station block ‘Station145’ upstream from the 

Decide block ‘Decide 158.’  This block receives truck entities from the Vehicle Diffusion 

module which recreates truck objects that have been erroneously deleted in the VISSIM© 

roadway model federate.  The construction and reason for the Vehicle Diffusion module 

is discussed later in subsection 3.3.1.4.  For now, this Station block can simply be 

considered an alternate entry point for truck entities entering the GCT Gate submodel.     

The logic described in this section for container and truck entities entering the 

GCT Gate submodel also has a dynamically updated graphical display to show the entity 
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attribute values currently being held in the unique global variable set for incoming trucks 

and containers.  This graphical display is shown in Figure 19.   

 

 

Figure 19.  GCT Gate Submodel Entering Variable Graphic 

 

3.3.1.1.3  Garden City Terminal Empty Long-Distance Truck Release 

If there is a sufficient number of long-distance road trucks in the associated 

queue, the Decide block ‘Decide 159’ (shown in Figure 18) instead routes road trucks to 

a series of logic blocks that releases the empty (unbatched) truck entities to the roadway 

network model, bound for the I-16 Junction.  Figure 20 shows the series of logical blocks  

 

 

Figure 20.  GCT Gate Submodel Long-Distance Truck Release 

 

that transfers the empty road truck entities from the GCT Gate submodel to the roadway 

network model federate.   

To be released, the roadway truck entity first arrives at the Station block ‘Station 

129.’  It then proceeds to the ‘Assign Release Destination 6’ assign block.  Here the truck 
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entity is assigned a new attribute called ‘Reroute_Destination’ with an attribute value 

equal to 6.  This attribute is similar to the ‘Destination ID’ attribute assigned to 

containers.  It will be used to correctly route the empty truck through the VISSIM© 

roadway network to the I-16 Junction destination.  The method for routing trucks through 

the roadway network model will be discussed in Section 3.3.4.2.   

The truck entity then proceeds to the VBA 13 block.  Similar to VBA blocks 1, 2, 

4 and 5 described above, this VBA block executes a series of VBA commands that writes 

the active entity’s attribute values (‘Vehicle ID’, ‘Vehicle_Type’ and 

‘Reroute_Destination’) to a set of unique global variables specifically associated with 

empty road trucks being released by the GCT Gate submodel.  Figure 21 shows the VBA 

commands associated with the VBA 13 block.  The truck entity then proceeds to the 

Delay block where it is delayed for 1 second during which the RTI has one complete time 

step to collect the exiting truck entity’s attribute values that are being held in the  

  

 

 

 

 

 

Figure 21.  Visual Basic Commands for VBA Block 13 

 

associated unique global variable set.  As seen before, when a truck entity passes through 

the VBA 13 block and its ‘Vehicle ID’ attribute value is written to the associated global 

Private Sub VBA_Block_13_Fire() 
Dim s As SIMAN 
Dim m As Model 
Set m = Arena.ActiveModel 
Set s = m.SIMAN 
ActEnt = s.ActiveEntity 
s.VariableArrayValue(9210) = s.EntityAttribute(ActEnt, 2002) 
s.VariableArrayValue(9211) = s.EntityAttribute(ActEnt, 3003) 
s.VariableArrayValue(9212) = s.EntityAttribute(ActEnt, 6006) 
End Sub 
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variable, the RTI collects all attribute values being held in the global variable set and 

writes those values to the federation database.  The RTI then creates a truck with the 

same attributes in the VISSIM© roadway network model.   

The truck entity next proceeds to the VBA 14 block where a series of VBA 

commands are executed that resets the global variables specific to exiting empty road 

trucks to zero.  Figure 22 shows the VBA commands associated with the VBA 14 block.  

The entity then proceeds to the Count block ‘Port_Veh_Rerouted’ which increments a  

   

 

 

 

 

 

Figure 22.  Visual Basic Commands for VBA 14 Block 

 

counter variable internal to Arena© representing the number of road vehicles that are 

rerouted by the GCT Gate submodel during simulation.  The entity is then disposed of at 

the ‘Dispose 112’ block. Also as before, a dynamically updating graphic is incorporated 

to display the active entity attribute values currently being stored in the set of unique 

global variables assigned to exiting truck entities.  Figure 23 shows this global variable 

display graphic.   

 

Private Sub VBA_Block_14_Fire() 
Dim s As SIMAN 
Dim m As Model 
Set m = Arena.ActiveModel 
Set s = m.SIMAN 
ActEnt = s.ActiveEntity 
s.VariableArrayValue(9210) = 0 
s.VariableArrayValue(9211) = 0 
s.VariableArrayValue(9212) = 0 
End Sub 
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Figure 23.  GCT Gate Submodel Truck Release Variable Graphic 

 

3.3.1.1.4  Vehicle and Container Input Block Template Development 

This section will describe the construction of the ‘Container Input v2’ and 

‘Vehicle Input v2’ Input blocks that were created using the Arena© Template Developer.  

As the ‘Container Input v2’ and ‘Vehicle Input v2’ blocks are identical, differing only in 

name and the entity type generated, the following description of the ‘Vehicle Input v2’ 

block can be applied to both blocks.   Figure 24 shows the underlying logic for the 

‘Vehicle Input v2’ block.  Puglisi (2008) outlines the original design of an earlier version 

of the Container and Vehicle Input blocks [4]. 

Notice in Figure 24 that there are two parallel series of logical process blocks.  

The top series, containing three blocks will be referred to as the “switch variable series” 

and the bottoms series will be referred to as the “vehicle entity series.”   

The Create block in the bottom, “vehicle entity series logic,” is set to create 1 

truck entity at time zero.  This truck entity then proceeds to the Queue block.  Recall that 

the Proceed block serves as a gate that is either blocked or unblocked.  The initial 

blockage of this Proceed block is set to 1, preventing the truck entity from proceeding 

forward from its current location in the Queue block.    
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Figure 24.  Vehicle Input v2 Block Template Logic 

 

Meanwhile, the Create block in the top, “switch variable series logic,” is set to 

create a generic entity at a constant time interval.  For this model, creations are set to 

occur at 1 second intervals, or once for every time step of the federation.  The batch size 

of each creation is 1 entity, and the first entity is created at time zero.  These generic 

entities then pass through the Unblock block.  This Unblock block is associated with the 

blockage at the Proceed block in the “vehicle entity series logic,” discussed above.  

However, the number of blockages to be removed by the Unblock block at the Proceed’ 

block is set equal to a variable called ‘Switch Variable.’  This switch variable functions 

the same as that which was discussed above in section 3.3.1.1.2, concerning trucks and 

containers exiting the roadway network model federate and entering the GCT Gate 

submodel federate.   

As the value of the switch variable is initially zero, it does not initially cause the 

Unblock block to remove any blockages from the Proceed block.  However, recall that 

the RTI momentarily sets a switch variable equal to 1 to indicate that a truck is entering 

the GCT Gate submodel and that a truck entity should be created by the ‘Vehicle Input 

v2’ block.  When this occurs, the generic entity that passes through the Unblock block 
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every second removes the blockage (i.e., the number of blockages to remove is the switch 

variable value, or 1) from the Proceed block in the vehicle entity series logic.  This 

allows the single entity waiting in the Queue block to pass through the Proceed block.  

The entity then passes through the Block block, which resets the blockage at the previous 

Proceed block to prevent any additional entities from passing through.  The entity then 

passes through the Branch block, which creates a duplicate of the entity.  The original 

entity proceeds to the Count block, while the duplicate entity is sent back into the Queue 

block, where it waits for the next time the switch variable is momentarily set equal to 1, 

indicating that another vehicle is entering the port model at that location.  The original 

entity then proceeds to the Count block, where a counter is incremented.  This counter is 

internal to Arena© and counts the number of entities “created” by the ‘Vehicle Input v2’ 

Input block.  The Count block is the last block in the ‘Vehicle Input v2’ Input block 

template.  The entity next exits the ‘Vehicle Input v2’ Input block. 

Recall from section 3.3.1.1.2 that immediately upon exiting the ‘Vehicle Input v2’ 

block, the entity passes through a VBA block (Figure 14) that resets the switch variable 

value to zero.  This is critical to ensure that duplicate entities are not created by the 

‘Vehicle Input v2’ block as the RTI does not reset this value for the next time step.  Also, 

because the Create block in the switch variable series logic is set to create generic 

entities at 1 second intervals, it allows for only one blockage to be removed from the 

Proceed block every time step of the federation.  If this interval were set to a smaller 

time value, it could cause erroneous duplicate entities to be created by the ‘Vehicle Input 

v2’ block.  Similarly, if the interval were set to a larger time value, it could cause trucks 

entering the GCT Gate submodel from the roadway network model to be missed and not 
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created.  Section 3.3.5 discusses the limiting model implications of this 1 second interval 

in greater detail.   

The user interface window for the logical block constructed using the Template 

Developer is shown below in Figure 25.  Fields shown in grey must contain information 

whereas fields shown in white are optional.  ‘Creation Size’ refers to the batch size for  

the Create block in the vehicle entity series of logic.  Recall from above that it is set to a 

value of 1 for this study.   

Note in Figure 24 that many of the blocks contain ‘Gate Name’ in their label.  

This is because the text entered in the ‘Gate Name’ field of the interface window is 

inserted into the queue and blockage names used by the logic blocks to differentiate those  

queues and blockages from ones in other ‘Vehicle Input v2’ and ‘Container Input v2’ 

template blocks.  Therefore, it is important that the text in the ‘Gate Name’ field be 

 

 

Figure 25.  Vehicle Input v2 Template Interface Window 
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unique for every instance of input block.  ‘Increment Size’ refers to the time interval for 

the ‘Create’ block in the switch variable series of logic.  Recall from above that this was 

set to 1 second to correspond to the federation time step interval.  The ‘Switch Variable’ 

field is where the name for the global variable corresponding to the specific truck or 

container creation switch variable is entered.  The ‘Entity’ field in the interface window 

allows the user to specify what type of entity is created by the ‘Vehicle Input v2’ block. 

 

3.3.1.2  Distribution Center Submodel 

Now that the complete GCT Gate submodel has been explained, this section will 

describe the logical structure of a Distribution Center submodel.  As the basic structure of 

each of the three distribution centers is the same, this discussion can be applied to all 

distribution centers.  For purposes of discussion, however, this section will specifically 

consider Distribution Center 1.  Also, many of the fundamental logical process series that 

were described in the GCT Gate submodel have been reconfigured and reused in the 

Distribution Center submodels.  Therefore, to avoid redundancy, this discussion will not 

be as detailed as the GCT Gate submodel discussion.   

The Distribution Center submodel consists of two general functions.  The first 

function is to receive, route, batch and rerelease containers and trucks. This function is 

called the Incoming/Outgoing function.  The second function is to release, or reroute, 

unneeded empty trucks back to the roadway network model federate.  This second 

function is called the Rerouting function.  Figure 26 shows these two functions and the 

series of logical processes constituting both functions.   
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Within the first function there are four processes.  The first process is triggered by 

the RTI to create truck and container entities and assign attribute values to those entities.  

This simulates an arrival at the Distribution Center submodel.  The second process routes 

container and truck entities to their appropriate queues.  Container entities continue to 

follow the solid arrow to the third process (which references Figure 29) which batches 

 

 

Figure 26.  Distribution Center Submodel Logical Series Overview 

 

them with outgoing truck entities that are waiting in queues.  Truck entities follow the 

dashed arrows.  The fourth process (which references Figure 30) determines whether 

there is a sufficient number of trucks in the Distribution Center submodel’s queue.  If 

there is not a sufficient number of trucks, truck entities are sent up to the third process for 

batching with outgoing container entities.  If there is a sufficient number of trucks in the 

submodel truck queue, excess or unneeded trucks are sent to the logic process associated 

with the rerouting function. 

The second function consists of one process that releases, or reroutes, unneeded 

empty trucks to the roadway network model federate.  Unneeded port trucks are released 
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to the roadway destined for the port and unneeded long-distance road trucks are destined 

for the I-16 Junction. 

 

3.3.1.2.1  Distribution Center Entering Vehicle Creation 

When a truck in the roadway network model approaches the end of the destination 

link associated with Distribution Center 1, it triggers a series of commands in the RTI.  

The RTI first collects the attribute values from the federation database associated with the 

specific truck entering the Distribution Center 1 submodel.  It then writes those attribute 

values to a set of unique global variables in the Arena© port model federate that are 

specifically associated with trucks and containers entering Distribution Center 1.  The 

RTI then changes a “switch variable” in the distribution center submodel from 0 to 1 to 

trigger container and/or truck entity creations in the submodel.  The logic blocks for 

entering truck and container entity creations at Distribution Center 1 are shown below in 

Figure 27.  Note that the structure of these truck and container creation processes within 

the distribution center submodel are identical to those which were described in subsection 

3.3.1.1.2 above for the GCT Gate submodel.  The momentary change in switch variable 

 

 

Figure 27.  Distribution Center Submodel Entering Vehicle Creation 
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value from 0 to 1 triggers the ‘Container Input v2’ and ‘Vehicle Input v2’ blocks to create 

container and truck entities, respectively.   

A created entity, for example a container, then proceeds to the first VBA block (in 

this case the VBA 36 block) which resets the switch variable for the corresponding input 

block immediately from 1 to 0 to prevent duplicate entity creations.  The container entity 

then proceeds to the Count block (in this case Count block ‘Dist1_Cont_Creation’) 

which increments a counter internal to Arena©.  The entity then proceeds to the second 

VBA block (the VBA 33 block) which assigns the attribute values to the entity that were 

collected by the RTI from the federation database and are currently being held in the 

unique set of global variables for the Distribution Center submodel. The container entity 

then proceeds to the third VBA block (the VBA 32 block) which resets the unique global 

variable set values to zero.  Again, these processes are nearly identical to those described 

for the GCT Gate submodel in section 3.3.1.1.2, differing only in that the global variables 

used are unique to the specific distribution center submodels. 

3.3.1.2.2  Distribution Center Submodel Vehicle and Container Routing 

After the entities have been created and assigned attribute values, they proceed to 

a series of logic blocks that direct the entities to the proper queues to await batching.  

This series of logic is shown in Figure 28.  Container entities first proceed to the Assign 

block ‘origin_id’ which assigns an ‘origin_id’ attribute value to the container entity equal 

to that which is associated with the distribution center; in this case the new ‘origin_id’ 

attribute value is equal to 1.  This ensures that the next time the container entity is 

batched with a truck and “passed” to the roadway model federate, its ‘origin_id’ attribute 

value reflects the distribution center it is currently leaving. 
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Figure 28.  Distribution Center Submodel Entity Routing 

 

The container entity then proceeds to the Decide block ‘Destination DistCtr1 or 

Other.’  This Decide block evaluates the container entity’s ‘Destination ID2’ attribute 

value, to determine if the container’s second (and in this case, final) destination is 

Distribution Center 1, or it has some other second destination (as the distribution centers 

are intended to only serve as intermediate destinations, this Decide block serves primarily 

as a fail-safe in the event that a container is erroneously assigned a final destination at 

one of the distribution centers).  If the statement [Destination ID2 = 1] is true, the entity 

proceeds to the Dispose block ‘Dispose 117.’  If the statement is found to be false, the 

entity proceeds to the Decide block ‘Decide 165.’  This Decide block evaluates the 

entity’s ‘Destination ID2’ attribute value to determine if the second destination is long-

distance trucking.  If the statement [Destination ID2 ≠ 6] is true, meaning that the 
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container’s next destination is the GCT or another distribution center, then the container 

entity proceeds to the Delay block ‘900,’ where the container is delayed for some user-

input time interval (in this case 900 seconds, or 15 minutes) to simulate unloading time.  

The container entity then proceeds to the Queue block ‘Dist1_ContToOther_Queue’ to 

await batching with a port truck.  However, if the Decide block ‘Decide 165’ finds the 

statement [Destination ID2 ≠ 6] to be false, meaning that the container’s next destination 

is the I-16 Junction, then the container entity proceeds to the Delay block ‘900.’  Again, 

this block delays the container for some user-input time interval (in this case 900 

seconds, or 15 minutes) to simulate unloading time.  The container entity then proceeds 

to the Queue block ‘Dist1_ContToRoad_Queue’ to await batching with a road truck.  

Truck entities first proceed to the Decide block ‘Decide 163’ where their 

‘Vehicle_Type’ attribute value is evaluated to determine whether it is a long-distance 

road truck or a port truck.  If the statement [Vehicle_Type = 2] is found to be true, 

meaning that the entity is a port truck, it then proceeds to the Delay block ‘900’ for a 

user-input unloading delay time interval (in this case 900 seconds, or 15 minutes) to 

simulate unloading time.  The truck entity then proceeds to the Route block ‘Route to Sta 

131 Port Queue’ where it is routed to the port truck queuing/rerouting logic (this will be 

discussed in the next section).  

Conversely, if the Decide block ‘Decide 163’ finds the statement (Vehicle_Type 

= 2) to be false, meaning that the entity is a long-distance road truck, it proceeds to the 

Delay block ‘900’ for a user-input unloading delay time interval (in this case 900 

seconds, or 15 minutes) to simulate unloading time.  The truck entity then proceeds to the 
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Route block ‘Route to Sta 130 Roadway Queue’ where it is routed to the road truck 

queuing/rerouting logic.   

Note that Figure 28 also shows a Station block ‘Station 141’ upstream from the 

Decide block ‘Decide 163.’  This block receives truck entities from the Vehicle Diffusion 

module which recreates truck objects that have been erroneously deleted in the VISSIM© 

roadway model federate.  The construction and reason for the Vehicle Diffusion module 

is discussed later in subsection 3.3.1.4.  For now, this Station block can simply be 

considered an alternate entry point for truck entities entering the GCT Gate submodel.     

 

3.3.1.2.3  Distribution Center Submodel Queuing/Rerouting 

When a truck entity leaves the Route block ‘Route to Sta 131 Port Queue’ (shown 

in Figure 28), it is received by the Station block ‘Station 131,’ shown in Figure 29.  From 

the Station block ‘Station 131,’ the port truck entity next proceeds to the Decide block 

‘Route Directly to Port.’  This Decide block evaluates the number of trucks present in 

Distribution Center 1’s port truck Queue block, also shown in Figure 29.  If the number  

 

 

Figure 29.  Distribution Center Submodel Vehicle Queuing/Rerouting Logic 
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of idle port trucks in the queue is sufficiently large, the truck entity at this Decide block 

proceeds to the Count block ‘Dist1_Rerouted_PortTruck’(which increments a counter 

internal to Arena© denoting the number of port trucks that Distribution Center 1 has 

rerouted to the GCT during simulation) and then to the Route block ‘Route to Stat 132 

Port Reroute Road.’ The Route block then sends the empty truck entity to a series of 

rerouting logic (this logic will be described in Section 3.3.1.2.5).  The rerouting logic will 

release the empty truck to the roadway network model federate, bound for the port, where 

it will replenish the supply of port trucks in the GCT Gate submodel port truck queue.  

However, if the Decide block finds that the Distribution Center 1 port truck queue is 

sufficiently small, then the truck entity proceeds to the port truck Queue block to await 

batching with outgoing container entities.  The statement that the Decide block ‘Route 

Directly to Port’ evaluates is [NQ(Dist1_PortVeh_Queue) >= X], where 

NQ(Dist1_PortVeh_Queue) is the number of trucks in the Distribution Center 1 

submodel port truck queue and X is a user-defined value representing the minimum 

acceptable number of trucks for that queue. 

Long-distance road truck entities that are sent from the Route block ‘Route to Sta 

130 Roadway Queue’ shown in Figure 28 encounter a series of logic identical to that 

described above for port truck entities.  The only difference is that the queue evaluated in 

the analogous Decide block is the Distribution Center 1 submodel road truck queue, not 

the port truck queue.   
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3.3.1.2.4  Distribution Center 1 Submodel Outgoing Vehicle Logic 

If the truck and container entities are not rerouted directly to the port, but remain 

at Distribution Center 1, they next proceed to a series of logic that batches truck and 

container entities for release to the roadway network model federate.  This logic is  

shown in Figure 30.  Note that this logic is identical to that which was described for 

outgoing truck/container batched pairs in the GCT Gate submodel in Section 3.3.1.1.1.  

As such, a detailed description of the processes shown in Figure 30 will not be conducted 

 

 

Figure 30.  Distribution Center 1 Submodel Outgoing Vehicle and Container Logic 

 

However, it should be noted that a different set of unique global variables are used by this 

submodel than were used by the GCT Gate submodel for the collection of entity attribute 

values by the RTI. 

 

3.3.1.2.5  Distribution Center 1 Submodel Vehicle Rerouting Logic 

If the Distribution Center 1 port and/or road truck queues are found to be 

sufficiently large (see logic in Figure 29, Section 3.3.1.2.3), truck entities are sent to a 
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series of logic blocks that reroutes these excess, empty trucks to the GCT Gate submodel 

by “passing” them to the roadway model federate bound for the GCT.  This logic is 

shown in Figure 31.   Truck entities are received at the Station block ‘Station 132’ and 

immediately proceed to the Decide block ‘True if Veh Type is Port1.’  This Decide block 

evaluates the truck entity’s ‘Vehicle_Type’ attribute value.  If the vehicle type is equal to 

2, meaning that it is a port truck, the entity is proceeds to the Assign block ‘Assign Dist 1 

to Port.’  If the vehicle type is not equal to 2, meaning that it is a long-distance road truck, 

the truck entity proceeds to the Decide block ‘Decide 168.’   

 

 

Figure 31.  Distribution Center 1 Submodel Vehicle Rerouting Logic 

 

Truck entities that proceed to the Assign block ‘Assign Dist 1 to Port’ are 

assigned an attribute called ‘Reroute_Destination’ with a value of 7.  Note that the value 

7 corresponds to the ‘Destination ID’ value associated with the GCT.  All other truck 

entities proceed to the Decide block ‘Decide 168,’ which evaluates the length of the road 

truck queue in the GCT Gate submodel.  If the queue is sufficient in length, meaning that 

the road truck is not needed back at the GCT, it proceeds to the Assign block ‘Assign 

Dist 1 Road to Road’ where it is assigned a ‘Reroute_Destination’ attribute value equal to 
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6 for routing to the I-16 Junction.  If the number of road trucks in the GCT Gate 

submodel queue is found to be sufficiently small, the truck entity proceeds to the Assign 

block ‘Assign Dist 1 to Port’ where it is assigned a ‘Reroute Destination’ attribute value 

equal to 7 for routing to the GCT.  The statement that the Decide block evaluates is 

[NQ(Port_RoadVeh_Queue) >= X], where NQ(Port_RoadVeh_Queue) is the number of 

trucks in the GCT Gate submodel  road truck queue. The variable X is a user-defined 

value representing minimum acceptable road truck queue length for the GCT Gate 

submodel. 

After being assigned a reroute destination attribute value at one of the three 

Assign blocks, the truck entities then proceed to the VBA 37 block.  This block functions 

similarly to the VBA 13 block described in section 3.3.1.1.3, and shown in Figure 20, by 

writing the truck entity’s attribute values to a unique set of global variables for collection 

by the RTI.  When the VBA 37 block executes its commands and the attribute values are 

written to the global variable set, it triggers a series of commands in the RTI that creates a 

truck in the VISSIM© roadway network model federate on the link associated with 

Distribution Center 1.  The VBA commands executed by the VBA 37 block are similar to 

those of the VBA 13 block shown in Figure 20.   

The truck entity then proceeds to the Delay block where it is delayed for 1 second 

to ensure that the RTI has full one time-step during which to collect the entity attributes 

values that were written to global variables by the previous VBA block.  The truck entity 

then proceeds to the VBA 38 block which executes a series of commands to reset to zero 

the value of the global variables written by the VBA 37 block.  The commands that this 

VBA block executes are similar to those of the VBA 14 block shown in Figure 20 for the 
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GCT Gate submodel.  The truck entity then proceeds to the Dispose block ‘Dispose 119’ 

where it is disposed of.   

 

3.3.1.3  I-16 Junction Submodel 

The I-16 Junction submodel serves as the terminus for long-distance road trucks 

in the Arena© port model federate.  This is because it is the point at which road trucks 

enter or leave the local highway and surface road network from or for the interstate 

highway system.  Therefore, it has two primary functions.  First, the I-16 Junction 

submodel generates long-distance roadway truck traffic, both trucks carrying containers 

as well as empty trucks.  Second, the submodel receives trucks leaving the roadway 

network model federate to enter I-16 Junction submodel, and therefore the interstate 

highway system.  There are three functions in the I-16 Junction submodel: to simulate the  

 

 

Figure 32.  I-16 Junction Submodel Logical Series Overview 
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generation of trucks with containers from the interstate highway system, to simulate the 

generation of empty trucks from the interstate highway system, and to receive incoming 

trucks that are leaving the roadway network model federate to enter the interstate 

highway system.  Figure 32 shows these three functions.   

The first function, labeled “Vehicles & Containers Generated at I-16,” generates 

outgoing truck and container entities and consists of two processes.  Within this function, 

the first process generates container and truck entities and assigns attribute values to 

those entities.  The second process batches the outgoing container and truck entities 

together.  It then triggers the RTI to pass that entity to the roadway network model 

federate and then disposes of the batched pair. 

The second function, labeled “Empty Vehicles Generated at I-16,” generates 

outgoing empty trucks consists of two processes.  Within this function, the first process 

generates truck entities and assigns attribute values to those entities.  The second process 

triggers the RTI to pass the entity to the roadway network model federate and then 

disposes of the truck entity. 

The third function, labeled “Vehicles & Containers Leaving to I-16” consists of 

only one process.  When triggered by the RTI, this process creates container and truck 

entities to simulate receiving of incoming containers and trucks from the roadway 

network model federate.  It then disposes of these entities as the I-16 Junction is a 

terminal destination within the federation. 
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3.3.1.3.1  I-16 Junction Submodel Truck with Container Generation from Interstate Logic  

The first function of the I-16 Junction submodel is to generate road trucks 

carrying containers to simulate their arrival from the interstate highway system.  Figure 

33 shows the first set of logic blocks in this process.  The Create block ‘Create Road 

Combos’ creates a generic entity using a random exponential distribution for inter-arrival 

time.  Note that this Create block generates only one entity per truck/container arrival.  

Because this Create block is set to create entities according to an exponential interarrival 

rate of several seconds or minutes (the average rate is a user-defined value), it was found 

during preliminary testing of the model that entities were occasionally created with an 

interarrival time of less than one second (i.e., less than one individual time-step of the 

federation).  Therefore, it was found that a series of logic blocks is necessary to ensure 

that only one entity is processed by the Vehicles & Containers Generated at I-16 function 

of this submodel per each one second time-step of simulation time.  Therefore, the newly 

 

 

Figure 33.  I-16 Junction Submodel Truck-Container Generation 
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created single generic entity then proceeds to a sequence of three blocks that prevent 

multiple entities entering the system during one single time-step: the Queue block 

‘ComboQueue,’ the Proceed ‘Combo_create_Block,’ and the Block block 

‘Combo_Create_Block.’  The entity first enters the Queue block.  If the Proceed block 

downstream has a blockage of zero (recall from earlier that the Proceed block functions 

as a gate, and that a zero value indicates the gate is “open”), then the entity proceeds 

through the Proceed block and on to the Block block.  As the entity passes through the 

Block block, it creates a blockage at the upstream Proceed block, preventing subsequent 

entities from passing.   

The entity then proceeds to the Branch block, which serves to simultaneously 

duplicate the generic block into two generic entities, sending one to each of the two 

output branches.  Creating one entity at a time and immediately duplicating that entity, as 

opposed to using two Create block – one to create truck entities and one to create 

container entities – ensures that the truck and corresponding container are created 

simultaneously and according to the same inter-arrival time.   

The first entity then proceeds to the Assign block ‘Road Assign ContainerID and 

DestinationID.’  The first action of the Assign block is to assign the entity type to be a 

container entity.  The second action of the Assign block is to assign a ‘Container ID’ 

attribute value.  To ensure that all Container ID numbers are not duplicated, the Assign 

block first increments an internal global variable value called ‘Container Counter’ by 

assigning it a new value equal to [‘Container Counter’ + 1].  The Assign block then 

assign the entity’s ‘Container ID’ attribute value to be equal to the global variable 

‘Container Counter,’ which has just been incremented by one since the previous 
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container.  The Assign block then assigns an ‘Origin ID’ attribute value equal to six (the 

Destination ID corresponding to the I-16 Junction, see Table 1) and ‘Destination ID’ and 

‘Destination ID2’ attribute values.  The ‘Destination ID’ and ‘Destination ID2’ attributes 

are assigned according to a user-input discrete distribution.  An example for this would 

be to assign distribution center ‘Destination ID’ values each with a 30 percent occurrence 

and to assign a GCT ‘Destination ID’ value with the remaining 10 percent occurrence.  

The container entity then proceeds to its corresponding Queue block. 

Entities from the second branch of the Branch block proceed to the Assign block 

‘Road Assign Roadway VehicleID and Vehicle_Type.’  This block first assigns the entity 

type to be a truck entity.  The Assign block then similarly increments a global variable 

called ‘RoadVehicleIncrement’ by a value of one.  It then assigns the entity a ‘Vehicle 

ID’ attribute value equal to the global variable ‘RoadVehicleIncrement.’  Finally, the 

Assign block assigns the ‘Vehicle_Type’ attribute value equal to one, denoting a long-

distance roadway truck.  The truck entity then proceeds to its corresponding Queue 

block.   

From this logic, the container and truck entities next proceed to a series of logical 

blocks identical to those described in Section 3.3.1.1 that properly batches the container 

and truck entities, writes their respective attribute values to unique global variables 

specific to the I-16 Junction submodel for collection by the RTI, and triggers the RTI to 

create the truck/container batched pair in the roadway network model federate.  This 

logic is shown in Figure 34.  The only variations between this logic and that described in  

Section 3.3.1.1, other than different blockage names and unique global variable sets, 

occurs once the entity leaves the Unblock block ‘Road_ContToRoad_Block.’  Recall 
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Figure 34.  I-16 Junction Submodel Container and Vehicle Batching Logic 

 

the discussion that the Create block shown in Figure 33, which utilized an exponential 

function for interarrival rates, occasionally created more than one entity within a single 

one-second time-step.  In Figure 33, a blockage was created at the Proceed block 

‘Combo_Create_Block.’  Therefore, once the truck/entity pair leaves the Unblock block 

shown in Figure 34, it first proceeds to the Count block ‘Interstate_ContVeh_Added’ 

which increments a counter internal to Arena©, and then to a Delay block.  At the Delay 

block, the entity pair is delayed for two seconds to ensure that at least one time-step of 

the model elapses.  Then the entity pair proceeds to the Unblock block 

‘Combo_Create_Block’, which resets to zero the blockage at the Proceed block shown in 

Figure 33.  This enables the next entity in the upstream Queue to proceed for branching 

and batching, ensuring that this occurs in a subsequent time step.  This familiar logic will 

not be described in detail, but is shown in Figure 34.   
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3.3.1.3.2  I-16 Junction Submodel Truck Generation From Interstate Logic 

The second function of the I-16 Junction submodel generates trucks without 

containers to simulate the arrival of empty trucks from the interstate highway system.  

Figure 35 shows the first set of logic pertaining to the generation of empty trucks.  Truck 

entities are first created at the Create block ‘Create Empty Road Veh.’  As discussed 

above in subsection 3.3.1.3.1, the exponential interarrival of entities from the Create 

block occasionally creates two entities within a single time-step.  Therefore, truck entities 

next proceed to a series of three blocks (a Queue block, a Proceed block, and a Block 

block) that ensure only one entity proceeds through the downstream logical processes per 

each time step.  These three block function exactly the same as those shown in Figure 36 

and described in subsection 3.3.1.3.1.   

 

 

Figure 35.  I-16 Junction Submodel Empty Truck Generation 
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Truck entities then proceed to the Assign block ‘Veh ID and Veh Type.’  Similar 

to the truck/container creation submodel component discussed immediately above in 

Section 3.3.1.3.1, this assign block first increments the same global variable  

 ‘RoadVehicleIncrement’ by one.  It then assigns the entity a ‘Vehicle ID’ attribute value 

equal to the newly incremented ‘RoadVehicleIncrement’ variable value.  It then assigns a 

‘Vehicle_Type’ attribute value equal to one, denoting a long-distance road truck.   

The truck entity then proceeds to the Decide block ‘Decide Port.’  The routing 

decision at this Decide block is ‘2-Way by Chance’ with a user-defined “true” probability 

value.  For example, if the value is set to 10 percent, then there is a 10 percent probability 

that the entity will be directed towards the Assign block ‘Assign Port.’  Truck entities 

that proceed to the Assign  block ‘Assign Port’ are assigned a ‘Reroute_Destination’ 

value equal to seven, the Destination ID corresponding to the GCT.   

All other entities are directed towards the Decide block ‘Decide 161.’  The 

Decide block ‘Decide 161’ has three output branches and directs entities to each output 

point with a uniformly random one-third probability.  From the Decide block ‘Decide 

161,’ entities proceed to one of three Assign blocks: ‘Assign Dist Ctr 1,’ ‘Assign Dist Ctr 

2,’ and ‘Assign Dist Ctr 3.’  These three Assign blocks assign ‘Reroute_Destination’ 

attribute values equal to one of the three corresponding distribution centers ‘Destination 

ID’ values, respectively. 

The truck entity then proceeds to the final series of logic that writes its attribute 

values to a unique series of global variables specific to empty trucks exiting the I-16 

Junction submodel.  This logic is shown in Figure 36.  The sequence of three blocks VBA 

24, Delay, and VBA 25 function identically to those in the empty truck rerouting logic 
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for the distribution center submodel to write exiting entity attribute values to a unique 

global variable set for collection by the RTI (detailed in Section 3.3.1.2.5 and shown in 

Figure 31).  The Count block ‘Interstate_EmptyVeh_Added’ increments a counter 

internal to Arena© which counts the number of empty road trucks created at the interstate 

during simulation.  Truck entities then proceed to a two second Delay block and the 

Unblock block ‘Empty_Create_Block.’  Similar to the discussion in subsection 3.3.1.3.1 

and Figure 34, these blocks delay and then resets to zero the blockage at the upstream 

Proceed block ‘Empty_Create_Block’ (shown in Figure 35) which ensures that only one 

container is processed by the logic during each individual time step.  Entities then 

proceed to the Dispose block ‘Dispose 116’ where they are deleted. 

  

 

Figure 36.  I-16 Junction Submodel Empty Truck Global Variable Logic 

 

3.3.1.3.3  I-16 Junction Submodel Truck Exiting to Interstate Logic 

The final component of the I-16 Junction submodel concerns receiving trucks and 

containers exiting from the roadway network submodel to the interstate highway system 

at the I-16 junction interaction point.  This series of logic is shown in Figure 37.  Note  
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Figure 37.  I-16 Junction Submodel Incoming Vehicle Generation 

 

that this logic is nearly identical to that detailed in Section 3.3.1.1.2 and shown in Figure 

14 concerning generation of incoming trucks and containers in the GCT Gate submodel.  

Accordingly, this logic will not to be discussed again in detail in this section.   

The only variation between this logic and that in the GCT submodel shown in 

Figure 14 is the addition of the Station block ‘Station 144.’  The Station block ‘Station 

144’ receives truck entities from the Vehicle Diffusion module which recreates truck 

objects that have been erroneously deleted in the VISSIM© roadway model federate.  

This will be discussed later in subsection 3.3.1.4.   

Also, instead of routing these incoming truck and container entities to other 

submodels within the port model federate, they are disposed of at the end of the logic 

series as the interstate is a terminal destination. 
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3.3.1.4  Vehicle Diffusion Module 

Occasionally during simulation runtime, VISSIM© deletes, or “diffuses,” 

deadlocked vehicles.  Vehicles can become deadlocked for a number of reasons, such as 

excessive lane-changing delay or passage beyond the “emergency stop position.”  

Therefore, to prevent unrealistic delays that are more a reflection of a modeling limitation 

than real-world scenarios, VISSIM© intentionally diffuses these deadlocked vehicles 

(i.e., removes them from the network) after some user-defined deadlock interval has 

elapsed.  Vehicle diffusion, as it as it occurs in the VISSIM© roadway network model 

federate, will be discussed in greater detail in section 3.3.4.4.1.   

While vehicle diffusion accounts for only a small percentage of all trips in the 

VISSIM© model federate, it can have a significant impact where trucks are a reusable 

resource.  In other words, if 100 port vehicles are created during initialization of the 

federation, and 10 of these vehicles become diffused over the course of several days of 

simulation time, the initial resource of 100 reusable port vehicles dwindles over the 

course of simulation.  The purpose of the Vehicle Diffusion Module is to recreate both 

port and road trucks as they are diffused, during simulation runtime, to effectively 

replenish the port and road truck resources.  Note that the Vehicle Diffusion Module will 

not recreate the truck in the roadway network, but instead recreates that truck in the 

Arena© port model federate at the port submodel to which it was destined.   

During simulation runtime, the RTI first determines if a port or road truck has 

been diffused during the previous time-step (this will be discussed in section 3.3.2.2).  If 

the RTI finds that a port or road truck has been diffused during the previous time step, it 

recreates that truck object in the Vehicle Diffusion Module using the logic shown below 
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in Figure 38.  The RTI first collects all attribute information corresponding to the 

diffused truck from the federation database.  It then writes that information to a unique 

set of variables specific to the Vehicle Diffusion Module.  The RTI then resets the value 

of a unique switch variable from 0 to 1.  This causes a truck entity to be created at the 

‘Vehicle Input v2’ block.  The truck entity first proceeds to the VBA 68 block which 

resets the switch variable value to 0 to prevent erroneous duplicate entity creations at the 

‘Vehicle Input v2’ block.  The truck entity then proceeds to the Count block 

‘Dispersion_Counter’ which increments a counter internal to Arena© that counts the 

number of vehicles diffused during simulation.  The truck entity then proceeds to the 

VBA 69 block which assigns that entity all of the relevant attribute values that are 

currently being held in the unique global variable set specific to the Vehicle Diffusion 

Module. 

 

 

Figure 38.  Vehicle Diffusion Module Vehicle Generation Logic 

 

If the RTI has determined that the truck that was diffused during the previous time 

step was carrying a container, it resets a unique switch variable from 0 to 1 which causes 

a container entity to be created at the ‘Container Input v2’ block.  The container entity 
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then proceeds to the VBA 70 block, which executes two commands.  First, it resets the 

switch variable value to 0 to prevent erroneous duplicate entity creations at the 

‘Container Input v2’ block.  Second, the block assigns the container entity a 

‘Vehicle_Type’ attribute value equal to that currently being held in the unique set of 

global variables.  Note that while the container does not actually have a certain vehicle 

type, by assigning it a ‘Vehicle_Type’ attribute value for the vehicle upon which it was 

being transported when it was diffused, we can ascertain if it was on a port or road truck. 

The container entity then proceeds to the Dispose block ‘Dispose 130’ where it is 

disposed of. 

Two important notes should be made about the Vehicle Diffusion Module thus 

far.  First, it is important that the global variables ‘road_ut_cont’ and ‘port_ut_cont’ are 

both incremented by minus one.  Doing so ensures that there is not an inaccurate and 

erroneous gradual increase in the number of containers indicated to be in the roadway 

network over the course of simulation.  Second, the Vehicle Diffusion Module is 

primarily concerned with maintaining the reusable road and port truck resources during 

simulation.  As containers are not a reused resource during simulation (they travel to an 

intermediate and then final destination, after which they are deleted from the federation) 

they are simply disposed of once the aforementioned global variables are incremented by 

minus one.  However, as will be discussed later, diffusion of both the truck and container 

objects are logged in the federation database.   

Once truck entities leave the VBA 69 block shown in Figure 38, they proceed to a 

series of logic that directs them to the submodel that they were originally destined for 
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when they were diffused in the roadway network model federate.  This next series of 

logic is shown in Figure 39. 

The truck entity first proceeds to the Decide block ‘Decide 184’, which evaluates 

the truck entity’s ‘Dispersion_Destination’ attribute value.  The RTI has simply set the 

‘Diffusion_Destination’ value equal to either the truck entity’s ‘Reroute_Destination’ 

attribute value (in the case of an empty truck being diffused) or the container entity’s  

 

 

Figure 39.  Vehicle Diffusion Module Vehicle Routing Logic 

 

‘Destination_ID’ attribute value (in the case that the diffused truck was carrying a 

container).  This allows the Vehicle Diffusion Module to direct the truck entity to the 

correct submodel.  If the truck entity’s ‘Diffusion_Destination’ value is found to be equal 

to 7 (indicating that it is a port truck originally destined for the GCT), then the truck 
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entity proceeds to the Route block ‘Send to Port’.  This routes the truck entity to the 

Station block ‘Station 145’ located in the GCT Gate submodel, and shown in Figure 18.   

If the truck entity’s ‘Diffusion_Destination’ value is found to be equal to 6 

(indicating that it is a road truck originally destined for the I-16 Junction), then the entity 

proceeds to the Route block ‘Send to Road.’  This routes the road truck entity to the 

Station block ‘Station 144’ located in the I-16 Junction submodel, and shown in Figure 

37.  If the truck entity’s ‘Diffusion_Destination’ value is found to be equal to 1, 2, or 3, 

then the entity proceeds to the Route block associated with Distribution Center 1, 2, or 3, 

respectively.  For the example of a ‘Diffusion_Destination’ value equal to 1, the entity 

proceeds to the Route block ‘Send to Dist 1.’  This Route block routes the truck entity to 

Station block ‘Station 141’ located in the Distribution Center 1 submodel, and shown in 

Figure 28.   

Once diffused trucks are routed to the appropriate submodel within the port model 

federate, they are processed as arriving trucks and directed to the appropriate queue to 

await batching with outgoing container objects.  Therefore, the supply of both road and 

port trucks are continually replenished during runtime as truck objects are periodically 

diffused during simulation.    

 

3.3.2  Visual Basic Runtime Infrastructure 

  The federation RTI was implemented in Microsoft Visual Studio 2005© using 

the Visual Basic© general purpose programming language.  This section describes in 

detail the structure and command coding of the runtime infrastructure.  Relevant portions 
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of the command code will be provided in the description below and the code in its 

entirety is contained in Appendix A. 

The general structure and execution of the RTI occurs in five steps.  Step one, the 

RTI advances the simulation clock for VISSIM© by one time step – in this study’s 

model, the time step interval is 1 second.  Step two, the RTI checks each transaction point 

(Figure 4) for trucks leaving the VISSIM© roadway network model to enter the Arena© 

port model.  If there are trucks present at one or more of the interaction points, 

information is exchanged between federates, via the RTI, and the trucks are passed to the 

Arena© port model.  Step three, the RTI advances the Arena© port model simulation 

clock to match that of the VISSIM© model.  Because Arena© is event based, it may 

execute many events or no events in the 1 second during which it advances its simulation 

clock to match the time of the VISSIM© simulation clock.  Step four, the RTI determines 

if any port or road trucks were diffused within the VISSIM© roadway network model 

during the previous time-step.  If a vehicle was diffused during the previous time-step, 

the RTI signals the Arena© port model to recreate that port or road truck (and container if 

one was being carried on the diffused truck) in the Vehicle Diffusion Module. Step five, 

the RTI checks each transaction point (Figure 4) for a truck in one or more of the Arena© 

port submodels entering the roadway network model.  Again, if a truck is present at one 

or more of the interaction points, information is exchanged between the federates, via the 

RTI, and the trucks are passed to the VISSIM© roadway network model.   

The advancement of simulation time in the RTI is coded as a continuous loop, 

called the “simulation loop.”  Therefore, after the execution of the fifth step outlined 

above, the simulation loops to continue at step one for the next federation time step in the 
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simulation loop.  This continuous looping from the fifth step back to the first continues 

until a user-defined time (terminating condition) is reached. 

   

3.3.2.1  Time Management 

Four integer variables are declared in the RTI concerning time: (1) ‘Time,’ (2) 

‘DurationTime,’ (3) ‘aTime,’ and (4) ‘fTime.’  The variable ‘Time’ is used in the 

advancement of the federation simulation loop.  The variable ‘DurationTime’ is used to 

define the overall duration of the simulation currently being executed.  The variable 

‘fTime’ is the VISSIM© simulation clock time.  The variable ‘aTime’ is the Arena© 

simulation clock time.  As the Arena© simulation clock essentially advances through as 

many events as is necessary to catch up to the previous time-step of the VISSIM© 

simulation clock, the VISSIM© time is the master simulation time, or federation time – 

hence ‘fTime.’   

Figure 40 shows the excerpted commands from the RTI code that advance time in 

the federation.  The variables are first dimensioned as ‘Long’ integers.  The simulation 

loop is then set to run from ‘Time’ equals 1 to ‘Time’ equals ‘simulation.Period’ or 

‘DurationTime.’  The ‘simulation.RunSingleStep()’ command then advances VISSIM© 

one, one-second time-step.  The variable ‘fTime’ is then set equal to the current 

VISSIM© simulation clock elapsed time.  A ‘While’ loop then advances the Arena© 

simulation clock, or ‘aTime,’ as many event-based steps as are necessary for it to become 

equal to ‘fTime.’  Then, the loop continues for the next integer value of ‘Time’ and the 

process repeats.  These are effectively steps 1 and 3 of the RTI process discussed above.  

Step 2, in which the RTI checks for trucks at the interaction points leaving the roadway 
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Figure 40.  RTI Time Advancement Code 

 

network model, occurs just prior to the ‘While’ statement.  Steps 4, where the RTI checks 

for diffused vehicles, and step 5, where the RTI checks for trucks at the interaction points 

leaving the port model to enter the roadway network model, occur immediately following 

the ‘End While’ statement and prior to the ‘Next’ statement that causes the loop to repeat 

for the next integer value of ‘Time.’     

 

3.3.2.2  Object Management and Passing Objects Between Federates 

As shown in Figure 4, there are five transaction points where trucks can pass 

between federates: Distribution Centers 1-3, the GCT Gate, and the I-16 Junction.  The 

RTI code for incoming trucks (those entering one of the Arena© federate port submodels 

from the roadway network model federate) at each of these transaction points is nearly 

identical.  Similarly, the RTI code for outgoing trucks (those exiting one of the Arena© 

federate port submodels for the roadway model federate) at each of these transaction 

points is also nearly identical.  The differences in RTI coding among the five interactions 

Dim Time As Long     
Dim DurationTime As Long 
Dim aTime As Long    
Dim fTime As Long 
Simulation.Period = DurationTime 
 
For Time = 1 To simulation.Period 

simulation.RunSingleStep()     
     fTime = vissim.Simulation.AttValue("ELAPSEDTIME") 
  
 
 While Int(aTime) <= fTime  
  ArenaModel.Step()  
  aTime = ArenaLanguage.RunCurrentTime  
 End While 
 
Next 
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points are primarily that each interaction point has its own unique set of RTI local 

variables that directly correspond to one of the unique sets of Arena© global variables 

described in the previous sections.   

As it is currently implemented in the RTI, the series of commands that check for 

trucks exiting the roadway network model federate and entering the port model federate 

occur before the series of commands that check for trucks exiting the port model federate.  

This ensures that no truck exiting the network in the first second of simulation time 

would be inadvertently missed.  While it is extremely unlikely that any truck would enter, 

traverse the roadway network and then be removed from the roadway network all within 

the first second of simulation, this nonetheless constitutes a best-practice effort to ensure 

simulation integrity.   

In an effort to logically describe the object-oriented movement of a 

truck/container entity through the model from origin to destination, the exchange of a 

truck being passed from the port model to the roadway network model will be discussed 

first.  Then the exchange of a truck exiting the roadway network model being passed back 

to the port model will be discussed.  As mentioned, these processes actually occur in the 

reverse order during execution. 

 

3.3.2.2.1  RTI Management of Port Model to Roadway Model Entity Exchange 

After the Arena© simulation clock is advanced so that its time matches that of the 

VISSIM© simulation clock, the RTI checks to see if there are any trucks exiting the port 

model and entering the roadway model.  This is done sequentially, first for the GCT, then 

for Distribution Centers 1, 2, and 3, and then for the I-16 Junction.  Figure 41 shows the 
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RTI code excerpt for port trucks exiting the port model at the GCT and entering the 

roadway model at that location.  Note that these commands are only for port trucks, not 

road trucks.  Recall from section 3.3.1.1.1 and Figure 8 that port trucks and roadway 

trucks are batched with containers using separate logic.  Therefore, the RTI has a separate 

series of commands governing road trucks that occur immediately after those shown in 

Figure 41. 

 

   

 

Figure 41.  RTI Commands for Vehicles Exiting Port to Roadway Model 

 
If ArenaLanguage.VariableArrayValue(5012) > 0 Then 

array5011 = ArenaLanguage.VariableArrayValue(5011) ‘‘‘‘‘‘‘‘‘container id’’’’’’’’’   
array5012 = ArenaLanguage.VariableArrayValue(5012) ‘‘‘‘‘‘‘‘‘‘vehicle id’’’’’’’’’’   
array5013 = ArenaLanguage.VariableArrayValue(5013) ‘‘‘‘‘‘‘‘‘‘vehicle type’’’’’’’’ 

    array5014 = ArenaLanguage.VariableArrayValue(5014) ‘‘‘‘‘‘‘‘‘‘destination id 1’’’’ 
     array5019 = ArenaLanguage.VariableArrayValue(5019) ‘‘‘‘‘‘‘‘‘‘destination id 2’’’’ 
     array5111 = ArenaLanguage.VariableArrayValue(5111) ‘‘‘‘‘‘‘‘‘‘origin id’’’’’’’’’’’ 
    ArenaLanguage.VariableArrayValue(5012) = 0 
   
 
 ContainerTempTable = ContainerAdapter.GetData 
     If ContainerTempTable.Rows.Contains(array5011) = True Then 

ContainerAdapter.UpdateCont(array5011, array5012, array5111,  array5014,   
array5019, 9999, aTime, array5011) 

     Else 
    ContainerAdapter.Insert(array5011, array5012, array5111, array5014, array5019, 

9999, aTime) 
    End If 
     
 
 
 VehicleTempTable = VehicleAdapter.GetData 
    If VehicleTempTable.Rows.Contains(array5012) = True Then 
    VehicleAdapter.UpdateVeh(array5012, array5013, 0, 7, array5014, 9999, aTime, 

array5011, array5012) 
   Else 
    VehicleAdapter.Insert(array5012, array5013, 0, 7, array5014, 9999, aTime, 

array5011) 
  End If 
     
 
 
 vehicle = vissim.Net.Vehicles.AddVehicleAtLinkCoordinate(array5014, 50, 50, 1, 0) 
   VehIDPort1 = vehicle.ID 
     IndexAdapter.Insert(VehIDPort1, array5011, array5012, aTime, 1) 
 
     ContainerLogAdapter.Insert(array5011, array5012, array5111, array5014, array5019, 

9999, aTime, VehIDPort1) 
     VehicleLogAdapter.Insert(array5012, array5013, 0, 7, array5014, 9999, aTime, 

array5011, VehIDPort1) 
End If 
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Recall that in the GCT Gate submodel, a truck entity arrives at the batching 

station after a container entity has already arrived at the station.  On its way from the 

Queue block to the Batch block (see Figure 8) the entity passes through the VBA 4 

block.  Before, it was explained that this block executes a series of commands that writes 

the entity’s attribute values to a set of global variables in Arena© for access by the RTI.   

In the first line of Figure 41, the statement ‘ArenaLanguage.VariableArrayValue(5012)’ 

corresponds to one of these unique global variables in the Arena© model for trucks 

exiting the GCT gate submodel.  Specifically, the VBA 4 block shown in Figure 8 writes 

the truck entity’s ‘Vehicle ID’ attribute value to the ‘5012’ global variable in Arena©, 

and this command line in Figure 41 accesses that global variable value (the ‘variable 

array value,’ or ‘array value’ of variable ‘5012’) through the built-in Arena© COM 

interface.   

Every time step of the federation (that is, every advancement of the ‘Time’ 

simulation loop), the RTI executes the ‘If’ command in the first line of Figure 41.  If it is 

found that a ‘Vehicle ID’ entity attribute value has been written to the ‘5012’ variable 

array within the last federation time step, or in other words that the variable array’s value 

is greater than zero (‘Vehicle ID’ values are always positive, non-zero integers), then the 

series of commands embedded in the ‘If-Then’ statement are executed.   If the VBA 4 

block has not received an entity and written its ‘Vehicle ID’ attribute value to the ‘5012’ 

global variable array in the last time step, the RTI moves to the next ‘If-Then’ statement 

associated with the next federation transaction point, which is not shown in Figure 41 but 

will be discussed later.  Effectively, a non-zero value of the ‘5012’ variable array relating 

to the exiting truck’s ‘Vehicle ID’ attribute value triggers the series of commands in the 
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RTI that pass the truck from the port model federate to the roadway network model 

federate. 

Recall from Figure 8 that the VBA 4 and VBA 1 blocks both write container and 

truck entity attribute values to unique global variables for access of the RTI.  Therefore, 

if the value of the ‘5012’ variable array is found to have become greater than zero in the 

last time step, the RTI first collects the the exiting truck entity’s attribute values by 

accessing these global variable arrays through the COM interface.  In this instance, these 

variable arrays are 5011, 5012, 5013, 5014, 5019 and 5111.  They are then set equal to 

local RTI variables ‘array5011,’ ‘array5012,’ ‘array5013,’ ‘array5014,’ ‘array5019,’ and 

‘array5111,’ respectively.   Note that the corresponding attribute names for each of these 

variables are commented in Figure 41 (enclosed in several series’ of quotation marks at 

the end of the second through seventh command lines) 

Next, the RTI immediately sets ‘ArenaLanguage.VariableArrayValue(5012)’ 

equal to zero.  As a non-zero value for this variable triggers the RTI to collect entity 

attribute values and to generate a truck in the VISSIM© model, immediately resetting 

this  to zero ensures that duplicate port trucks and containers are not created during the 

next time-step of the simulation loop.   

The next series of commands, starting with ‘ContainerTempTable,’ accesses and 

updates the federation database, created in Microsoft Access©.  The command 

‘ContainerTempTable = ContainerAdapter.GetData’ retrieves information from the 

databases data table that holds container data.  It then writes this data to a temporary table 

that is internal to the RTI called ContainerTempTable.  This is done using 

‘TableAdapters,’ an SQL based database query method that is built into the 
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Access©/Visual Studio© interface.  This will be discussed in greater depth in Section 

3.3.3.4. 

The next ‘If-Then’ statement checks to see if there is a row in the database with 

the current container’s ‘Container ID’ as its primary key.  If this is found to be true, then 

the RTI updates that existing entry for the container given its ‘Container ID’ value (held 

in the local variable ‘array5011’) using the ‘ContainerAdapter.UpdateCont’ command.  

This command updates the database fields using the collected local RTI variables: 

array5011, array5012, etc.  Note that this includes an entry for ‘aTime’ to timestamp the 

record in the database with the time at which the transaction occurred.  If the statement is 

false, then the RTI inserts a new line for the current container using the 

‘ContainerAdapter.Insert’ command, and related local RTI variables, to create an entry 

for the transaction. 

The next series of commands repeats for trucks the process just described for 

containers.  This starts with the ‘VehicleTempTable = VehicleAdapter.GetData’ 

command and includes the ‘If-Then’ statement.   

The next series of commands creates the truck in the VISSIM© roadway network 

model federate.  In the first line in the series, the instance ‘vehicle’ has been previously 

dimensioned as ‘Vehicle,’ the VISSIM© COM interface object for a network vehicle.  

This first line sets the generic VISSIM© vehicle object ‘vehicle’ equal to 

‘vissim.Net.Vehicles.AddVehicleAtLinkCoordinate,’ providing in parenthesis the vehicle 

type (Destination ID, or array5014), the desired speed (50 mph), the desired link number 

(50), the desired lane number on that link (1) and its x-coordinate on that link (0, 

denoting the beginning of the link).  The rationale for setting vehicle type equal to 
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‘Destination ID’ relates to the routing methods in the VISSIM© model and will be 

discussed in Section 3.3.4.2.  Nonetheless, once this command is executed, a truck is 

created in VISSIM© roadway network model federate.   

In VISSIM©, vehicle ID numbers corresponding to the vehicle objects generated 

on the roadway network are randomly assigned by VISSIM©.  These vehicle ID values 

cannot be assigned by the user or any COM interface command.  Therefore, it is 

necessary to collect the VISSIM©-assigned vehicle ID and include that in an indexing 

table in the database that relates the VISSIM© vehicle ID number with our federation 

‘Vehicle ID’ and ‘Container ID’ values pertaining to that vehicle.  For the purposes of 

discussion, the VISSIM©-generated vehicle ID will henceforth be referred to as the 

‘Index ID.’   

To extract this VISSIM©-generated ‘Index ID,’ the command ‘VehIDPort1 = 

vehicle.ID’ collects the VISSIM©-assigned vehicle ID and sets it equal to an RTI local 

variable called ‘VehIDPort1.’  Then, the next command, 

‘IndexAdapter.Insert(VehIDPort1, array5011, array5012)’, inserts a row entry into an 

indexing table in the database.  Note that the first entry in the row (its primary key) is the 

VISSIM©-generated vehicle ‘Index ID,’ the second entry is ‘array5011’ (the 

corresponding ‘Container ID’), the third entry is ‘array5012’ (the corresponding ‘Vehicle 

ID’), the fourth entry is ‘aTime’ (the time at which the transaction occurred), and 1 (a 

secondary indexing value relevant to the vehicle diffusion commands that will be 

discussed later). 

The final two command lines starting with ‘ContainerLogAdapter.Insert’ and 

‘VehicleLogAdapter.Insert’ duplicate the container and vehicle database table entries 
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detailed above in two separate federation database data tables that log all transactions of 

containers and vehicles across federate boundaries.  

Recall that this process is only for port vehicles and containers exiting from the 

GCT Gate submodel to the roadway network model federate.  A similar set of commands 

are also executed when road vehicles exit the GCT gate submodel to the roadway 

network model federate.  The only significant difference is that a different series of local 

RTI variables (array5015, 5016, VehIDPort2, etc.) are used.  

 Lastly, a third series of commands are executed for when empty long-distance 

road vehicles that are released to the roadway network model federate, bound for the I-16 

Junction.  These commands are identical to those described above with the exception that  

no container-related commands are present, and that a separate set of local RTI variables 

are used.   

 

3.3.2.2.2  RTI Management of Roadway Model to Port Model Entity Exchange 

The transaction between model federates for vehicles/containers leaving the port model 

and entering the roadway network model has just been described.  This section will detail 

how the RTI receives vehicles from the roadway network model federate and passes them 

to the port model federate.  Specifically, this section will examine the transaction 

between federates for vehicles entering the port model federate at the GCT.  Because of 

its length, the RTI commands for this task are shown in two parts.  Figure 40 shows the 

first half of these RTI commands.   

The first command line in Figure 42 is an ‘If-Then’ statement that triggers the 

transaction of a vehicle between federates.  When a vehicle arrives at the end of a  
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Figure 42.  RTI Commands for Vehicles Exiting Roadway to Port Model – Part 1 

 

destination link in the VISSIM© network model, it crosses a vehicle detector in the 

roadway.  If a vehicle has been detected in the current time step, the “IMPULSE” value 

of the detector is equal to 1.  Otherwise, the “IMPULSE” value of the detector is equal to 

zero when no vehicles are present over the detector [28].  The RTI checks the 

“IMPULSE” value of each detector associated with each destination link every federation 

time step.  This is accomplished by evaluating an ‘If-Then’ statement for each location 

that contains a VISSIM© COM interface object for each detector.  For the destination 

link associated with the GCT gate submodel, the ‘If-Then’ statement is ‘If 

PortDetector.AttValue("IMPULSE") = 1 Then’  

If a vehicle is detected at the detector associated with the GCT gate, a series of 

commands are first executed to determine the vehicle’s identity.  The first line sets the 

If PortDetector.AttValue("IMPULSE") = 1 Then    
 

array1010 = PortDetector.AttValue("VEHICLEID")  
vissim.Net.Vehicles.RemoveVehicle(array1010) 
ArenaLanguage.VariableArrayValue(1010) = array1010   
 
IndexTempTable = IndexAdapter.GetDataByIndexID(array1010) 
IndexTempRow = IndexTempTable.FindByindex_id(array1010) 
PortContID = IndexTempRow.container_id 
PortVehID = IndexTempRow.vehicle_id 
 
If PortContID = 0 Then 

VehicleTempTable = VehicleAdapter.GetDataByVehicleID(PortVehID) 
VehicleTempRow = VehicleTempTable.FindByvehicle_id(PortVehID) 
PortVehType = VehicleTempRow.vehicle_type 
PortVehOrigin = VehicleTempRow.origin_id 
 
ArenaLanguage.VariableArrayValue(1012) = PortVehID 
ArenaLanguage.VariableArrayValue(1013) = PortVehType 
ArenaLanguage.VariableArrayValue(8010) = 1 
 
IndexAdapter.DeleteIndex(array1010) 
VehicleAdapter.UpdateVeh(PortVehID, PortVehType, 0, PortVehOrigin, 0, 7,      
fTime, PortContID, PortVehID) 
VehicleLogAdapter.Insert(PortVehID, PortVehType, 0, PortVehOrigin, 0, 7, 
fTime, PortContID, array1010) 

Else 
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local RTI variable ‘array1010’ equal to the VISSIM© COM object 

‘PortDetector.AttValue(“VEHICLEID”), which extracts the vehicle’s VISSIM©-

assigned vehicle ‘Index ID’ from the VISSIM© model federate.  The next command 

removes that vehicle from the roadway network model.  The next line in this series sets a 

unique Arena© global variable equal to the local RTI variable (‘array1010’) value 

corresponding to the ‘Index ID.’  

The next two commands, starting with ‘IndexTempTable’ query the database to 

recover the federation ‘Vehicle ID’ and ‘Container ID’ attribute values for the current 

truck/container entities from the IndexTable data table.    The local RTI variable 

‘PortContID’ is set equal to the ‘Container ID’ attribute value and the local RTI variable 

‘PortVehID’ is set equal to the ‘Vehicle ID’ attribute value.   

Next, an ‘If-Then’ statement determines whether the entering vehicle is carrying a 

container or whether it is empty (i.e., has a Container ID = 0).  If the statement ‘If 

PortContID = 0’ is found to be true, then a series of commands are executed to trigger 

only a vehicle creation in the GCT gate submodel.  If the statement is false, then a series 

of commands are executed to create both a container and vehicle entity in the GCT Gate 

submodel (these latter commands are shown in Figure 43).   

If the vehicle that arrives at the destination link detector is not carrying a 

container, then the first series of commands query the database data table containing 

vehicle data.  The query extracts the ‘Vehicle_Type’ and ‘Origin ID’ attribute values 

associated with the vehicle and temporarily assigns them to the local RTI variables 

‘PortVehType’ and ‘PortVehOrigin,’ respectively.  The next series of commands uses the 

Arena© COM interface to write these local RTI variables to specific global variables in 
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the GCT gate submodel.  These variable arrays are ‘1012’ and ‘1013.’  These global 

variables will be accessed by the VBA 8 block, shown in Figure 14 to assign the 

associated attribute values to the newly created truck entity in the GCT Gate submodel.   

The RTI then sets the Arena© global variable ‘8010’ equal to one.  This is the 

global “switch” variable uniquely associated with the ‘Vehicle Input v2’ block that 

triggers a vehicle entity creation in the GCT gate submodel (this was discussed in Section 

3.3.1.2.1).   

The last three command lines shown in Figure 40 update the federation database 

tables.  The first line deletes the table row in the indexing table associated with the 

current vehicle’s VISSIM©-assigned vehicle ‘Index ID.’  The next line updates the data 

table associated with active vehicle data to reflect that the vehicle is currently located at 

the GCT.  The final line updates the data table that logs vehicle transactions to reflect this 

most recent transaction of the vehicle across the federate boundaries.   

As mentioned, Figure 42 shows the first half of the commands associated with a 

container and/or vehicle passing between the roadway network model and the port model 

federates.  Figure 43 shows the second half of the associated commands.  These 

commands are relevant only should the arriving vehicle be carrying a container (i.e., if 

the if the ‘If PortContID = 0 Then’ statement from Figure 42 is false).  In that case, the 

RTI first queries the federation database to collect the attribute values associated with the 

incoming container.  This occurs using commands similar to those described above for 

querying incoming vehicle attribute values.  The RTI then sets several local RTI variables 

– ‘PortDestID’, ‘PortDestID2’ and ‘PortOriginID’ – equal to the queried attribute values.  

Recall that the RTI commands in Figure 42 have already recovered the ‘Container ID’  
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Figure 43.  RTI Commands for Vehicles Exiting Roadway to Port Model – Part 2 

 

attribute value when querying the federation database for the VISSIM©-assigned vehicle 

‘Index ID’ value.  The RTI then queries the federation database to recover the vehicle 

attribute values associated with the incoming vehicle. These commands are the same as 

shown in Figure 42.  The RTI then sets a series of local RTI variables – ‘PortVehID,’ and 

‘PortVehType,’– equal to these queried attribute values.  Recall that, again, the ‘Vehicle 

ID’ attribute value was already recovered when querying the federation database for the 

VISSIM©-assigned vehicle ‘Index ID’ value.  Next, the RTI utilizes the Arena© COM 

interface to set a unique series of Arena© global variables equal to the local RTI 

variables holding the container and vehicle attribute values.  These global variables will 

ContainerTempTable = ContainerAdapter.GetDataByContainerID(PortContID) 
ContainerTempRow = ContainerTempTable.FindBycontainer_id(PortContID)          
PortDestID = ContainerTempRow.destination_id 
PortDestID2 = ContainerTempRow.destination_id2 
PortOriginID = ContainerTempRow.origin_id 
 
VehicleTempTable = VehicleAdapter.GetDataByVehicleID(PortVehID) 
VehicleTempRow = VehicleTempTable.FindByvehicle_id(PortVehID) 
PortVehType = VehicleTempRow.vehicle_type 
PortVehOrigin = VehicleTempRow.origin_id 
 
ArenaLanguage.VariableArrayValue(1011) = PortContID 
ArenaLanguage.VariableArrayValue(1012) = PortVehID 
ArenaLanguage.VariableArrayValue(1013) = PortVehType 
ArenaLanguage.VariableArrayValue(1014) = PortDestID 
ArenaLanguage.VariableArrayValue(1015) = PortDestID2 
ArenaLanguage.VariableArrayValue(1016) = PortOriginID 
 
ArenaLanguage.VariableArrayValue(8010) = 1        
ArenaLanguage.VariableArrayValue(8011) = 1 
 
IndexAdapter.DeleteIndex(array1010) 
ContainerAdapter.UpdateCont(PortContID, PortVehID, PortOriginID, PortDestID, 

PortDestID2, 7, fTime, PortContID) 
VehicleAdapter.UpdateVeh(PortVehID, PortVehType, 0, PortVehOrigin, 0, 7, fTime, 

PortContID, PortVehID) 
ContainerAdapter.DeleteCont(PortContID) 
 
ContainerLogAdapter.Insert(PortContID, PortVehID, PortOriginID, PortDestID, 

PortDestID2, 7, fTime, array1010) 
VehicleLogAdapter.Insert(PortVehID, PortVehType, 0, PortVehOrigin, 0, 7, fTime, 

PortContID, array1010) 
End If 

End If 
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be accessed by the VBA 8 and VBA 9 blocks shown in Figure 14 to assign the associated 

attribute values to the vehicle and container entities that will be created in the GCT Gate 

submodel. 

Once all attribute values have been written to the unique global variables in the 

Arena© model federate, the RTI sets the global “switch” variables ‘8010’ and ‘8011’ 

equal to one.  These variables now trigger both the ‘Vehicle Input v2’ and ‘Container 

Input v2’ blocks to create a vehicle and a container entity in the GCT gate submodel.   

The final series of commands in Figure 43 update the federation database tables.  

The first line deletes the table row from the indexing table that corresponds to the 

VISSIM©-assigned vehicle ‘Index ID’ value for the vehicle that has just passed between 

federations.  The data tables containing active container and vehicle data are updated to 

reflect the entities’ new locations and timestamps.  Next, the data table row 

corresponding to the container that has just crossed between federates is deleted as that 

container has arrived at a terminal location: the GCT.  Finally, new rows are inserted in 

the data tables that log container and vehicle transactions to log the transactions and 

reflect the new locations of the vehicle and container entities, as well as the simulation 

time at which the transaction across federate boundaries occurred.   

Recall that the process just described is only for port vehicles and containers 

entering the GCT Gate submodel from the roadway network model federate.  A similar 

process to that which was just described is also undertaken for road vehicles exiting the 

roadway network model federate.  The only significant difference is that a different series 

of local RTI variable are used.  These commands are shown in Appendix A. 
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3.3.2.2  Management and Recreation of Trucks Diffused by VISSIM© 

Recall from earlier discussions that vehicles are periodically deleted, or 

“diffused,” by VISSIM© during runtime to prevent unrealistic deadlock on the roadway 

network.  This section will introduce the RTI commands that detect vehicle diffusion in 

the federation and recreate diffused vehicles within the Arena© port model federate.  

Because the VISSIM© COM interface does not provide access to any command that 

identifies whether or not a vehicle was deleted during the previous time-step, an alternate 

approach had to be adopted.   

The fundamental approach is to search the federation database for any port or 

road truck that has been traveling in the roadway network model federate for an 

“abnormally” long time interval.  The length of this time interval was determined through 

iterative model calibration and validation by examining average travel times among the 

various origin-destination pairs in the federation.  For the purpose of this study, an 

“abnormal travel time interval” of 5000 second was used.     

Because of the number and length of commands associated with vehicle diffusion, the 

code is shown in two parts.  Figure 44 shows the first part of RTI code associated with 

detecting and recreating diffused vehicle. 

The vehicle diffusion code is embedded within an ‘If-Then’ loop that starts only if 

the federation time (‘fTime’) is greater than 5000 seconds.  The second line then sets a 

local RTI variable ‘DispersionSysTime’ equal to the federation time (‘fTime’) minus 

5000 seconds.  The time-stamped record of active trucks in the federation database will 

be compared with this ‘DispersionSysTime’ time value to determine if a truck has been in 

the roadway network for an “abnormally” long time interval, suggesting it was diffused. 
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Figure 44.  RTI Commands for Diffused Vehicle Detection and Recreation – Part 1 

 

The next line, starting with ‘DispersionAdapter.InsertQuery()’ executes a query of 

the federation database that copies the first line of the indexing table (the table where the 

VISSIM©-assigned vehicle ‘Index ID’ is recorded along with corresponding ‘Vehicle 

ID’ and ‘Container ID’ valued).  The query then inserts that first line into a table in the 

federation database called DispersionTable.  Recall that once a truck is passed from the 

roadway network model federate back to the port model federate, its record in the 

indexing table is deleted.  Therefore, the indexing table only consists of trucks that are 

active in the roadway network.  Also, as the indexing table is sorted according to time 

stamp values, the first line from that table which is copied to the DispersionTable will 

always be the oldest record.   

If fTime > 5000 Then 
 
                DispersionSysTime = fTime - 5000 
                IndexTempTable = IndexAdapter.GetData 
                DispersionAdapter.InsertQuery() 
                DispersionTempTable = DispersionAdapter.GetData 
                DispersionTempRow = DispersionTempTable.FindBydisp_index(1) 
                DispersionVehTime = DispersionTempRow.time_stamp 
 
                If DispersionVehTime < DispersionSysTime Then 
                    DispersionIndex = DispersionTempRow.index_id 
                    DispersionVehicle = DispersionTempRow.vehicle_id 
                    DispersionContainer = DispersionTempRow.container_id 
 
                    VehicleTempTable = 

VehicleAdapter.GetDataByVehicleID(DispersionVehicle) 
                    VehicleTempRow = 

VehicleTempTable.FindByvehicle_id(DispersionVehicle) 
 
                    DispersionType = VehicleTempRow.vehicle_type 
                    DispersionDestination = VehicleTempRow.current_destination 
                    DispersionOrigin = VehicleTempRow.origin_id 
 
                    ArenaLanguage.VariableArrayValue(8082) = DispersionVehicle 
                    ArenaLanguage.VariableArrayValue(8083) = DispersionType 
                    ArenaLanguage.VariableArrayValue(8084) = DispersionDestination 
                    ArenaLanguage.VariableArrayValue(8080) = 1 
 
                    IndexAdapter.DeleteIndex(DispersionIndex) 
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The next three lines of code recover the time-stamp of that single, oldest record 

that was copied from the indexing table, setting the local RTI variable 

‘DispersionVehTime’ equal to that record’s time stamp value.   

The next command line starts with an ‘If-Then’ statement that compares that 

oldest active record’s time stamp (currently held in the local RTI variable 

‘DispersionVehTime’) with the ‘DispersionSysTime’ value, or the federation time from 

5000 seconds prior to the current time.  If this ‘If-Then’ statement is found to be true 

(meaning that the active truck’s recorded time-stamp is over 5000 seconds old) then the 

RTI assumes that the vehicle has been diffused and then executes a series of commands 

to recreate the truck in the Vehicle Diffusion Module of the Arena© port model federate. 

The next eight command lines in Figure 44, starting with ‘DispersionIndex…’ 

recovers all of the attribute values associated with the diffused truck object (and container 

objects, if applicable).  The RTI then writes these attribute values to a set of global 

Arena© variables (‘8082’, ‘8083’, and ‘8084’) associated with trucks in the Vehicle 

Diffusion Module.  The RTI then sets the “switch” variable ‘8080’ equal to 1, triggering 

the Vehicle Diffusion Module to create a truck entity at the ‘Vehicle Input v2’ block 

(shown in Figure 38).  The final command shown in Figure 44 executes a database query 

that deletes the diffused vehicle’s record from the indexing table.   

The second half of the RTI commands concerning vehicle diffusion is shown 

below in Figure 45.  These commands perform two functions.  First, they determine if a 

container object was also diffused, and if so then trigger its recreation in the Vehicle 

Diffusion Module.  Second, these commands update all active container and vehicle 

tables in the federation database (these tables will be discussed in the next section) and  
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Figure 45.  RTI Commands for Diffused Vehicle Detection and Recreation – Part 2 

 

log entries of the diffused container and/or vehicle in separate log tables in the federation 

database. 

The commands in Figure 45 are written as an ‘If-Then-Else’ loop that evaluates 

the statements ‘If DispersionDestination = 6 Then’.  If this statement is true, then it 

If DispersionDestination = 6 Then 
   
   If DispersionContainer = 0 Then 
      VehicleAdapter.DeleteVeh(DispersionVehicle) 
      VehicleLogAdapter.Insert(DispersionVehicle, DispersionType, 0, 7777, 0, 

DispersionDestination, fTime, DispersionContainer, 
DispersionIndex) 

   Else 
      ArenaLanguage.VariableArrayValue(8081) = 1 
      VehicleAdapter.DeleteVeh(DispersionVehicle) 
      VehicleLogAdapter.Insert(DispersionVehicle, DispersionType, 0, 7777, 0, 

DispersionDestination, fTime, DispersionContainer, 
DispersionIndex) 

      ContainerAdapter.DeleteCont(DispersionContainer) 
      ContainerLogAdapter.Insert(DispersionContainer, DispersionVehicle, 7777, 0, 0, 

DispersionDestination, fTime, DispersionIndex) 
   End If 
 
Else 
   
   If DispersionContainer = 0 Then 
      VehicleAdapter.UpdateVeh(DispersionVehicle, DispersionType, 0, DispersionOrigin, 

0, DispersionDestination, fTime, DispersionContainer, 
DispersionVehicle) 

      VehicleLogAdapter.Insert(DispersionVehicle, DispersionType, 0, 7777, 0, 
DispersionDestination, fTime, DispersionContainer, 
DispersionIndex) 

    
   Else 
      ArenaLanguage.VariableArrayValue(8081) = 1 
      VehicleAdapter.UpdateVeh(DispersionVehicle, DispersionType, 0, DispersionOrigin, 

0, DispersionDestination, fTime, DispersionContainer, 
DispersionVehicle) 

      VehicleLogAdapter.Insert(DispersionVehicle, DispersionType, 0, 7777, 0, 
DispersionDestination, fTime, DispersionContainer, 
DispersionIndex) 

      ContainerAdapter.DeleteCont(DispersionContainer) 
      ContainerLogAdapter.Insert(DispersionContainer, DispersionVehicle, 7777, 0, 0, 

DispersionDestination, fTime, DispersionIndex) 
   End If 
 
End If 
 
 
End If 
DispersionAdapter.DeleteDispersionAll() 
Else 
DispersionAdapter.DeleteDispersionAll() 
End If 
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signifies that the diffused vehicle was en route to destination 6, or the I-16 Junction when 

it was diffused.  This is important for the RTI to know in order to correctly update the 

active container and vehicle tables in the federation database.  For example, when a 

vehicle arrives at a distribution center or the GCT, the RTI updates the vehicle’s active 

record and logged record in the federation database with the new location, time of arrival,  

etc.  Conversely, when a vehicle arrives at the I-16 Junction, the RTI updates the 

vehicle’s logged record, but deletes the active record in the federation database, because 

the I-16 Junction is a terminal location for containers and vehicles within the federation.  

That is, it is not an intermediate destination, but a final destination. 

If the ‘If-Then’ statement is found to be true, the RTI continues to a second ‘If-

Then’ loop that evaluates the statement ‘If DispersionContainer = 0 Then’, where 

‘DispersionContainer’ is the ‘Container ID’ attribute value of any container that was 

being carried by the diffused vehicle.  This statement determines whether the diffused 

vehicle was empty (i.e., ‘DispersionContainer’ = 0) or whether it was carrying a container 

(i.e., a non-zero ‘DispersionContainer’ attribute value).  If the diffused vehicle is found to 

have been empty, then a series of two commands, starting with ‘VehicleAdapter…’ are 

executed to record just the vehicle’s diffusion in the active and log vehicle tables in the 

federation database.  If the diffused vehicle is found to have been carrying a container 

when it was diffused, the RTI instead executes five commands starting with 

‘ArenaLanguage.VariableArrayValue(8081)=1’.  This first command sets a “switch” 

variable equal to 1 to recreate the diffused container entity in the Vehicle Diffusion 

Module of the Arena© port model federate.  The four commands that follow record both 
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the vehicle and container’s diffusion in the relevant active and log tables in the federation 

database.   

If the initial ‘If-Then-Else’ statement in Figure 45 finds that the 

‘DispersionDestination’ is not equal to 6, indicating that the diffused vehicle was en route 

to a location other than the I-16 Junction, then the RTI executes an ‘If-Then’ statement 

similar to that just described.  This ‘If-Then’ statement first determines whether or not the 

diffused vehicle was carrying a container, and then executes the appropriate commands to 

record the container and/or vehicle’s diffusion in the corresponding active and log tables 

in the federation database.   

The final command lines in Figure 45, starting with 

‘DispersionAdapter.DeleteDispersionAll()’ execute a database query that clears the 

DispersionTable populated by the first command lines in Figure 44, effectively resetting 

the database so that the RTI can check for a diffused vehicle during the next time step.   

This method of determining whether vehicles were diffused from the roadway 

network during simulation runtime creates some limitations for both data collection and 

model operation.  These limitations are discussed at greater length in section 3.4.  

 

3.3.3  Federation Database Structure and Query Method 

As the role of the RTI is purely one of data, time and object management, it does 

not store any information during simulation execution.  Instead, the RTI stores 

information in a relational database.  This section will describe the structure and querying 

methods of the federation database, constructed using Microsoft Access 2007©.   
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The federation database consists of seven data tables.  The first six tables are 

concerned with the runtime operation of the simulation: (1) the Container Table, (2) the 

Container Log, (3) the Vehicle Table, (4) the Vehicle Log, (5) the Index Table and (6) the 

Dispersion Table.  The function of the Container Table is to hold all of the attribute 

values associated with each container that is active in the federation.  Similarly, the 

Vehicle Table holds all of the attribute values associated with each port or roadway truck 

that is active in the federation.  The Container Log keeps a record of every transaction 

where a container entity crosses the federation boundary between federates at one of the 

interaction points.  The Vehicle Log similarly keeps a record of every transaction where a 

vehicle entity crosses the federation boundary.  The Index Table matches paired container 

and vehicle entities that are currently active only in the roadway network model federate 

by indexing them according to their corresponding VISSIM©-assigned vehicle ‘Index 

ID.’  Lastly, the Dispersion Table is used to examine the oldest record in the Index Table 

to determine if the truck contained in that record was diffused from the VISSIM© 

roadway network model federate.  This was discussed in the previous section.   

The last table, (7) the Queues Table, is concerned with collection of queue length 

data relating to federation system performance.  The RTI periodically records the queue 

lengths at the various queues in the Arena© port model federate during runtime.  These 

values are recorded in the Queues Table in the federation database for post-processing 

once the simulation has completed.     

The following sections will discuss the construction and querying methods for 

each of these federation database data tables. 
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3.3.3.1  Container Table and Container Log Data Table Structures 

 Both the Container Table and the Container Log have the same basic field 

structure.  Figure 46 gives a side by side comparison of the “Design View” structure of 

these two tables.  Note that there are only two differences between the two tables.  The 

first is that the Container Log table has one additional field for ‘index_id.’  This field 

refers to the VISSIM©-generated vehicle ‘Index ID’ for the vehicle on which the  

 

 

Figure 46.  Federation Database Container Table and Container Log Structure 

 

container is or was last located.   This field was added to the Container Log table 

primarily for trouble-shooting during development and testing of the federation.  The 

second difference is that the primary key for the Container Table is the ‘container_id’ 

field.  This ensures that no erroneous duplicate containers are created and recorded during 

simulation.  The Container Log table, however, does not have a primary key.  As the 

purpose of the Container Log table is to provide a record of all of the transactions of 
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container entities, it is expected that the log table will have multiple entries with the same 

‘container_id’ value.   

During simulation execution, these two data tables will be populated with 

simulation object data and time data.  Figure 47 shows an example of the Container Log 

table populated with data.  The first line shows that container 152 was batched with 

vehicle 1241.  The containers origin is the I-16 Junction (origin_id = 6), its first 

destination is Distribution Center 1 (destination_id = 1) and its second and final 

 

 

Figure 47.  Federation Database Example Container Log 

 

destination is the GCT (destination_id2 = 7).  It is currently located in the roadway 

network model (current_location = 9999, where 9999 denotes the roadway network 

model) and it exited the I-16 Junction for the roadway at simulation time 5416 seconds 

(time_stamp = 5416).  Lastly, the VISSIM© vehicle ‘Index ID’ (the ID of the actual 

vehicle object in the roadway network model, or ‘index_id’) is equal 3002.  The next 

entry in the table shows that container 152 arrived at Distribution Center 1 
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(current_location = 1) at simulation time 6269 seconds (time_stamp = 6269).  All other 

attribute values for the container remain the same.  The third entry in the data table shows 

that container 152 left Distribution Center 2 on vehicle 277 (vehicle_id = 277) at 

simulation time 9973 seconds (time_stamp = 9973) and that the VISSIM© vehicle ‘Index 

ID’ (index_id) for the vehicle object in the roadway network is 5616.  Finally, the fourth 

line shows that container 152 arrived at the GCT (current_location = 7) at simulation time 

11421 (time_stamp = 11421).   

Note that because the Container Log table serves as a record of all transactions 

between federates, row entries in that table will never be deleted during simulation, but 

will continue to grow in number.  The Container Table, on the other hand, is a “working” 

table, containing only row entries for containers that are active in the system.  As the RTI 

is structured, “active” entities are only those either in-transit in the roadway network 

model federated, or those located at one of the distribution center submodels awaiting 

further transit.  When a container arrives at the GCT Gate submodel, it is logged in the 

Container Log table as having arrived, but is deleted from the Container Table as the 

GCT is considered a final destination for containers in the Arena© port model federate.  

Similarly, when a container arrives at the I-16 Junction submodel, its arrival is entered as 

a new row entry in the Container Log table, but it is deleted from the Container Table as 

the interstate is a final destination and the container has effectively left the federation.    

Lastly, when the RTI detects that a container was diffused by the VISSIM© 

model federate, it records that as an entry in the Container Log table.  The record is 

signified as a diffused container by entering an ‘origin_id’ value equal to 7777. 
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3.3.3.2  Vehicle Table and Vehicle Log Data Table Structures 

The basic structure for both the Vehicle Table and Vehicle Log tables is the same.  As 

above with the container tables, the Vehicle Log table has an additional field for 

‘index_id’ and does not have any specific field identified as the primary key, thereby 

allowing duplicate entries.  Figure 48 shows a side-by-side comparison of the “Design 

View” structures of the Vehicle Table and Vehicle Log tables.   

 

 

Figure 48.  Federation Database Vehicle Table and Vehicle Log Structure 

 

During simulation, both the Vehicle Table and the Vehicle Log will be populated 

with object data and time data for every transaction between model federates.  Figure 49 

 shows an example of the Vehicle Log table populated with data.  Note that this table is    

currently sorted according to ‘vehicle_id,’ showing each time a vehicle crossed between  

federates at one of the interaction points.  The current table view shows federate 

transaction records for vehicle 201.  The first line shows that vehicle 201 left the GCT 
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Figure 49.  Federation Database Example Vehicle Log 

 

(origin_id = 7) at simulation time 2247 seconds (time_stamp = 2247) carrying container 

28  (container_id = 28) and is currently bound for Distribution Center 1 

(current_destination = 1).  Furthermore, this vehicle is a port vehicle (vehicle_type = 2) 

and it is currently in-transit in the roadway network model federate (current_location = 

9999).  Lastly, its VISSIM©-assigned ‘Index ID’ is equal to 1170 (index_id = 1170). 

The second line of Figure 49 shows that vehicle 201 arrived at Distribution Center 

1 (currnet_location = 1) at simulation time 2827 seconds (time_stamp = 2827).  Because 

it is not in-transit, the vehicle’s current destination is equal to zero.   

The third line of Figure 49 shows that vehicle 201 then left Distribution Center 1 

(origin_id = 1) at time 3728 (time_stamp = 3728) bound for the GCT (current_destination 

= 7) carrying container 4 (container_id = 4) and that it’s VISSIM©-assigned ‘Index ID’ is 

2035 (index_id = 2035). 

The Vehicle Table and Vehicle Log tables contain an additional field titled 

‘owner_id.’  This field is not currently used in simulation but was included to give the 

future flexibility to track multiple long-distance trucking carriers in the simulation model. 
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Similar to the container tables, the Vehicle Log table serves as a record of all 

transactions of vehicles between federates.  As such, row entries in that table will never 

be deleted during simulation, but will continue to grow in number.  The Vehicle Table, 

however, is a working table containing only those vehicles that are currently active in the 

in federation.  Because port vehicles are reused throughout the system and never transport 

containers to the interstate at the I-16 Junction, they will never be deleted from the 

working Vehicle Table.  Instead, their entries will simply be updated throughout the 

simulation.  Long-distance trucking vehicles, however, will be deleted from the working 

Vehicle Table upon arrival at the I-16 Junction submodel, were they effectively leave the 

federation.   

Lastly, when the RTI detects that a vehicle was diffused by the VISSIM© model 

federate, it records that as an entry in the Vehicle Log table.  The record is signified as a 

diffused vehicle by entering an ‘origin_id’ value equal to 7777. 

 

3.3.3.3  Index Table Data Table Structure 

Recall that when a vehicle object is created in VISSIM©, the COM interface does not 

allow a vehicle ID number to be assigned to the vehicle object by an outside program or 

RTI.  Instead, VISSIM© assigns its own unique vehicle ‘Index ID’ to the vehicle object 

that has been created on its network.  Therefore, it is necessary to relate the federation 

‘Vehicle ID’ and ‘Container ID’ entity attributes to the corresponding VISSIM©-

generated vehicle ‘Index ID.’   Accordingly, the Index Table pairs the federation 

‘Container ID’ and ‘Vehicle ID’ attributes for the entities currently in-transit in the 

roadway network with their corresponding VISSIM©-assigned vehicle ‘Index ID.’  
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Records in the Index Table also contain time-stamp values as well as a ‘dispersion index’ 

or ‘disp_index’ value (this will be discussed in the next section). Figure 50 shows the 

“Design View” structure of the Index Table.  Note that the ‘index_id’ field is designated 

as the primary key for the table to prohibit erroneous duplicate entries for individual 

vehicle objects created in VISSIM©. 

 

 

Figure 50.  Federation Database Index Table Structure 

 

Only vehicle objects that are actively in-transit in the roadway network are 

represented in the Index Table.  When VISSIM© vehicle objects are removed from the 

roadway network upon arrival at any of the destinations (i.e., it is no longer active in the  

roadway network model) the corresponding row in the Index Table is deleted.  Figure 51 

shows an example of the Index Table that is populated with data.  The first line shows 

that container 20475 is currently in transit in the roadway network, carried by vehicle 

272.  Also, it shows that the ‘index_id’ is equal to 263478, meaning that within the 
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VISSIM© model federate, the physical vehicle associated with this batched 

vehicle/container pair is VISSIM© vehicle number 263478.  The record was entered in 

the Index table at time 430426 seconds (time_stamp = 430426).  Also note that for this 

record, and all records in the Index Table, the Dispersion Index (disp_index) value is 

equal to 1.  The reasoning for this will be explained later. 

 

 

Figure 51.  Federation Database Example Index Table  

 

3.3.3.4  Queue Data Table Structure 

During simulation, the RTI periodically retrieves port facility queue values from 

the Arena© port model federate.  The frequency with which this information is collected 

is a user-defined value.  For the purposes of this study, queue length information is 

collected every 60 seconds, or 1 minute.   

The queue length values that are collected by the RTI are recorded in the Queue 

Table.  Figure 52 shows the “Design View” of each of that table.  The ‘Type’ field  
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Figure 52.  Federation Database Queue Table Structure  

 

identifies which queue is recorded in that line.  The ‘Time’ field indicates the simulation 

time in minutes at which that record was collected.  The ‘Queue Value’ fields indicate the 

queue length for each recorded entry.   Figure 53 shows an example of the Queue Table  

 

 

Figure 53.  Federation Database Example Queues Table  
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populated with truck queue entries.  The first line indicates that queue ‘Type’ 11, at 

‘Time’ 1440 minutes has a ‘Queue Value’ equal to 3. As ‘Type’ 11 corresponds to the 

‘Dist1VehQp’ queue, this entry indicates that at the end of the 1440th minute of 

simulation, there were at total of 3 port trucks in the port truck queue at Distribution 

Center 1.  The second line indicates that queue ‘Type’ 12, at ‘Time’ 1440 minutes has a 

‘Queue Value’ equal to 0.  As ‘Type’ 12 corresponds to the ‘Dist1ContQP’ queue, this 

entry indicates that at the end of the 1440th minute of simulation, there were at total of 0 

port containers in the port container queue at Distribution Center 1.  Table 4 shows each 

queue ‘Type’ and its corresponding Arena© queue.   

 

Table 4.  Database Queue Types and Corresponding Arena© Queues 

Queue Type  Queue  Queue Type  Queue 
11  Dist1_PortVeh_Queue  31  Dist3_PortVeh_Queue 
12  Dist1_ContToOther_Queue  32  Dist3_ContToOther_Queue 
13  Dist1_RoadVeh_Queue  33  Dist3_RoadVeh_Queue 
14  Dist1_ContToRoad_Queue  34  Dist3_ContToRoad_Queue 
21  Dist2_PortVeh_Queue  71  Port_PortVeh_Queue 
22  Dist2_ContToOther_Queue  72  Port_ContToOther_Queue 
23  Dist2_RoadVeh_Queue  73  Port_RoadVeh_Queue 
24  Dist2_ContToRoad_Queue  74  Port_ContToRoad_Queue 

 

 

3.3.3.5  Dispersion Data Table Structure 

The determine whether a vehicle was diffused during the previous time step the 

oldest record in the Index Table is examined.  However, when searching for records in a 

data table, queries must be performed by querying the “primary key” value associated 

with the desired record.  As primary key values are, by definition, unique to each entry, 
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this querying method guarantees that only one record will be returned for each query.  

However, this creates a problem when performing queries on the Index Table because the 

primary key value (‘index_id’) of the first record in the Index Table is unknown.  To 

circumvent this problem, the first record in the Index Table is copied to the Dispersion 

Table, which has a different field set as its primary key.  Therefore, the Dispersion Table 

serves as a temporary table in which records are held while they are examined by the RTI 

to determine if a vehicle has been diffused by the VISSIM© model federate during 

runtime.  The Dispersion Table has the same exact structure as the Index Table (refer to 

Figures 50 and 51), with the exception that the Dispersion Table’s primary key is set as 

the ‘disp_index’ field, not the ‘index_id’ field.   

As detailed in section 3.3.2.2, during runtime the RTI copies the first record in the 

Index Table to the Dispersion Table.  This includes the ‘disp_index’ value which is 

always equal to 1 for each record.  As the Index Table is organized in ascending order of 

‘time_stamp’ values, the first record in the Index Table is also the oldest.  Also, because 

the final commands shown in Figure 45 clear the Dispersion Table at the end of each time 

step, this record that the RTI copies from the Index Table to the Dispersion Table at the 

beginning of each time step will be the only record in the Dispersion Table.  Therefore, 

when the series of commands in Figure 44 are executed that query the Dispersion Table 

and recover attribute values, the query of the Dispersion Table table (which only contains 

one record) searches for the in the ‘disp_index’ primary key value, which is always equal 

to 1.  As mentioned, this query method does not pose a problem as there is only ever one 

record in the Dispersion Table during any given time step. 
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3.3.3.6  Federation Database Query Methods – Table Adapters 

The RTI queries, writes and retrieves data from the federation database employing 

a method unique to Visual Studio© called “Table Adapters.”  Table Adapters utilize a 

series of Structured Query Language (SQL) statements unique to each data table within 

the database.  Separate Table Adapters were created for each data table for the following 

four basic data queries: (1) Get Data/Fill Query, (2) Insert Query, (3) Update Query, and 

(4) Delete Query.  However, not all data tables require each of the four Table Adapter 

query types.  For example, row entries in the Index Table are only for vehicles active in 

the roadway network model; records are inserted when the vehicle enters the roadway 

network and deleted when the vehicle exits the roadway network.  Therefore, an ‘Update  

 

Table 5.  Federation Database Table Adapter Queries 

Data Table Name Table Adapters Table Adapter Names 

Index Table 
Insert Insert 
Delete DeleteIndex 

Get Data/Fill GetDataByIndexID 

Dispersion Table 
Get Data/Fill GetData 

Delete DeleteDispersionAll 
Insert InsertQuery 

Container Table 

Insert Insert 
Delete DeleteCont 

Get Data/Fill GetDataByContainerID 
Update UpdateCont 

Container Log Insert Insert 

Vehicle Table 

Insert Insert 
Delete DeleteVeh 

Get Data/Fill GetDataByVehicleID 
Update UpdateVeh 

Vehicle Log Insert Insert 
Queues Table Insert Insert 
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Data’ Table Adapter is not needed for management of the Index Table.  Table 6 shows 

the Table Adapters associated with each data table and the unique name associated with 

each Table Adapter. 

While the data tables were created using Microsoft Access©, the Table Adapters 

were created directly in the RTI in Visual Studio©.  This is done by first importing the 

federation database into the RTI using the ‘Add New Data Source’ feature of Visual 

Studio©.  Once the federation database has been successfully imported as a data source  

into the RTI, Table Adapters are created in association with each data table.  Figure 54 

shows a view of the imported federation database in the Visual Studio© RTI with each 

set of table adapter queries listed under each respective data table.  Note that are no 

‘Insert’ Table Adapter queries listed (with the exception of the Dispersion Table, in 

which the InsertQuery() Table Adapter executes an SQL command to copy the first line 

from the Index Table into the Dispersion Table).  This is because Visual Studio© creates  

 

 

Figure 54.  Federation Database Showing RTI Table Adapter Queries 
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a generic ‘Insert’ Table Adapter query for each unique data table automatically upon 

import of the database, negating the need for a specialized ‘Insert’ query. 

To provide examples of the SQL statements underlying each Table Adapter, those 

queries related to the Container Table will be examined.  The ‘GetDataByContainerID’ 

query allows the RTI to recover all object and time data for a specific container entity.  

This statement is used at several instances in the RTI command code, however one 

specific example was shown in the first line of Figure 43 for containers that are exiting 

the roadway network model federate to enter GCT gate submodel of the port federate.  

This command line executes the ‘GetDataByContainerID’ Table Adapter query for the 

Container Table to recover all data for the container entity whose ‘Container ID’ attribute 

value is currently stored in the RTI local variable ‘PortContID.’  This query’s underlying 

SQL statement for this Table Adapter is: 

  
SELECT container_id, vehicle_id, origin_id, destination_id, 
destination_id2, current_location, time_stamp FROM 
ContainerTable WHERE container_id = ?  

 

where for a specified ‘container_id’ (‘WHERE…’) the query selects the requested fields 

(‘SELECT…’) from the specified data table (‘FROM…).  The second line in Figure 43 

then locates the specific row containing the ‘PortContID’ number, and the third through 

fifth lines recover the specific entity attribute values from that row.   

An instance of the ‘UpdateCont’ Table Adapter query is also shown in Figure 43 

where a container entity’s attribute values, upon arrival at the destination, are updated to 

reflect the new location (current_location) and the new timestamp (time_stamp).  The 

SQL statement underlying this Table Adapter query is:   
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UPDATE `ContainerTable` SET `container_id` = ?, 
`vehicle_id` = ?, `origin_id` = ?, `destination_id` = ?, 
`destination_id2` = ?, `current_location` = ?, `time_stamp` 
= ? WHERE (`container_id` = ?) 

 

where for a specified ‘container_id’ (‘WHERE…’) the query updates the specified fields 

(‘SET…’) in the specified data table (‘UPDATE…’).   

Note that in Figure 43 the ‘UpdateCont’ command includes in parenthesis the 

local RTI variables/values ‘PortContID’, ‘PortVehID’, ‘PortOriginID’, ‘PortDestID’, 

‘PortDestID2’, ‘7’, ‘fTime’ and ‘PortContID’.  This is because these local RTI variables 

contain the entity attribute values that correspond, in the order in which they are listed, to 

the repsective data table fields identified by the ‘SET’ command in the SQL statement.  

Note that ‘PortContID’ is listed again at the end of the ‘SET’ command to confirm the 

original value of the newly updated ‘container_id’ field.   

The ‘DeleteCont’ Table Adapter query very simply deletes a specified row from 

the data table.  An instance of this command can also be seen in Figure 43.  The 

‘DeleteCont’ table adapter executes the simple SQL statement:  

 
[DELETE FROM `ContainerTable` WHERE (`container_id` = ?)] 
 
 

where for a specified ‘container_id’ (‘WHERE…’) the query deletes the corresponding 

row from the specified data table (‘DELETE FROM…’). 

The Table Adapter queries for each of the other data tables in the federation 

database are very similar to those that have just been described for the Container Table.  

The primary difference is that the data table field names incorporated in each SQL 

statement are unique to each data table.   
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3.3.4  VISSIM© Roadway Network Model Federate   

This section will describe the structure and design considerations of the roadway 

network model created using VISSIM 5.10© traffic microscopic simulation software.   

This discussion will cover four modeling elements: (1) general model overview and 

design considerations, (2) vehicle routing methods and calibration, (3) vehicle detectors 

and (5) special design considerations for model construction.   

 

3.3.4.1  General Model Overview and Design Considerations 

The roadway network model was constructed in VISSIM© using a scaled Google 

Earth© image of the Port of Savannah as a background and construction base.  Building 

the roadway network over this scaled image allowed for the close approximation and  

 

  

Figure 55.  Port of Savannah Roadway Network Geometry 
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replication of the real-world roadway geometry.  Figure 55 shows the surrounding 

roadway network at the Port of Savannah with the major streets labeled.  Note, this is 

similar to that which was shown earlier in Figure 3.   

All roadways in the network shown in Figure 55 accurately reflect the intersection 

layout and geometry (with the exception noted above) of the actual roadway.  This 

includes appropriate exclusive left turn lanes for northbound (NB) and southbound (SB) 

traffic on GA Highway 21 at the intersection with Bourne Ave/Dean Forest Road.  This 

also includes an exclusive left turn land for SB traffic and an exclusive right turn lane for 

NB traffic at the intersection of Jimmy de Loach Parkway and GA Highway 21.  Also, 

note that Jimmy de Loach Parkway has an overpass over GA Highway 21 such that 

eastbound (EB) vehicles approaching GA Highway 21 along Jimmy de Loach Parkway 

first cross over the highway, curve to the right, and then intersect GA Highway 21 from 

the east.   

All roadways in the network shown in Figure 55 also accurately reflect the 

number of lanes of the actual roadways.  All roadways are two lanes each way with the 

exception of South Coastal Highway, which is one lane each way, and the southern 

portion of GA Highway 21 south of Bourne Ave, which transitions into three lanes each 

way.  All driveways connecting the distribution centers with Jimmy de Loach Parkway 

are also one lane each way.   

There are nine signalized intersections in the roadway model, shown in Figure 56.  

To accommodate the various intersection configurations and lane geometry, nine separate 

traffic signal control plans were created.  These traffic signal control plans are simple 

pre-timed plans and do not exactly reflect the real-world signal timing plans at these  
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Figure 56.  Roadway Network Model Signalized Intersections 

 

intersections.  Generic traffic signal timing plans were developed that were tailored to the 

traffic demand modeled. Future roadway network models used for deeper analysis of port 

system operations should incorporate the actual signal timing plans for these locations.  

Appendix C shows each traffic signalization plan according to the intersections as 

numbered in Figure 56.    

To simulate non-port roadway traffic, vehicle inputs were located at the beginning 

links of five major roadways to generate “background” traffic.  Note that the background 

traffic inputs and volumes do not exactly reflect those found in the field.  Background 
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traffic inputs were generated that create a moderate traffic demand on the network.  

Future models will incorporate field data to more accurately reflect real-world conditions. 

The first background vehicle input generates EB traffic at the western-most 

endpoint of Jimmy de Loach Parkway, the second and third generate NB and SB traffic at 

the two endpoints of GA Highway 21, fourth generates NB at the southern-most endpoint 

of Dean Forest Road and the fifth generates SB traffic at the northern-most endpoint of 

South Coastal Highway.   

Throughout the VISSIM© roadway network model federate, vehicle turning 

movements are determined by user-defined “routing decisions.”  These decisions can 

either restrict vehicles from making certain turning movements at intersections, or else 

determine the percentage of approaching vehicles that execute right turning movements, 

versus left turning movements, versus through movements. 

 The routing decisions for the background traffic are set to restrict background 

traffic to GA Highway 21, Dean Forest Road, South Coastal Highway and Jimmy de 

Loach Parkway.  No background vehicles travel on the distribution center driveways off 

of Jimmy de Loach Parkway or on the GCT driveway (the extension of Bourne Ave east 

of South Coastal Highway).  At each intersection approach, background traffic routing 

decisions route 10-20% of approaching background traffic as left-turning movements, 10-

20% of approaching background traffic as right-turning movements, and the remainder of 

approaching background traffic as through movements.  Exact proportions depend on the 

intersection.  
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3.3.4.2  Port and Roadway Truck Routing Method 

A series of truck-specific routing decisions, that route trucks according to their 

VISSIM© vehicle class, ensure that port and roadway trucks are properly routed between 

their various origins and destinations.  VISSIM© distinguishes vehicles in two different 

ways, according to ‘vehicle type’ and ‘vehicle class.’  VISSIM© defines ‘vehicle type’ as 

a “group of vehicles with similar technical characteristics and physical driving behavior.” 

[9]  Vehicle types include cars, light trucks, heavy trucks and buses.  On the other hand, a 

“vehicle class represents a logical container for one or more previously defined vehicle 

types.” [9]  One way to think about a vehicle class is as a fleet of delivery vehicles, 

wherein the fleet could consist of cars, light trucks and heavy trucks.  The distinction 

between vehicle types and classes is important because VISSIM© can assign vehicle 

classes to particular routes, but not vehicle types.  However, the COM interface 

commands only allow the RTI to specify vehicle types when creating vehicles in the 

network, not vehicle classes.   

For the federation, six vehicle classes were created according to destinations: 

Class 1 – to Distribution Center 1, Class 2 – to Distribution Center 2, Class 3 – to 

Distribution Center 3, Class 6 – to Long-Distance Trucking/I-16 Junction, Class 7 – to 

Port/GCT, and Class 10 - Background.  Note that classes 4, 6, 8 and 9 are intentionally 

omitted as they pertain to other port system destinations that are not part of this study, but 

may be used in future studies. 

Within each vehicle class there is only one associated vehicle type.  Classes 1, 2, 

3, 4, 6, and 7 are assigned the ‘HGV’ (heavy-goods vehicle) vehicle type.  Class 10 – 

Background is assigned the ‘car’ vehicle type.  However, because of the COM interfaces 
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inability to allow the RTI to assign vehicle classes, each vehicle type instance in a vehicle 

class must be unique.  Therefore, seven vehicle types were created – six of which are 

‘HGV’ vehicles and one of which is a ‘car’ vehicle.  Each of the seven unique vehicle 

types is associated with only one of the vehicle classes.  For example, Vehicle Type 1 – 

HGV is assigned only to Vehicle Class 1 – to Distribution Center 2.  Similarly, Vehicle 

Type 7 – HVG is assigned only to Vehicle Class 7 – to GCT/Port, and so on. 

Next, a series of routing decisions were then created for each of the major 

intersections across which port and road truck traverse.  Multiple decisions were made 

per intersection approach to correctly route the port and road trucks through each 

intersection.  For example, Figure 57 shows the routing decision window, with the row 

highlighted for ‘Decision No. 49.’  Routing decision ‘Decision No. 49’ starts on link 51 

(as indicated by the green arrow), which is the westbound approach to intersection 2 on 

Bourne Ave. (see Figure 56), and ends on link 78 (as indicated by the red arrow), which 

 

 

Figure 57.  VISSIM© Roadway Network Sample Routing Decision Window 
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is the westbound link leading away from intersection 2 on Dean Forest Rd.  Note that 

routing ‘Decision No. 49’ only applies to vehicle class ‘Class 6 – To I-16 Junction,’ as 

indicated by the black arrow.  This means that routing ‘Decision No. 49’ will only direct 

‘Class 6 – To I-16 Junction’ vehicles to continue straight through intersection 2 towards 

the I-16 Junction. 

Recall from Figure 41 that when the RTI creates a vehicle in VISSIM© (for this 

example, a vehicle from the GCT) it executes the following command: 

 
vehicle = vissim.Net.Vehicles.AddVehicleAtLinkCoordinate 
(array5014, 50, 50, 1, 0)  
 
 

The values embedded in the parentheses in this command refer to, in order, the vehicle 

type (array5014), the desired speed in mph (50), the desired link number on which to 

create the vehicle (50), the desired lane number on that link on which to create the 

vehicle (1), and the x-coordinate on that link (0, denoting the beginning of the link).  

Also, recall from Figure 41 that the local RTI variable ‘array5014’ refers to the 

‘Destination ID’ attribute value for the current container/vehicle exiting the GCT.  For 

this example, the container is bound for the I-16 Junction (Destination ID = 6), therefore 

VISSIM© creates a vehicle at the given location that is VISSIM© vehicle type 6.  As 

vehicle type 6 only belongs to vehicle class 6, the newly created vehicle will only follow 

routing decisions associated with vehicle class 6.  In this case, the newly created vehicle 

will follow only the routing decision straight through intersection 2 westbound, toward 

the I-16 Junction.  The truck encountered a similar routing decision upstream at 

intersection 3 that routed the vehicle through that intersection, westbound toward 

intersection 2.   
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There are multiple routing decisions that begin on the same link (link 51) as 

‘Decision No. 49,’ shown in Figure 57.  However, these other routing decisions end at the 

other various locations and are applicable only to the certain vehicle classes associated 

with each of those destinations.  For example, the routing decision from the GCT to 

Distribution Center 1 (Destination ID = 1) is only applicable to vehicle class 1, which 

only contains vehicle type 1.  Therefore, if an exiting container/vehicle has a Destination 

ID equal to 1, the RTI will create in VISSIM© a vehicle of vehicle type 1.  As vehicle 

type 1 is only associated with vehicle class 1, the vehicle will only follow routing 

decisions that direct it to Distribution Center 1.   

 

3.3.4.3  Roadway Detectors at Destination Links 

As noted previously, roadway detectors are incorporated into the VISSIM© 

roadway model to detect the presence of a vehicle at the end of one of the destination 

links ready to exit the roadway network model federate.    In VISSIM©, detectors must 

be assigned to a signal controller.  Previously, nine signal controllers were created – one 

for each of the nine signal control plans discussed above and outlined in Appendix C.  As 

assigning the exiting link detectors to one of these three signal controllers would activate 

erroneous signal control calls, a tenth “dummy” signal controller, with no actual signal 

phasing, was created expressly for the detectors.  

Each detector was placed approximately 100 feet before the end of an exiting 

destination link and all detectors were set to be 20 feet in length.  The rationale for these 

decisions will be discussed in the next section.  Figure 58 shows the detector for the 

existing link at Distribution Center 1.   
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Figure 58.  VISSIM© Detector Location for Distribution Center 1 

 

3.3.4.4  Roadway Network Model – Special Considerations 

During model construction and testing, special considerations had to be made 

specifically to address two known issues in the VISSIM© roadway network model 

federate.  The first concerns “vehicle diffusion,” or the deletion of vehicles from the 

roadway network during runtime, which has been mentioned previously.  The second 

concerns ensuring that the roadway model did not fail to detect trucks upon their arrival 

at a destination.  Each of these issues will be discussed in the following sections. 

 

3.3.4.4.1  Diffusion of Vehicles From the Roadway Network 

As has been stated, the primary reason VISSIM© diffuses in-transit vehicles from 

the roadway model is to avoid deadlock.  Deadlock can occur for multiple reasons.  

However, the primary type of diffusion that was encountered during this study involved 

lane-change delay.  When a vehicle is forced to stop at the “emergency stop position” for 

a lane-changing maneuver, there is a prescribed amount of time that vehicle will wait for 
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a sufficient gap to occur before VISSIM© deletes, or “diffuses,” the vehicle from the 

network [9].  The “emergency stop position” is the location on the link at which the 

connecter for the corresponding movement begins, requiring the lane changing maneuver.  

In other words, it is the last possible point of opportunity that a vehicle has to execute a 

lane-changing maneuver. 

The initial cause of diffusion of vehicles in this roadway network model was 

largely a product of insufficient vehicle look-ahead for routing decisions at turning 

movements.  In other words, the starting point of routing decisions were not placed 

sufficiently far upstream of intersections, causing vehicles to wait until just before a 

turning movement to change lanes for that movement.   

Two special design considerations were incorporated to combat this problem of 

vehicle deletion.  The first special consideration was to move the truck-specific routing 

decision starting points farther upstream of intersections.  In some cases, these starting 

points were moved up to a mile upstream of the intersection to allow trucks sufficient 

space in which to execute a lane-changing maneuver, as necessary. 

The second special consideration was to increase the maximum allowable time for 

lane-change delay before a vehicle is deleted, or diffused.  The default value in VISSIM© 

is 60 seconds.  For this model, this time was increased to 120 seconds.  This effectively 

doubles the time interval vehicles have in which to find an adequate gap in traffic and 

execute a lane-changing maneuver. 

Even with these two special design considerations it was not possible to 

completely eliminate deadlocks by making adjustments to the VISSIM© roadway 

network model.  Instead, these design considerations reduced the number of port/road 
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trucks deadlocks, and therefore diffusion, to a rate of approximately two trucks per hour.   

However, the compounded effect of this diffusion on a reusable resource, such as port 

trucks, over several days of simulation can be significant. For example, using this average 

diffusion rate of two trucks per hour, 144 of the 150 port trucks could potentially be 

diffused in three days of simulation.  Therefore, it was necessary to implement the 

RTI/Arena© based diffusion module (section 3.3.2.2) as a secondary solution. 

 

3.3.4.4.2  Vehicles Not Detected by Destination Link Detectors  

Early trials of the federation indicated that numerous vehicles were not being 

detected by the destination link detectors.  It was discovered that there were two reasons 

for this.   

  First, on exiting links with multiple lanes, all but the right-most lane was closed 

to truck traffic.  This should have caused all trucks to travel in the right lane.  

Accordingly, single detectors were only located in the right-most lane of each link.  

However, consistent with the discussion above concerning inadequate lane-changing 

behavior, numerous vehicles did not change to the right-most lane prior to exiting the 

network and were missed by the detectors.  The first solution considered was to widen 

detectors to cover the second lane.  However, this could have caused a second vehicle to 

be missed if two side-by-side vehicles simultaneously cross the widened detector during 

the same time step.    

The second reason that detectors were missing vehicles is related to the detector 

length.  If the detector is too short, a vehicle can pass completely over the detector in a 

one second time step, missing detection.  However, if the detector is too long, two 
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vehicles in the same lane traveling at close spacing can be simultaneously located over 

the detector.  This would cause the RTI to recover only one ‘Vehicle ID’ for the detector, 

thereby missing the second vehicle.   

To address these issues, several design elements were considered, all but one of 

which were incorporated into the roadway model.  First, because some trucks 

occasionally exit the roadway model from the left lane of the destination links, despite 

lane closures, the first solution was to either merge or divert trucks into single exiting 

lanes.  As the GCT and the I-16 Junction are the only destinations with multilane exiting 

links, this was only necessary at those locations.  Figure 59 shows the condition at the 

GCT destination link where two lanes of truck traffic are merged into one single entering 

lane.  This enables the use of only one detector in the single exiting lane, as shown. 

 

   

Figure 59.  VISSIM© Roadway Model GCT Exiting Link 

 

Merging two lanes into one single lane was an option at the GCT because no 

background traffic is allowed on this link.  However, as background traffic is mixed with 

truck traffic on Dean Forest Road at the I-16 Junction, a different solution was necessary.   
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Figure 60 shows the condition at the I-16 Junction where truck traffic is diverted to a side 

road link to exit at the I-16 Junction.  Diverting truck traffic to the side road does not 

interfere or impede the flow of background traffic as would have occurred if the two 

exiting lanes were merged into one single exiting lane.  Also, locating a routing decision 

several hundred feet upstream, to route trucks onto the side road, forces the occasional 

left lane truck to merge into the right lane to exit to the side road.  These methods of 

merging and diverting exiting truck traffic lanes solved the problem associated with 

failing to detect occasional vehicles traveling in the left lanes of exiting links.  Also,  

 

 

Figure 60.  VISSIM© Roadway Model I-16 Junction Exiting Link 
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initial tests indicated that these occasional forced lane-changes associated with the I-

16Junction exit do not increase background traffic delay or congestion along that 

roadway. 

Diverting and merging exiting lanes, however, did not solve the problem 

associated with inadequately short detectors failing to detect crossing vehicles and overly 

long detectors detecting failing to detect closely spaced vehicles.  Generally, this problem 

is due to having no control over the speed and frequency with which vehicles crossed 

detectors.  Therefore, three solutions were considered to combat this problem.  The first 

was to install a second detector downstream of the first detector.  If a truck passed 

completely over the first detector in a single time step due to inadequate length, the truck 

would be detected by the second detector.   

The second solution would be to utilize a VISSIM© COM command that allows 

the RTI to extract a list of all vehicles currently located on that exiting link.  This list of 

vehicles from VISSIM© is then be compared with the federation database list of port and 

roadway trucks currently in the roadway network model federate to determine exiting 

vehicles.   

The third design element considered was to place a stop sign immediately before 

each detector.  This would cause vehicles to cross the detectors at low speeds and reduced 

frequencies. 

The problem identified with adding a second detector in series is two-fold.  First, 

adding a separate second detector would require the duplication of the RTI commands 

shown in Figures 42 and 43 for the second detector.  This would significantly reduce the 

speed and efficiency of the RTI.  Second, if the first detector fails to detect a truck, it is 
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assumed that the second detector will detect the truck.  However, if the first detector fails 

to detect the vehicle, there is no guarantee that the second detector will not also fail to do 

so.   

The problem identified with using the COM command to populate and compare a 

list of vehicles on exiting links with the federation database is computing limitations.   

Given that the lists would have to be populated at the end of every time step, the 

computing overhead required for this solution would significantly slow down the 

federated simulation execution.  For these reasons, the decision was made to place a stop 

sign immediately before a single detector at each exit.   

There is some concern that installing a stop sign would detract from the reality of 

the simulation model.  This concern is largely unwarranted for vehicles exiting at the 

distribution centers and the GCT where, in reality, trucks would be preparing to stop to 

enter the facilities and for unloading.  Nonetheless, this concern is reasonable for the I-16 

Junction.  It is hoped that the incorporation of a separate exiting link exclusively for 

trucks mitigates some of concern that stopping trucks would disrupt background traffic 

flow, especially if the exiting link has sufficient queuing space to prevent spillback from 

impeding background traffic flow on the mainline.  Note that all travel time data 

associated with port and road way trucks is collected along segments that end upstream of 

these stop controlled exits.  Therefore, any delays associated with these stop controlled 

exits are not reflected in travel time data.  Future versions of the model will seek a better 

method to detect trucks exiting the system. 

 

 



 

155 

3.4  Known Model Limitations 

Several known limitations exist in various federation and federate model 

components that should be addressed in future port system simulation and modeling 

efforts.  This section will outline these limitations by federate component. 

 

3.4.1  Arena© Port Model Federate Limitations 

Throughout federation development, the assumption was made that the federation 

time-step interval would uniformly be 1 second in length.  As a result, this 1 second time-

step interval has been “hard-coded” into several elements of the federation and model 

federates.  One example of this hard-coding is found in the ‘Vehicle Input v2’ and 

‘Container Input v2’ Input blocks discussed in Section 3.3.1.1.4.  Recall that these Input 

blocks were developed specifically for this model using the template development 

capability of Arena©.  In these blocks, entities are created at 1 second intervals in the 

“switch variable series” of logic (Figure 24) which controls the blockage, release, and 

therefore creation, of vehicle/container entities from the Input block.   

As was stated earlier, if the 1 second interval in that template block were set to a 

smaller time value, it could allow erroneous duplicate entities to be created by the Input 

block.  Similarly, if the interval were set to a larger time value, entering vehicles could be 

missed or not created by the Input block.  This problem is a direct byproduct of the 

fundamental assumption that all time-stepping in the federation would occur in 1 second 

intervals. 

The implication of this hard-coded 1 second time-step interval is that there is no 

flexibility to adjust the resolution of the federation.  That is, there is no flexibility to set 
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the model to run at lower time resolutions (e.g., longer time-steps: 2 seconds, 5 seconds, 

etc.) or to run at higher time resolutions (e.g., shorter time-steps: 0.5 seconds, 0.1 

seconds, etc.).  Depending on the analysis and evaluation needs of future simulation and 

modeling efforts, this inflexibility in time resolution could prove to be a limitation. 

There is a second limitation in the Arena© port model federate, which has to do 

with truck object rerouting.  Currently, the rerouting of empty vehicles follows a “GCT-

centric” logic.  That is, if empty port truck objects are not needed (i.e., are in excess) in 

the current distribution center submodel, they are automatically rerouted to the GCT Gate 

submodel.  This somewhat limits the ability of the port model federate to balance the 

distribution and utilization of port truck objects throughout the system as there is no 

capability for excess port truck objects at one distribution center to be rerouted to another 

distribution center where they may be needed. 

Similarly, if road truck objects are in excess at one of the distribution center 

submodels, the road truck objects are either rerouted to the GCT Gate submodel, or if 

unneeded at the GCT Gate submodel, they are rerouted to the I-16 Junction submodel.  

There is currently no option to reroute excess road truck objects from the GCT Gate 

submodel to one of the distribution center submodels.  Again, this creates a limitation in 

the port model federate’s ability to adaptively balance the distribution and utilization of 

road truck objects throughout the system by considering all submodel needs, and not 

primarily those of the GCT Gate submodel.   
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3.4.2  VISSIM© Roadway Network Model Federate Limitations 

As the purpose of this study is the development and validation a federation 

methodology, several assumptions and special design considerations were incorporated to 

simplify the construction and operation of the roadway network model federate.  These 

assumptions may prove to be a limitation for future simulation modeling efforts intended 

for a deeper analysis of the port system operations.  

As stated in Section 3.3.4.1, both the background traffic input volumes and signal 

timing plans are assumed.  Future analysis of port systems operations should incorporate 

field-based values for both traffic input volumes and signal timing plans, which likely 

utilize actuated or adaptive intersection signalization strategies.   

The second roadway network model limitation concerns the destination links at 

federation interaction points.  First, the use of stop controlled single-lane exits to reduce 

the frequency and increase the uniformity of truck objects passing over the detectors.  

Because of the practical challenges associated with using multiple or duplicate detectors 

– both in the VISSIM© model and the RTI – this technique was implemented.  However, 

the obvious inconsistency with field-conditions of using stop controls at these exiting 

links, especially the I-16 Junction, will limit the model’s reflection of the real system’s 

operations.  Further calibration of detectors or innovative RTI command coding in future 

modeling efforts may prove capable of negating the need for single-lane, stop controlled 

exiting links. 

The third limitation is that the current VISSIM© COM interface library does not 

allow outside programs, such as the RTI, to access vehicle diffusion information during 

runtime.  Therefore, it is not possible to determine, during runtime, if a vehicle was 
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diffused during the previous time-step.  For this reason, the 5000 second “look back” 

method was created because the federation database could be accessed during runtime, 

and provided time-stamped records capable of identifying vehicle diffusion occurrences.  

One issue with this is that the hard-coded 5000 second look-back delay may have 

some minor impact in the clarity of the truck utilization and location values that are 

collected during runtime.  That is, it may cause these values to indicate that a greater 

number of trucks are present in the roadway network than is accurate.  It is not until 5000 

seconds after a truck is diffused from the roadway network model that it is detected by 

the RTI, the truck is recreated in the Arena© model, and these truck utilization and 

location values are corrected.  Future versions of the model will seek better solutions to 

account for vehicle diffusion without such significant delays in detection.   

Another limitation of this method for determining vehicle diffusion is that if the 

roadway network is highly congested, the RTI may determine that a vehicle was diffused 

when it in fact that vehicle was just significantly delayed by the congestion.  the RTI 

determines that a vehicle was diffused when in fact that vehicle was merely just 

significantly delayed in the network, the RTI generates an error message and the 

federated simulation stops.    

 

3.4.3  Runtime Infrastructure (RTI) Limitations 

 The primary limitation of the RTI is the command code’s current inability to 

record when two or more containers are loaded onto a truck.  As has been mentioned 

above, the Arena© port model federate submodels could easily be altered to enable 

multiple containers entities to be batched with individual truck entities.  However, the 
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current RTI code is not able to record the association of multiple containers with a single 

truck.  To enable this capability would require significant changes in the RTI structure 

and minor changes to the federation database structure.   

 

3.5  Chapter Summary 

This chapter presented the methodology of the federated simulation effort 

undertaken in this study.  Section 3.1 provided with an operational overview of the port 

and roadway network systems being modeled.  Section 3.2 provided an overview of the 

federation components was then presented discussing the general operation of the 

Arena© port model federate, the VISSIM© roadway network model federate, the runtime 

infrastructure (RTI), and the federation database.  Section 3.3 described each federation 

component in detail.  Section 3.4 provided a discussion of the known limitations in each 

federation component. 

The next chapter introduces the experiment that is conducted on the federated 

simulation model.  This includes a background discussion of the type of experiment 

conducted, the types of data that are collected, and the statistically based methods by 

which the output data is analyzed 
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CHAPTER 4 

DESIGN OF EXPERIMENT 

 

The purpose of this experiment is to test for the presence of feedback loops 

between the two model federates and understand the characteristics of how the model 

readjusts to steady-state operation following adjustments to federation input parameters 

during run-time.  To show this, a simple time-lag experiment will be conducted in which 

two federate parameters are changed in sequence, or out of phase, from one another 

during run-time.  The effects of these parameter changes, as well as the propagation time 

of these changes, will be analyzed in the federation output data.   

 

4.1  Time-Lag Experiment Background 

Much of the theory explaining traffic flow characteristics has a basis in fluid 

dynamics.  Indeed, the foundational research of Lighthall and Whitman (1955) used some 

concepts from fluid dynamics (most notably the concept of mass conservation, wherein a 

traffic input volume should be equal to the output volume plus some roadway storage 

along a section of roadway) and wave theory to develop the kinematic wave model of 

traffic flow [29].  Essentially, this theory suggests that as events occur in a traffic stream, 

the effects of those events propagate upstream through the traffic as a time dependent 

“shock wave.”  For example, consider a vehicle on a crowded arterial that brakes 

suddenly.  Not all drivers upstream will brake at the same time as that first driver, but 

will instead brake sequentially in response to the vehicle in front of them.  This sudden 

reduction in speed of the traffic stream propagates as a kinematic “shock wave” upstream 
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from the initial vehicle.   Therefore, there will be some time-delay between when that 

initial driver brakes and the time at which another driver several hundred feet upstream in 

traffic is forced to brake.      

This treatment of traffic as a fluid also occurs in the realm of computer 

simulation.  Ni (2006) has discussed how macroscopic computer models of traffic 

networks generally treat traffic flow as a compressible fluid [1].  This concept is further 

reflected in studies conducted by Daganzo and Geroliminis (2007, 2007 & 2008) that 

relate traffic flow and average density on urban roadway networks through a macroscopic 

fundamental diagram (MFD) by monitoring the input and outflow of traffic around the 

perimeter of a network [30-33].  This is analogous to measuring the flow rates into and 

out of a water tank or fluid pipe network [33].  These studies present the idea that given 

this general knowledge, conclusions can be made about the density of traffic (and 

therefore congestion level) within the urban roadway network itself [30-32].   

The concept of a time-lag experiment in this study builds on this historical 

foundation of using fluid dynamics to better understand both kinematic wave propagation 

through traffic streams and macroscopic traffic networks. 

The basic concept of the time-lag experiment has been borrowed from the field of 

hydrology.  As has been explained, there is some precedent for using hydraulics and 

hydrology to explain transportation engineering and traffic flow phenomena.  Therefore, 

the underlying concept is analogous to the measurement of changes in streamflow out of 

a drainage basin during and after a rainfall event [34].  As rain falls on a basin, the 

rainwater flows downhill to some stream that drains the basin.  However, because of the 

time associated with the rainfall collecting in the basin and flowing downhill toward the 
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drainage stream, the increase in flow of the drainage stream is not immediate.  Instead, 

there is a time-lag; that is, the flow-volume of the basin drainage stream increases over 

some time interval during and after the rainfall event.  The flow rate of the basin drainage 

stream eventually peaks and then subsides as no additional water is input once the rainfall 

event has stopped.  The difference in time between the beginning of the rainfall event and 

the peak of the drainage streamflow is called the time of rise, and the time from the 

midpoint, or center of mass, of the rainfall event to the peak of the drainage streamflow is 

called the lag time [34].  Figure 61 shows a generalized hydrograph illustrating the 

relationship of these times between the rainfall event and the peak streamflow.    

In this example of time-lag (lag time) from hydrology, the change in flow, or 

output, of the system lags behind the increase in the input of that system.  This time 

 

 

  Figure 61.  Hydrograph Characteristics and Time Relationships 
(Figure Credit: Hydrology and Floodplain Analysis [34]) 
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difference between the change in an input parameter in a system and the 

observable effects of that change as it propagates throughout the system forms the basis 

of the experiment conducted in this study.  Specifically, two input parameters of the Port 

of Savannah federated simulation will be sequentially changed and the amount of time 

required for the effects of those changes to propagate throughout the system will be 

determined. 

        

4.2  Experimental Design 

The previous section provides the background and foundation for conducting a 

time-lag experiment on the Port of Savannah federated simulation.  This section provides 

a discussion of the specific design elements that this type of experiment entails.  This 

begins with a discussion of the overarching structure of the experiment.  This is followed 

by a discussion of the input parameters (independent variables) that will be changed 

during the experiment.  Next is a discussion of the types of system performance and 

output data (dependent variables) that are collected throughout the simulation.  Lastly, a 

discussion of the statistical methods used to analyze this output data is presented. 

 

4.2.1  Experimental Overview 

One of the fundamental objectives of this study is to investigate the effects of port 

operations on the surrounding roadway network, and conversely to investigate the effects 

of roadway network performance on port operations.  Therefore, input parameters of both 

systems must be adjusted during simulation runtime.  Within the port model federate, the 

input parameter that is adjusted is the volume of containers arriving to the port from 
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container ships.  This is the first independent variable – port container volume.  Within 

the roadway network model federate, the input parameter that is adjusted is the volume of 

background traffic circulating in the network.  This is the second independent variable – 

network background traffic volume.   

To avoid the risk of confounding data associated with changing two independent 

variables during one replication of the federated simulation, the two independent 

variables are adjusted separately, out of phase from one another.  Figure 62 shows how  

 

 

Figure 62.  Sequencing of Independent Variable Changes 

 

this sequencing occurs.  For the first day of simulation time, both the container volume 

and the background traffic volume are held constant, providing time for the federated 

simulation to reach steady state.  At the end of day one, the container volume is 

increased, while the background traffic volume is held constant, and the simulation 

continues in this state for a second day of simulation time.  At the end of day two, the 
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background traffic volume is increased.  At this point, both port container volume and 

background traffic volume variables are in their increased states, and the simulation 

continues for a third day of simulation time.  At the end of day three, the container 

volume is reduced to its original starting volume, while the background traffic volume 

remains in its increased state.  The simulation continues for a fourth day of simulation.  

At the end of day four, the background traffic volume is reduced to its original starting 

volume.  At this point, both port container and background traffic input volumes are back 

at their original levels.  The simulation then continues for a fifth and final day of 

simulation time.   

Stepping up both independent variables one day out of phase from one another, 

and then stepping them back down to their original states, allows several phenomena to 

be observed and assumptions to be tested.  First, the assumption is made that the 

federated simulation achieves steady state operation at some point during each successive 

day of operation.  Using various output data, steady state operation can be calculated (the 

statistical methods for this calculation are discussed in section 4.2.4).  The second 

assumption, building on the first, is that there is some time-constant associated with the 

time-lag between when an input parameter is changed and when the simulation readjusts 

to a new steady state condition.  In other words, while an input parameter can be adjusted 

nearly instantaneously (as shown by the sharp stepping of the lines in Figure 62), various 

dependent variables (e.g., travel times, number of trucks in the network, port queue 

lengths) will adjust to these new conditions over some time interval, or time-lag.  

Furthermore, by both increasing and decreasing port container volume and background 
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traffic volume, any differences in time-lag intervals associated with the direction of 

change can be observed. 

 

4.2.2  Independent Input Variables  

As has been described throughout Chapter 3 – Methodology, there are numerous 

independent variables that can be adjusted throughout simulation to affect the 

performance of both the port model federate and the roadway network model federate.  

The purpose of this section is to discuss the two input parameters (independent variables) 

that will be adjusted and how they will be adjusted.  Also, this section discusses which 

other independent variables are held constant throughout the federated simulation. 

 

4.2.2.1  Transient Independent Variables 

As mentioned in section 4.2.1, two input parameters are adjusted during 

simulation runtime: port container input volume, and roadway network background 

traffic input volume. 

Container input volume is adjusted only in the GCT aggregated submodel.  Recall 

from section 3.3.1.1.1 and Figure 7 that containers arrive to the GCT Gate submodel at 

the Station block ‘Receiving from Truck Transfer.’  Upstream from this Station block, 

containers are generated within the aggregated GCT submodels by a separate submodel 

(developed by Peesapati and Gbologah [8]) that represents container ships arriving to the 

port.  In the base condition, day one, ships arrive at a constant rate, one ship every two 

hours.  The number of containers on each ship is determined using a random uniform 

distribution with minimum and maximum values of 225 and 275 containers per ship, 
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respectively.  Therefore, the average container volume in the base condition is 250 

containers per ship arrival, or 125 containers per hour.  Container volume is then 

increased at the end of day one by shortening the interarrival time of ships to the port.  

Instead of ships arriving every two hours, the higher container volume scenario has ships 

arriving every hour and a half.  The number of containers on each ship is determined 

using the same random uniform distribution with minimum and maximum values of 225 

and 275, respectively, as before.  Therefore, the average container volume in the high 

container volume scenario is 166.67 containers per hour.  At the end of day three, the 

ship interarrival time is reset to two hours. 

The base background traffic input volume is 250 vehicles per hour on all links 

entering the roadway network (excluding the distribution center and GCT driveways) for 

days one and two.  At the end of day two, the background traffic input volume is 

increased to 500 vehicles per hour on all links entering the roadway network with the 

exception of three: the entering links of northbound GA Highway 21, southbound GA 

Highway 21 and northbound Dean Forest Rd.  For these three inputs, the background 

traffic input volume is increased to 850 vehicles per hour.  This increase occurs at the end 

of day two.  These increased volumes (500 and 850 veh/hr, depending on the input link) 

constitute the high volume background traffic scenario.  At the end of day four, the 

background traffic input volume is reset to 250 vehicles per hour for all entering links. 

 

4.2.2.2  Constant Independent Variables 

During earlier discussions in Chapter 3 – Methodology, numerous other “user-

defined” independent variables were identified.  All of these other independent variables 
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are held constant for the time-lag experiment conducted in this study.  This section 

provides a brief description of these variables and their constant values. 

Recall from section 3.3.1.3 that the I-16 Junction/Highway submodel generates 

both empty road trucks and road trucks carrying containers during runtime to simulate the 

arrival of trucks and containers from the interstate highway system.  It is important that 

the average rate at which trucks are generated in the I-16 Junction submodel (i.e., the 

combined rate of both empty and container-laden trucks) be at least equivalent to the 

average rate at which containers are generated at the GCT.  This is due to the fact that all 

containers generated at the GCT are assigned the I-16 Junction as their final destination, 

independent of whether or not they are assigned an intermediate destination (i.e., one of 

the distribution centers).  Therefore, the number of road trucks entering the federation 

must balance (i.e., be equal to or greater than) the number of containers entering the 

federation at the GCT.  It follows that the base port container volume described in the 

previous section would require a lesser number of road trucks to be generated at the I-16 

Junction submodel than would be required for the higher port container volume scenario.  

Therefore, a road truck generation rate of 200 vehicles per hour was chosen as it provides 

a sufficient number of road trucks for both high and low container volume scenarios, with 

some excess capacity.   

Each container arriving at the GCT Gate model is previously assigned a pair of 

intermediate and final destinations by the aggregated GCT submodels.  Ten percent of the 

containers that arrive at the GCT Gate submodel are not assigned an intermediate 

destination, but are assigned only a final destination at the I-16 Junction.  The remaining 

90 percent of arriving containers are assigned an intermediate destination at one of the 
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distribution centers (divided equally, 30 percent to each distribution center) and a final 

destination at the I-16 Junction.  Containers and empty road trucks that are generated at 

the I-16 Junction are assigned destinations according to these same distributions to 

balance the number and distribution of containers entering at the GCT. 

Recall that all three distribution center submodels and the GCT Gate submodel 

contain Delay blocks to simulate the unloading time associated with arriving trucks and 

containers.  For both arriving container and truck logic processes in all submodels, the 

unloading delay time is set to a constant 15 minute interval.  These Delay blocks also 

delay empty trucks upon arrival, not just those carrying containers. 

Recall also that each distribution center reroutes both empty port and road trucks 

according to various maximum queue lengths within the port model federate.  All 

distribution centers are set to reroute empty port trucks to the GCT if the queue of 

available port trucks at that distribution center is greater than or equal to three.  Similarly, 

empty road trucks are rerouted if the queue of available road trucks at that distribution 

center is greater than or equal to three.  These empty road trucks are then rerouted to the 

I-16 Junction if the queue of road trucks at the GCT is greater than or equal to five.  

Otherwise, they were rerouted to the GCT.   

The GCT Gate submodel also reroutes empty road trucks according to queues of 

available road trucks at the GCT.  In this case, if the queue of available road trucks in the 

GCT Gate submodel is greater than or equal to five, excess empty road trucks are 

rerouted to the I-16 Junction. 

Lastly, the look-back time associated with evaluating vehicle diffusion in the RTI 

is set to a constant 5000 seconds.  Therefore, the RTI does not begin evaluating vehicle 
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diffusion until the simulation time has advanced to a value greater than 5000 seconds. 

This time was determined by conducting several investigative replications of the 

federation and was found to provide sufficient look-back time for both the low volume 

and high volume traffic scenarios without generating a system error.   

 

4.2.3  Dependent Variables and Data Output  

Throughout simulation, data is collected relating to four performance measures 

(dependent variables) within the federation: facility queue lengths, roadway travel times 

truck utilization and location, and facility processing rates.  The purpose of this section is 

to briefly introduce these four types of data and how they are collected.   

 

4.2.3.1  Queue Length Data 

The queue length data collected during simulation runtime represents the number 

of container and truck objects waiting in each of the port submodels for batching and 

release to the roadway network model federate.  Four types of queue length data are 

collected separately for the GCT Gate submodel, and each of the three distribution 

centers.  No queue length data are collected for the I-16 Junction submodel as no queues 

occur in that submodel. 

Each of the four submodels mentioned above contain four queues: (1) port trucks 

waiting to be batched with outgoing containers, (2) containers waiting to be batched with 

outgoing port trucks, (3) road trucks waiting to be batched with outgoing containers, and 

(4) containers waiting to be batched with outgoing road trucks.  Figure 7 shows these 
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queues for the GCT Gate submodel, and Figures 28 and 29 show these queues for the 

distribution center submodels. 

Queue length data is collected by the RTI directly from the port model federate 

Queue blocks (via the built-in COM interface) and written to the Queues table in the 

federation database.  Queue length data is collected every 60 seconds and provides a 

snapshot of the various queue lengths at 60 second intervals.   

 

4.2.3.2  Roadway Travel Time Data 

Travel time data is collected for both background traffic and port and road truck 

traffic over numerous road segments within the network.  This data is collected by 

VISSIM© during simulation runtime, which records this information directly to text files.  

Only compiled travel time data is collected, meaning that travel times are averaged for 

the number of vehicles that completely traverse a travel time segment during a set time 

interval.  For this study, travel time data is compiled for 30 minute time intervals.    

As mentioned, travel time data is collected for both background traffic and truck 

traffic.  Port and road truck travel times are collected for “door-to-door” origin-

destination travel time segments.  For example, travel times are recorded for trucks 

traveling from the GCT to Distribution Center 1, separately from trucks traveling from 

the GCT to Distribution Center 2.   

As this study’s focus is on the interaction and impacts of port operations on roadway 

performance, and vice-versa, travel time segments for background traffic are only placed 

on roads on which Port of Savannah truck traffic and background traffic interact.  

Therefore, six travel time segments were selected for background traffic.  The first two 
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segments consist of the entire length of GA Highway 21 in both the northbound and 

southbound directions.  The second two segments consist of GA Highway 21 (both 

northbound and southbound) between the intersection of Bourne Ave/Dean Forest Rd. 

and Jimmy de Loach Pkwy.  These segments are shown in red in Figure 63.  The final 

two segments cover of Dean Forest Rd., northbound and southbound, between the I-16 

Junction and the intersection with GA Highway 21.  These segments are shown in green 

in Figure 63.  Note that the partial travel time segments shown in Figure 63 do not 

include the intersections themselves, but instead start on the far side of each intersection 

and end just prior to each intersection.    

 

 

Figure 63.  Partial Travel Time Segments for Background Traffic 
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4.2.3.3  Truck Utilization and Location Data 

Three types of truck utilization and location data are determined separately for 

both port and roadway trucks.  These are (1) the total number of trucks in the federation 

system (i.e., trucks in both roadway network and port model federates), (2) the total 

number of trucks active in the roadway network model federate (both empty and 

container-laden trucks), and (3) the total number of trucks in the roadway network model 

federate carrying a container.   

Recall that each truck entry recorded in the Vehicle Log table of the federation 

database specifics the origin, current destination, current location, container ID, and time 

stamp for every truck transaction.  This enables the truck utilization and location data to 

be determined by post-processing the Vehicle Log data tables.   

 

4.2.3.4  Submodel Facility Processing Data 

Processing data counts the number of containers and trucks entering or leaving 

from each of the five port federate submodels to the roadway network model federate 

during a given time interval.  This data collection type was originally implemented as a 

troubleshooting device during the development of the port model federate.  It is unlikely 

that the submodel facility processing data will provide significant insight into the 

operation and performance of the federated system.  This is in part due to the fact that it 

aggregates many port truck and road truck transactions into a single metric.  Nonetheless, 

processing data is collected as a best-practice effort during this study.  For this reason, the 

details of this data collection are outlined below. 
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Facility processing data is collected by the various Count blocks located 

throughout the port submodels as time-stamped records.  Arena© writes this count data 

directly to a text file.  Post-processing then determines the number of trucks and 

containers entering or exiting a port submodel in every successive 900 second, or 15 

minute, time interval.  

At each of the three distribution center submodels, five types of processing data 

are collected: (1) the number of trucks entering the distribution center, (2) the number of 

containers entering the distribution center, (3) the number of trucks leaving the 

distribution center with a container, (4) the number of empty port trucks rerouted to the 

roadway network, and (5) the number of empty road trucks rerouted to the roadway 

network.   

At the GCT Gate submodel, five types of processing data are collected: (1) the 

number of containers arriving at the GCT Gate submodel from incoming freight ships (2) 

the number of trucks entering the GCT Gate submodel, (3) the number of containers 

entering the GCT Gate submodel, (4) the number of trucks leaving the GCT Gate 

submodel with a container, and (5) the number of roadway trucks rerouted to the roadway 

network model bound for the I-16 Junction. 

At the I-16 Junction submodel, four types of processing data are collected: (1) the 

number of truck/container combos created (i.e., those entering the roadway network 

model), (2) the number of empty road trucks created (i.e., those entering the roadway 

network model), (3) the number of containers leaving the roadway network model to 

enter the I-16 Junction submodel, and (4) the number of trucks leaving the roadway 

network model to enter the I-16 Junction submodel. 



 

175 

4.2.4  Data Analysis Methods 

Analysis of the federated simulation output data occurs in two phases.  First, a 

broad overview of the entire five-day simulation period is conducted to identify major 

trends in output data.  This provides a general understanding of the federated system’s 

operation and identifies trends in output that may influence statistical analysis.  Second, 

the simulation output is separated into single-day intervals to capture both the transient 

and steady state phases following each end-of-day input parameter adjustment (as 

described previously).  Statistical data analysis methods are then applied to each single-

day output interval.   

Statistical data analysis methods in this study are used to determine two 

characteristics of the output data, each related to one of the two assumptions discussed in 

section 4.2.1.  One task is to determine from the output data if the simulation reaches 

steady state in any or all of the five one-day periods.  The second task is then to 

determine the time-lag (often called the “initial transient phase”) between when a 

federation model parameter is changed and when the model readjusts from its initial 

steady state to a new steady state condition.  The first section below will introduce the 

general procedure that is required. The second two sections below then introduces the 

specific methods used to determine these two characteristics from the output data.   

 

4.2.4.1  General Approach to Statistical Output Analysis 

The federated simulation in this study will be conducted as a non-terminating 

simulation.  This means that an arbitrary terminating condition will be used to define the 

length of the federated simulation execution (in this case, when the simulation has run for 
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five days of simulation time) because “there is no natural event E to specify the length of 

a run.” [35]  Law (2007) notes that this is common “when we are designing a new system 

or changing an existing system, and we are interested in the behavior of the system in the 

long run when it is operating ‘normally.’” [35]  However, it is well documented that 

within non-terminating time sequence simulations, steady state observations (i.e., 

sequential data points) are correlated and therefore not independent [35-38].  Thus, it is 

necessary to conduct the federated simulation using the method of independent 

replications wherein the output data from numerous replications of a simulation are 

combined.  As each of these replications are conducted independently, the new combined 

set of observations are therefore independent.  Law (2007) and Welch (1983) note that M 

= 5 to 10 replications provides a good starting point, however the exact number is 

dependent on data variability and execution time [35, 37].  For this study, M = 10 

replications are conducted to produce 10 independent data sets which are then combined. 

As we are interested in the time-lag associated with the readjustment to steady 

state, each individual day of simulation time will be examined separately to determine the 

extent of the time-lag (initial transient phase) and steady state phases within that 

individual day following some change of a federation input parameter.  Moreover, each 

individual day of simulation time will have to be examined in chronological order.  This 

is due to the fact that if the initial transient phase of one day extends into the subsequent 

day, this will affect the determination of time-lag and steady state simulation in 

subsequent days. 

Data sets from the 10 independent replications will be combined using a method 

first outlined by Welch (1983) wherein the sequence of sample means is determined for 
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M replications of some output sequence of observations {Vn: n = 1,2,…}  [37].  This is 

illustrated by the equation: 

 

௡ߤ̂  ൌ തܸ௡ ൌ  
1
ܯ ෍ ௠ܸ௡

ெ

௠ୀଵ

,   ݊ ൌ 1, … , ܰ, 

Where:  ̂ߤ௡ = the sequence of sample means from M replications 

 

Therefore, values in the sequence ̂ߤ௡ are independent as they are derived from 10 

independent replications.  Welch (1983) notes that if M is sufficiently large, E[̂ߤ௡] = ߤ௡ . 

[37] 

Once this independent sequence of sample means is determined, the analysis of 

output data must be broken into two phases.  The first phase is a simple visual 

examination of the output data in a graphical plot.  This examination will identify the 

suspected extent of the initial transient phase and the presence of apparent steady state 

operation.  The outcome of this visual examination will either determine that the initial 

transient phase is suspected to terminate at some point during that day of simulation 

(followed by a steady state phase), or otherwise that the initial transient phase does not 

apparently terminate during that day of simulation.  

If the visual examination determines that the initial transient phase appears to 

terminate, then more rigorous methods will be employed to confirm the extent of the 

initial transient phase of the output data.  Conversely, if the visual examination cannot 

identify that the initial transient phase terminates, then subsequent days of simulation and 

other data outputs will have to be examined to explain this phenomenon.     
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4.2.4.2  Determination of Steady State Simulation 

Section 4.2.4.1 described a simple process by which simulation output is visually 

examined to determine whether steady state operation occurs in a given day of 

simulation.  Welch (1983) proposes a more statistically rigorous method of determining 

steady state operation [37].  The central premise is that a histogram showing the 

distribution or frequency of occurrence of an observation from a series of replicated 

simulations should approach some common distribution as one plots histograms for 

observations that occur successively later in the dataset.  In effect, the “histogram is an 

estimate of the probability distribution” [37] for a given output value.  For example, 

consider a sequence of observations {Vn: n = 1, 2,…,200} for which we plot the 

histograms of V40, V80, V120, V160, and V200.  If the data set is at steady state, these 

histograms, which examine successively later-occurring observations, should converge to 

some common probability distribution.  See Welch (1983) for several examples of this 

method [37].   

There are some significant challenges associated with applying Welch’s method 

for determining steady state simulation to this study.  First, the method requires more 

simulation replications than is practical in this study.  For the example provided in the 

text, Welch (1983) conducts 1000 replications to obtain a dataset sufficient to plot 

histograms that approximate probability distribution functions [37].  Given the amount of 

time required to execute one five day federated simulation in this study (approximately 

2.5 days of computing time using a single-CPU workstation computer is required per 

execution), it is not practical to obtain 1000 replications of data to confirm steady state 

operation.   
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The second concern with Welch’s method is as it applies to transportation-related 

simulation.  Much of the data collected from transportation simulations exhibit cyclic 

trends.  For example, vehicle arrival rates at two closely spaced intersections often reflect 

the cyclic traffic signal phasing of the upstream intersection.  Therefore, while successive 

histograms may converge to a common distribution in a truly random simulation, as 

Welch (1983) suggests, it is possible that successive histograms would exhibit cyclic 

behavior when applied to transportation-related simulation data.   It is not clear that a 

recognized method exists to determine steady state operation that can account for this 

cyclic tendency often seen in transportation-related simulation output.  Therefore, steady 

state behavior in the federated simulation output is confirmed only as “apparent steady 

state” behavior using the visual method outlined in section 4.2.4.1.  Future efforts will 

delve more deeply into the development of more rigorous approaches to the identification 

of the presence of steady state operations. 

 

4.2.4.3  Determination of Time-Lag or the Initial Transient Phase 

If the initial visual examination of sequenced sample means indicates that a 

bounded initial transient phase exists within a given day of simulation, then a more 

precise extent of these bound must be determined through further analysis.  Numerous 

methods exist to determine the extent of the initial transient (see [38] for a complete 

discussion of various methods).  For this study, two practical methods are considered 

which fall under the category of truncation heuristics: the Marginal Standard Error Rule 

(MSER) [39] and a moving averages graphical technique [37].  However, Sandikci and 

Sabuncuoglu (2006) discuss that the MSER method “is very sensitive to outliners 
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(extreme values),” noting that eight outliers in a dataset of 6000 observations caused the 

method to indicated that 4876 observations should be truncated (i.e., included in the 

initial transient phase) as compared to 339 observations, once the eight outliers were 

removed.  Initial test runs of the federated Port of Savannah simulation indicated that 

moderate to significant variability could exist in the output data. Therefore, the moving 

averages graphical technique is used in this study. 

The moving averages graphical technique is also presented by Welch (1983) and 

further explained by Law (2007) [35, 37].  This method builds upon the sequence of 

sample means approach that was discussed in the previous section, by taking a moving 

average to “smooth out the high-frequency oscillations in [a dataset] but leave the low 

frequency oscillations or long-run trend of interest.” [35]  By defining the number of 

values included in each calculation of the moving average as 2K + 1, where K is an 

arbitrarily chosen constant, and using the sample mean sequence data, the moving 

average is defined as:  

 

:ҧሺ݊ߤ ሻܭ ൌ  

ە
ۖ
۔

ۖ
ܭሺ2ۓ ൅ 1ሻିଵ ෍ ௡ା௞ߤ̂

௄

௞ୀି௄
         if n ൒ ܭ ൅ 1

ሺ2݊ െ 1ሻିଵ ෍ ௡ା௞ߤ̂

௡ିଵ

௞ୀିሺ௡ିଵሻ
   if n ൏ ܭ ൅ 1

 

 

Given this new sequence of moving averages we can visually approximate a value of n 

beyond which ߤҧ௡ “appears to have converged” toward some constant value associated 

with the steady state phase [35].   
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CHAPTER 5 

RESULTS, ANALYSIS AND DISCUSSION 

 

This section presents the results of the federated simulation experiment, analyzes 

specific days of data within the datasets, and discusses the significance of the large trends 

exhibited by the data.  This begins with a broad overview of the five-day output to 

provide a better understanding of the federated system’s general operation and identify 

general trends in the data.  This data is then analyzed in individual, successive single-day 

intervals.  General trends and specific analysis results are then discussed. 

 

5.1  General Results and Data Trends 

Upon completion of the federated simulation replications, the queue length, 

travel time, truck utilization and location, and facility processing data was output and 

then aggregated into sequences of sample means using the method described in section 

4.2.4.1.  This section provides an overview of the sample mean output data across the full 

five days of simulation time.  Note that this overview of results focuses heavily on 

performance of the GCT Gate submodel, and the performance of the port trucks in the 

roadway network model federate.  The results at the distribution centers are not covered 

in any depth as all three distribution centers exhibit similar trends.  Therefore, only 

results from Distribution Center 1 are examined in depth.   
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5.1.1  Queue Length Data 

  Queue length data was collected at the GCT Gate submodel and each of the three 

distribution center submodels.  Queue length data was collected at the end of every 

minute of simulation time, therefore each data point in the figures that follow represent 

the previous minute of simulation time.  Figure 64 shows the queue lengths for idle port 

trucks waiting to be batched with outgoing containers and the queue lengths for 

 

 

Figure 64.  GCT Gate Submodel Average Port Queue Lengths 

 

containers that have been received from the aggregated GCT submodels (i.e., cargo 

ships) and are waiting to be batched for transport to one of the three distribution centers.  

One day is equivalent to 1440 minutes, therefore vertical lines have been placed at 1440 

minute intervals for reference.   
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Several interesting phenomena are shown in Figure 64.  Note that the supply of 

port trucks starts at 150 trucks (recall that this was a user-defined input), but quickly 

converges to what appears to be a steady state queue length of approximately 50 port 

trucks, and maintains that state for the first day of simulation.  Consequently, as there is 

an excess supply of port trucks available for the first day, a queue of port containers does 

not accumulate.  At the beginning of the second day (simulation time 1440 minutes), the 

volume of containers arriving to the port via cargo ships is increased.  This increase in 

demand of port trucks for container transport reduces the port truck queue length over the 

second day of simulation.  The port truck queue first reaches a zero average queue length 

at simulation time 1779 minutes.  A second consequence of the increase in container 

demand is to cause a queue of port containers to accumulate.  The beginning of this port 

container accumulation coincides roughly with the dissipation of the port truck queue, 

with the first non-zero average queue length of 0.2 containers at time = 1639 minutes. 

At the beginning of the third day of simulation, at 2880 minutes, the roadway 

network background traffic volume is increased.  Note from Figure 64 that this roughly 

coincides with the sharp increase in the port container queue at the GCT Gate submodel.   

One explanation for this is that the supply of available port trucks becomes significantly 

delayed by the increased roadway congestion.  This sharp increase in port container 

queue length equates to a significant surplus demand for port trucks to transport these 

containers.  Therefore, the port truck average queue length is zero for all of day three.    

At the beginning of the fourth day of simulation (time = 4320 minutes) the 

volume of containers arriving to the GCT Gate submodel from the aggregated GCT 

submodels (i.e., cargo ships) is reduced to its original volume.  At simulation time 4525 
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minutes, the port container queue reaches its maximum average queue length of 399.4 

containers, after which the queue begins to dissipate.   

At the beginning of the fifth day of simulation (simulation time 5760 minutes) the 

roadway network traffic volume is reduced to its original volume.  This roughly coincides 

with a queue of port trucks starting to accumulate at the GCT Gate submodel.   

Recall from section 4.2.2.2 that road trucks are generated at the I-16 Junction 

submodel at a rate of 200 vehicles per hour.  This is done to provide a sufficient number 

of road trucks for both high and low container volume scenarios, with some excess 

capacity.  Also recall from section 4.2.2.2 that the condition for rerouting empty road 

trucks is set to a road truck queue length of 5 vehicles.  Given these conditions, Figure 65 

shows the queue lengths for idle road trucks waiting to be batched with outgoing 

containers and the queue lengths for containers that have been received from the 

 

 

Figure 65.  GCT Gate Submodel Average Road Queue Lengths 
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aggregated GCT submodels (i.e., cargo ships) and are waiting to be batched for transport 

to the I-16 Junction.  At simulation time 0, an initial quantity of 50 road trucks is created 

at the GCT Gate submodel, which dissipates after some initial transient period.  The road 

truck queue length then maintains what appears to be a steady state queue length near 5 

road trucks.  This state is maintained for the entire five days of simulation.  Because of 

this excess supply of road trucks, a road container queue (that is, containers bound 

directly for the I-16 Junction) seldom accumulates.   

Average queue lengths at Distribution Centers 1 – 3 all exhibit similar behavior.  

Therefore, only plots of average queue length for Distribution Center 1 are presented.  

Figure 66 shows the average port truck and port container queue lengths at Distribution 

Center 1.  Similarly, Figure 67 shows the average road truck and road container queue 

lengths at Distribution Center 1.  

 

 

Figure 66.  Distribution Center 1 Submodel Average Port Queue Lengths 
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In the case of Figure 66, note that after some initial transient period, no significant 

queue of port containers accumulates, but instead it appears to reach some steady state 

queue length.  Similarly, a queue of port trucks does not accumulate above the specified 

rerouting queue length value of 3 trucks. 

Figure 67, pertaining to road trucks, exhibits some greater variation in average 

queue lengths for both road trucks and road containers.  Note, however, that the average 

road container length queue seldom increases to a value greater than eight containers.  

Also, note that the average road truck queue length does not increase to a value greater 

than three, which is the rerouting condition for road trucks at distribution centers. 

 

 

Figure 67.  Distribution Center 1 Submodel Average Road Queue Lengths 
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5.1.2  Travel Time Data 

Travel time data was collected for both port and road trucks, as well as 

background traffic in the roadway network model federate.  Travel time data was 

compiled in 30 minute intervals; therefore, each data point in the figures that follow 

represents the aggregation of 30 minutes of data collection.  The primary focus of the 

travel time data is on those travel times associated with background traffic; therefore only 

travel times associated with background traffic are presented. 

Figure 68 shows the plot of travel times for background traffic, both northbound 

and southbound, along the segment of Highway 21 between Jimmy de Loach Pkwy and 

Bourne Ave/Dean Forest Rd.  Several key phenomena should be noted from this plot. 

Travel times along the segment in both directions begin at roughly the same 

value.  This makes some sense as the lane configuration and base traffic volumes are the  

 

 

Figure 68.  Highway 21 Background Traffic Travel Times – Partial Segment 
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same for both directions.  However, after some initial transient period, southbound travel 

times increase until reaching what appears to be a steady state value near 475 seconds.  

At 1440 minutes, the port container volume is increased.  This appears to roughly 

coincide with a slight increase in southbound travel times which reach a new steady state 

value near 525 seconds.  At 2880 minutes, the background traffic volume is increased. 

This coincides with an increase in southbound travel times, which after a short initial 

transient period, appear to reach a steady state value near 625 seconds.  This steady state 

southbound travel time of approximately 625 seconds is maintained throughout the third 

and fourth days of simulation.  However, recall that the port container volume is 

decreased at 4320 minutes, yet there is no apparent effect on the travel times shown in 

Figure 68.  At time 5760, background traffic volume is reduced to its original level.  This 

coincides with a decrease in southbound travel times, which after an initial transient 

appears to reach a steady state value near 500 seconds.   

Note, however, that there is significantly greater variability in southbound travel 

time than in northbound travel times, which do not change significantly over the five 

days of simulation.   

The travel times for port traffic between the GCT, distribution centers and the I-

16 Junction exhibit trends identical to those shown for Highway 21 background traffic in 

Figure 68, differing only in magnitude of travel times.  Because of these similarities, 

further discussion of these other travel time plots is not necessary. 

The one travel time plot that does vary somewhat significantly from the Highway 

21 travel times shown in Figure 68 relates to background traffic along Dean Forest Rd. 

between Highway 21 and the I-16 Junction.  This travel time data is shown in Figure 69.   
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Note first that travel times for both directions along Dean Forest Rd. are much closer in 

value than those shown for Highway 21 in Figure 68.  Also note that northbound travel 

times appear to be affected by the increase in background traffic volume between 2880 

minutes and 5760 minutes, whereas southbound travel times do not appear to be affected 

by the increase in background traffic.  Also, there is some localized variation in 

northbound travel times that coincides with decreased port container traffic at time 4320 

minutes, but the apparent steady state travel time of northbound traffic does not change.   

 

  

Figure 69.  Dean Forest Rd. Background Traffic Travel Times 

 

5.1.3  Truck Location and Utilization Data 

Truck location and utilization data was collected at the end of every minute of 

simulation time, therefore each data point in the figures that follow represent the previous 
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minute of simulation time.  Road truck location data (i.e., how many trucks are located in 

the port model federate and how many trucks are located in the roadway model federate) 

is presented first, and is examined separately from port truck location information. 

Figure 70 shows the total number of road trucks that are in the federated system 

(i.e., traveling on the roadway network, or queued at one of the port facilities) during the 

simulation.  At the beginning of simulation, there is a short initial transient before the 

number of trucks appears to reach a steady state value near 130 trucks.  At simulation 

time 1440 minutes, the port container volume is increased, yet the steady state value of 

130 trucks appears to persist.  At 2880 minutes the background traffic volume is 

increased.  From this figure it is unclear if the number of trucks value achieves steady 

state in the third day of simulation.  At time 4320 minutes, the port container volume is 

reduced.  After some initial transient, which may be a continuation of the transient phase 

 

 

Figure 70.  Road Truck Location Count – System Total 
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from the previous day, the truck count value appears to reach a steady state value near 

155 trucks.  At time 5760 minutes, the background traffic is reduced.  Again, from this 

figure it is unclear if the number of trucks achieves steady state in the fifth day of 

simulation, however the trend does appear to converge towards the initial day one value 

of 130 trucks. 

Figure 71 shows the total number of road trucks that are in the roadway network during 

simulation.  Note that the “On Roadway Total” road truck count values shown in Figure 

71 exhibit similar trends to “System Total” road truck count values shown in Figure 70, 

differing only in magnitude.   

 

 

Figure 71.  Road Truck Location Count – On Roadway Total 

 

Figure 72 is the final road truck location/utilization figure and shows the number 

of trucks in the roadway network during simulation that are carrying a container (i.e., is 



 

192 

utilized to carry a container).  Note that the vertical scale in Figure 72 is smaller than in 

previous figures to accentuate the variability in the data.  Although the general trend of 

“With Container Total” road truck utilization shown in Figure 72 exhibits many of the 

same trends as the “System Total” and “On Roadway Total” count values, there is one 

key difference.  In Figures 70 and 71, the number of trucks remained at roughly the same 

steady state value both before and after the increase in port container volume at time 

1440 minutes.  In Figure 72, conversely, there is an apparent increase in the steady state 

utilization value sometime after 1440 minutes.     

 

 

Figure 72.  Road Truck Utilization – With Container Total 

 

The second type of truck location and utilization data pertains to the number and 

utilization of available port trucks during simulation.  The port truck count “System 

Total” (that is, the total number of port trucks that are in the federated system) remains 
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constant during simulation, with some very minor variation due to vehicle diffusion.  

However, there is significant variation in both the “On Roadway Total” count values and 

the “With Container Total” port truck utilization data.   

Figure 73 shows the port truck “On Roadway Total” count values for the entire 

simulation.  Note first that after some initial transient, the number of trucks appear to 

reach a steady state value near 55 trucks.  After the increase in port container volume at 

time 1440 minutes, there is an initial transient before the number of trucks appear to 

reach a new steady state value near 75 trucks.  At time 2880 minutes the background 

traffic volume is increased.  This coincides with a slight increase in the number of port 

trucks in the roadway, however it is unclear from this figure if the data achieves steady 

state operation in the third day.  At 4320 minutes the port container volume is decreased.  

This appears to coincide with a gradual decrease in the number of port trucks in the 

 

 

Figure 73.  Port Truck Location Count – On Roadway Total 
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roadway.  Recall from Figure 64 that the queue of port containers at the GCT Gate 

steadily increased after time 2880 minutes and then peaked at some point just after time 

4320 minutes.  It is likely that there is a connection between the peaking trends in Figures 

64 and Figure 73.  As the queue of port containers needing transport diminishes (and 

therefore the demand) one could expect to see some decrease in the number of port trucks 

in the roadway.   

 

 

Figure 74.  Port Truck Utilization – With Container Total 

 

Figure 74 shows the port truck count associated with the number of trucks in the 

roadway network carrying a container throughout the simulation.  During the first day it 

is unclear if the simulation has had sufficient time to achieve steady state operation.  

However, after the increase in port container volume at time 1440 minutes there is an 

apparently slight increase in port truck utilization to a steady state value near 55 trucks.  
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To reconcile this with Figure 73, one must consider that the increase in port container 

volume equates to an increase in containers that must move away from the GCT, but not 

back towards the GCT (i.e., containers from the I-16 Junction).  One would not expect to 

see the same magnitude change between days one and two in Figure 74 as in Figure 73.  

This is due to the fact that the “On Roadway Total” truck count reflects both trucks with 

containers moving away from the GCT to distribution centers, as well as empty port 

trucks that are rerouted back to the GCT to service the excess demand there.   

At time 2880 minutes the background traffic volume is increased.  This appears to 

coincide with a slight increase in port truck utilization which converges to an apparent 

steady state near 60 trucks.  At time 4320 minutes the port container volume is decreased.  

At this time, there appears to be a slight reduction in the steady state value of port truck 

utilization, to a new value near 55 trucks.  At time 5760 minutes, the background traffic 

volume is reduced.  After an initial transient phase, it appears that the port truck 

utilization data converges towards a steady state value near 55 trucks. 

 

5.1.4  Facility Processing Data 

As discussed earlier, the facility processing data was initially collected to 

troubleshoot during the federation development.  Nonetheless, it was collected during this 

study’s federation execution as a best practice effort.  However, because of its general 

nature and non-specificity with respect to port truck versus road truck, it provides very 

little additional insight into the operation of the federated system in this modeling effort.  

The facility processing data is therefore intentionally omitted from this discussion of 

results. 
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5.2  Analysis of Results 

This section analyzes the data presented in the previous section by applying the 

statistical analysis methods outlined in Chapter 4 – Design of Experiment.  This statistical 

analysis is conducted by examining individual days of data from the simulation output to 

determine the extent and presence of the steady state phase, and the extent of the initial 

transient phase, for that day of simulation.  However, having examined the data output 

and results from the previous section, it is clear that some data sets do not achieve steady 

state in either individual or multiple days from the five day simulation.  Therefore, the 

analysis in this chapter is limited to only those data sets where steady state operation is 

likely achieved in one or more days of simulation time.  

Furthermore, recall that an excess supply of road trucks was created at the I-16 

Junction throughout the simulation.  These excess, empty road trucks were continually 

rerouted back to the I-16 Junction from the GCT and the distribution centers during 

simulation runtime; therefore, the queues associated with road vehicles maintained an 

artificial steady state consistent with the maximum queue value of the rerouting decision.  

Because of this artificial steady state in road truck queues, as well as the excess supply of 

road trucks to meet the demand of road containers, neither road truck nor road container 

queues will be analyzed as they do not exhibit true steady state operation.   

 

5.2.1  Queue Data Analysis 

Analysis of queue data to determine the extent of the initial transient phase and 

steady state phase examines two data sets: (1) the GCT Gate submodel average port truck 

queue, and (2) the distribution center submodel average port container queue.   
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The first task is to identify the presence and steady state operation.  Figure 75 

shows the GCT Gate submodel port truck queue data for the first day of simulation (time 

0 to 1440 minutes).  This data is composed of the moving average of the sequence of 

sample means from the ten federated simulation replications.  The K value used to 

calculate the moving averages is K = 15.   

Recall from Figure 64 that only the first day of simulation exhibited apparent 

steady state behavior the initial transient phase.  Looking more closely at the data 

presented in Figure 75, it appears that steady state behavior does occur within the first 

day of simulation.  However, the minimum queue length values of approximately 20 

vehicles that occur at approximately time 600 minutes, 840 minutes, 1080 minutes, and 

1320 minutes suggest that there may be a four hour cyclic trend present.  While further  

 

  

Figure 75.  GCT Gate Port Vehicle Average Queue Length (K=15), Day 1 
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analysis would be necessary to confirm the presence of such cyclic trends, this 

observation does suggest that the method of histograms proposed by Welch (1983) to 

determine steady state operation would not be effective in this application.   

The second task is to determine the extent of the initial transient phase.  Applying 

Welch’s visual method  [37], it appears that the initial transient phase terminates at 

approximately 240 minutes.  This also coincides with the arrival of the second container 

ship to the GCT, therefore it is logical that the surge in demand for port trucks associated 

with these extra containers could help dissipate the starting queue of port trucks created 

during federated simulation initialization.   

Figure 76 shows the queue of port containers (containers bound for the GCT, to 

be carried by port trucks) at Distribution Center 1 for the first day of simulation.  Recall  

   

    

Figure 76.  Distribution Center 1 Port Vehicle and Container Average Queue 
Length (K=15), Day 1 
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from Figure 66 that at some point during the first day of simulation, the data begins to 

exhibit apparent steady state operation.  Figure 76 confirms that apparent steady state 

operation occurs at some point after 600 minutes. Furthermore, this plot indicates that the 

initial transient phase terminates at approximately 580 minutes of simulation time.  This 

initial transient is likely associated with the time required for a sufficient quantity of port 

trucks to circulate and distribute throughout the federated system, and therefore provide 

the transport capacity necessary to dissipate the queue of containers that has accumulated 

at Distribution Center 1.  As noted earlier, the trends and behavior exhibited in the queue 

length output data of Distribution Center 1 reflects trends nearly identical to those 

exhibited in the output data of Distribution Centers 2 and 3.  Therefore, the data for these 

other two distribution centers are not discussed or analyzed further. 

 

5.2.2  Travel Time Data Analysis 

Analysis of the travel time data to determine the extent of the initial transient and 

steady state phases examines four travel time segments: (1 & 2) Highway 21 northbound 

and southbound between Jimmy de Loach Parkway and Bourne Ave/Dean Forest Rd., 

and (3 & 4) Dean Forest Rd northbound and southbound between Highway 21 and the I-

16 Junction.  As noted previously, background traffic and truck travel time data exhibit 

similar trends.  Therefore, for both of these segments, only travel times for background 

traffic are examined.  The K value used to calculate the moving averages for travel time 

data is K = 7.  A smaller value was used for travel time than was used for queue length as 

travel time data consists of fewer data points.  
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  Figure77 shows Highway 21 travel times in both directions for the first day of 

simulation.  Note first that there is no significant variation in travel times for northbound 

traffic, which maintain a steady state value of approximately 220 seconds immediately 

upon execution.  Southbound travel times, however, exhibit much more significant 

variation.  As indicated earlier in Figure 68, southbound travel times reach an apparent  

    

 

Figure 77.  Highway 21 Background Traffic Average Travel Times (K=7), Day 1 

 

steady state value during the first day of simulation.  Figure 77 confirms this, and that the 

steady state travel time value is approximately 480 seconds.  Figure 77 also indicates that 

the initial transient phase terminates at approximately 500 minutes, indicating a 500 

minute time-lag in travel times. 

At simulation time 1440 minutes, the port container volume is increased for the 

second day of simulation.  Figure 78 shows the background traffic travel times for  
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Figure 78.  Highway 21 Background Traffic Average Travel Times (K=7), Day 2 

 

Highway 21 in the second day of simulation.  Note that the northbound travel 

times appear to remain unchanged.  Southbound travel times, however, exhibit a slight 

increase to a new steady state value of approximately 520 seconds.  The initial transient 

phase for this readjustment to the new steady state travel time value appears to terminate 

at simulation time 1700 minutes, indicating a 260 minute time-lag for travel time.  

At simulation time 2880 the background traffic volume is increased.  Figure 79 

shows the background traffic travel times for Highway 21 in the third day of simulation.  

Note that there is no change in the northbound travel times, but that the steady state value 

of southbound travel times increases to an approximate value of 800 seconds.  The initial 

transient phase appears to terminate at approximately 3000 minutes, indicating a time-lag 

of approximately 120 minutes for travel time.   
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Figure 79.  Highway 21 Background Traffic Average Travel Times (K=7), Day 3 

 

Travel times for Highway 21 on the fourth day of simulation exhibit steady state 

travel time values for both northbound and southbound traffic that are similar to those 

exhibited on the third day of simulation.  That is, the southbound travel time steady state 

value remains approximately 800 seconds, and the northbound value remains 

approximately 220 seconds.  This is regardless of the reduction in port container volume 

that occurs at simulation time 4320 minutes.  Because these trends remain largely 

unchanged from the previous day, the plotted data for day four are not shown. 

At simulation time 5760 seconds, the background traffic volume is reduced to its 

original level.  Figure 80 shows the background traffic travel times for Highway 21 in the 

fifth day of simulation.  Note that northbound travel times again remain unchanged.  

However, southbound travel times decrease to a new steady state value of approximately 

560 seconds.  Note that the original southbound travel time value in the low traffic 
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volume scenario was approximately 480 seconds, and that the travel times shown in 

Figure 80 have not returned to these original levels.  This is likely a result of the higher 

port trucks activity during day five (as the container queue build up for days three 

continues to be cleared through day 5) resulting in increased congestion and travel times 

similar to the higher container volume scenario in day two.  The initial transient phase 

shown in Figure 80 appears to terminate at simulation time 5880 minutes, indicating a 

time-lag of approximately 120 minutes.  It is expected when the container queue at the 

GCT finally dissipates the travel times will again return to the condition of day one, 

however a longer simulation run would be required to confirm this result.  

 

 

Figure 80.  Highway 21 Background Traffic Average Travel Times (K=7), Day 5 

 

The second travel time segment analyzed is Dean Forest Rd. between the I-16 

Junction and Highway 21.  Figure 81 shows the background traffic travel times for Dean  
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Figure 81.  Dean Forest Rd. Background Traffic Average Travel Times (K=7),    

Day 1 
 

Forest Rd. in the first day of simulation.  Note first that the northbound travel times 

maintain a steady state value of approximately 500 seconds, and that there is no apparent 

initial transient phase, or time-lag associated with that direction of travel.  The 

southbound travel times appear to converge towards a steady state travel time value of 

approximately 470 seconds.  The initial transient phase for southbound travel times 

terminates at approximately simulation time 240 minutes, indicating a time-lag of 

approximately 240 minutes. 

At simulation time 1440 minutes the port container volume is increased, however 

travel times in both directions along Dean Forest Rd. appear unaffected.  The northbound 

travel times appear to remain at a steady state value of approximately 500 seconds while 

the southbound travel times appear to remain at a steady state value near 465 seconds.  
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As the second day travel time trends along Dean Forest Rd. exhibit the same steady state 

trends (without any initial transient phase) as those shown for day 1 in Figure 81, the 

plotted data for second day travel times are not shown.   

At simulation time 2880 the background traffic volume is increased for the third 

day of simulation.  Figure 82 shows the travel times along Dean Forest Rd. for the third  

 

 

Figure 82.  Dean Forest Rd. Background Traffic Average Travel Times (K=7),    
Day 3 

 
 

day of simulation.  Note that the southbound travel times appear to stabilize somewhat as 

compared with the day one data shown in Figure 81.  Northbound travel times exhibit 

what might be a slight increase in travel times, from 500 seconds to a new steady state 

value near 530 seconds.  The initial transient phase for northbound travel times appears to 

terminate at simulation time 3000 minutes, indicating a lag-time of approximately 100 
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minutes.  It should also be noted that at approximately 4100 minutes, there is a slight 

increase in the northbound travel times shown.  Given this analysis method, it cannot be 

conclusively determined whether or not this anomaly is a function of random variability 

in the simulation or some other factor.  However, this perceived increase must be taken 

into account when considering the next day’s travel time information along this roadway 

segment.   

At simulation time 4320 minutes the port container volume is reduced to its original 

level.  Figure 83 shows the travel times along Dean Forest Rd. for this fourth day of 

simulation.  Note that southbound travel times remain largely unchanged with a steady 

state value of approximately 470 seconds.  Northbound travel times appear to remain at 

their earlier steady state value near 530 seconds.  The anomalous variation at the end of  

 

 
 

Figure 83.  Dean Forest Rd. Background Traffic Average Travel Times (K=7),    
Day 4 
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the previous day (see Figure 82) appears to recover within first 500 seconds of simulation 

time in Figure 83.  However, there is another anomalous rise in northbound travel times 

starting at approximately simulation time 5520 minutes.  This must also be taken into 

account when considering travel times for the next day of simulation.  As no notable 

changes have been made to the steady state operation of Dean Forest Rd. travel times for 

the fourth day of simulation, no initial transient phases need to be determined.  

At the end of day four, simulation time 5760 minutes, the background traffic 

volume is reduced to its original level.  Figure 84 shows the Dean Forest Rd. travel times 

associated with the fifth day of simulation.  Note first that there is no significant change 

in southbound travel times, and that the southbound steady state travel time value remains 

approximately 470 seconds.  There is, however, a reduction in the northbound travel time  

 

 

Figure 84.  Dean Forest Rd. Background Traffic Average Travel Times (K=7),    
Day 5 
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values to a new steady state value of approximately 500 seconds.  Note that 500 seconds 

is the original northbound travel time value along Dean Forest Rd. shown earlier in 

Figure 81.  The initial transient phase for northbound travel times appears to terminate 

approximately at simulation time 5880 minutes, indicating a time-lag 120 minutes. 

 

5.2.3  Truck Location and Utilization Data Analysis 

The analysis of truck utilization and location data focuses primarily on port 

trucks.  Because of the planned excess supply of road trucks created at the I-16 Junction 

during simulation, it is difficult to analyze and draw meaningful conclusions about road 

truck utilization and counts.  The larger trends of this somewhat artificial road truck 

location and utilization data are helpful in understanding the overall operation of the 

model, but are a poor candidate for steady state analysis.  Therefore, only the first day of 

road truck utilization data will be examined to determine the extent of the initial transient 

associated with federated simulation start-up. 

Given the truck location and utilization data presented in section 5.1.3, analysis of 

the port truck location and utilization data will only examine the first two full days of 

simulation.  After day two, general trends in port truck location and utilization suggest 

that steady state operation was not achieved, but rather that some cyclic or transient 

behavior occurred.  Also, as the port truck “System Total” is a fixed quantity, varying 

only due to the periodic diffusion of trucks during runtime, port truck system total 

information is not examined.  The K value used to calculate the moving averages for 

truck location and utilization data is K = 15. 

 



 

209 

5.2.3.1  Road Truck Location and Utilization Data Analysis 

As mentioned, the analysis of road truck location and utilization data will only 

examine data for the first full day of simulation to determine the extent of the initial 

transient phase associated with federated simulation start-up.   

Figure 85 shows the road truck location and utilization data for the first day of 

simulation.  This figure shows the “System Total” values (total number of road trucks 

within the federated system), the “On Roadway Total” values (total number of road 

trucks in the  

 

 

Figure 85.  Average Road Truck Location and Utilization (K=15), Day 1 

 

roadway network), and the “With Container Total” values (total number of road trucks in 

the roadway network that are carrying a container).  Note that all three data sets appear to 

converge towards steady state at some point during this first day of simulation.  “System 
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Total” road truck location count appears to converge towards a steady state value of 

approximately 130 trucks, “On Roadway Total” road truck location count appears to 

converge towards a steady state value of approximately 120 trucks, and “With Container 

Total” road truck utilization appears to converge towards a steady state value of 

approximately 60 trucks. 

From Figure 85, we can also determine the approximate extents of the initial 

transient phases for the three road truck utilization and location data sets.  For the 

“System Total” road truck location count, the initial transient phase appears to terminate  

at approximately 50 minutes, indicating a start-up time-lag of 50 minutes.  For the “On 

Roadway Total” road truck location count, the initial transient phase also appears to 

terminate at approximately 50 minutes, indicating a start-up time-lag of 50 minutes.  For 

the “With Container Total” road truck utilization, the initial transient phase appears to 

terminate at 190 minutes, indicating a start-up time-lag of 190 minutes.  

 

5.2.3.2  Port Truck Location and Utilization Data Analysis 

As discussed, the port truck utilization and location data analysis is limited to the 

first two days of federated simulation.  Day one is examined to understand the start-up 

time-lag characteristics of the federated system for port trucks.  Day two is examined to 

understand the extent of the initial transient phase following an increase in port container 

volume.   

Figure 86 shows the port truck data for “On Roadway Total” truck location values 

and “With Container Total” truck utilization counts for the first day of simulation.  Note 

that the “With Container Total” number is never higher than the “With Container Total,” 
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but that at times (e.g., simulation time 0 to 420 minutes and 500 to 560 minutes) the two 

numbers coincide exactly, indicating 100% port truck utilization.  Recall that the “System 

Total” truck values remain roughly constant throughout the federated simulation (the 

only variation is due to periodic truck diffusion), and have therefore been omitted from 

this figure.   

Although there is significant variation in the “On Roadway Total” port truck location 

count dataset, it appears that the data converges towards a steady state value near 55 

trucks.  This would suggest that the initial transient phase for “On Roadway Total” port 

truck location data terminates at approximately 300 minutes, indicating a start-up time- 

lag of 300 minutes.   

Given the data for the “With Container Total” port truck utilization, it is 

somewhat inconclusive as to whether true steady state is achieved.  Note the trend of  

 

 

Figure 86.  Average Port Truck Location and Utilization (K=15), Day 1 
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slightly reduced truck utilization values between approximately 600 minutes and 

1200minutes.   From this data and analysis method, it cannot be conclusive determined 

whether or not this anomaly is a function of random variability in the simulation or some 

other factor.  If we treat this as random variability in the model and consider the entire 

“With Container Total” dataset for the first day, then the data appears to approach a 

steady state value of approximately 50 trucks.  Regardless of this trend, we can 

approximate the termination point of the initial transient phase as approximately 

simulation time 300 minutes, indicating a start-up time-lag of 300 minutes.  

Figure 87 shows the port truck n data for “On Roadway Total” port truck location 

values and “With Container Total” port truck utilization values for the second day of 

simulation.  Recall that at the end of day one (simulation time 1440 minutes) the port 

container volume was increased.  Note first that the “On Roadway Total” steady state  

 

 

Figure 87.  Average Port Truck Location and Utilization (K=15), Day 2 
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value increases to a value of approximately 75 trucks.  The initial transient appears to 

terminate at 1660 minutes, indicating a time-lag of 220 minutes.   

As the steady state analysis of “With Container Total” port truck utilization data 

was inconclusive for the previous day of simulation (see Figure 86), an initial transient 

phase for the second day of data cannot be determined.  However, the second day of data 

does exhibit more conclusive steady state data, wherein the data appears to maintain a 

steady state value near 50 trucks.  Therefore, this could suggest that an initial transient for 

this data does not in fact exist. 

 

5.3  Discussion of Results 

The results and analysis presented in the previous two sections identify several 

operational characteristics of port system as it has been modeled in this study.  This 

section will briefly discuss several of these characteristics: (1) the effect of background 

traffic volume variations, (2) the effect of container volume variations, (3) the effect of 

limited port truck resources, and (4) general observations about initial transient phase and 

steady state behavior. 

 

5.3.1  Effect of Background Traffic Volume Variations 

The results suggest that background traffic and congestion levels can have a 

noticeable impact on the federated system, specifically the simulated port operations.  

Most notably, Figures 68 and 69 show that increasing background traffic volume can 

significantly increase travel times along southbound Highway 21 and northbound Dean 

Forest Rd.  Recall from Figure 64 that this increase in travel times coincides with a sharp 



 

214 

increase in the port container queue that forms at the GCT.  This suggests that port trucks 

are increasingly delayed by the higher volume of background traffic, and therefore cannot 

complete as many trips as are necessary to dissipate the GCT port container queue.   

Additionally, recall from section 5.1.3 that both port and roadway truck utilization 

and location data exhibited an increase in the number of trucks on the roadway during 

days of higher traffic volume.  This reinforces the suggestion that port and roadway 

trucks become increasingly delayed by roadway network congestion.   

 

5.3.2  Effect of Container Volume Variations 

Although increases in roadway network traffic volume appear to have greater 

impacts on the federated system’s performance, variable container volumes do impact the 

simulation results to some extent.  It has been noted earlier that the increased volume of 

containers arriving to the GCT equates to an increased demand for transport away from 

the GCT.  However, as the inbound container volume generated at the I-16 Junction 

towards the GCT remains constant, there is no change in demand for container transport 

to the GCT.  This is reflected in Figure 73 where an increase in the port container volume 

coincides with an increase in the number of port trucks on the roadway network, likely as 

a result of increased empty port truck rerouting back to the GCT.  However, Figure 74 

shows that only a minor increase in the number of port trucks on the roadway network 

carrying a container coincides with increased port container volume.  This suggests that 

the port trucks were either at or near capacity in their ability to move containers away 

from the port, or that increases in container volume only have subtle impacts on port 

truck utilization.    
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The model results do not indicate that background traffic travel times are 

noticeably impacted by increased port container volume at the levels used in this study.   

Recall from Figure 68 that the increase in container volume coincides with a notable 

increase in southbound Highway 21 travel times.  However, Figure 68 does not show a 

decrease in southbound Highway 21 travel times at time 4320 minutes when the 

container volume was decreased.  This is likely due to significant port container queue 

accumulation at the GCT which delayed the decrease in container volume to the roadway 

until that queue either dissipated or reached some steady state value in day five.  

Conversely, background traffic travel times northbound on Highway 21 and both 

directions on Dean Forest Rd. appear unaffected by both the increase and decrease in port 

container volume over the course of the simulation.   

 

5.3.3  Effect of Limited Port Truck Resources 

During the first day of simulation, port truck utilization and location counts, port 

truck queues, and port container queues indicate that the initial supply of 150 port trucks 

is sufficient to meet the transport demand under the combined low traffic and low 

container volumes.  Figure 64, showing port container and truck queues, indicates that the 

supply of 150 trucks may also be sufficient for the higher port container volume scenario 

when background traffic volumes are low.  However, when background traffic volumes 

are increased, the accumulation of port containers at the GCT suggests that supply of 150 

port trucks is insufficient to service the transport needs of the port, as modeled.  There is 

an indication that this is caused by excessive truck delays in the roadway network, where 

higher background traffic volumes lead to increased network congestion.  This higher 



 

216 

background traffic volume prevents the port trucks from completing the number of 

roundtrips necessary to service the demand of the port containers queued at the GCT, 

resulting in an accumulation in that queue.  

Figure 64 also suggests that it is the compounded effect of higher background 

traffic volumes and increased container volume that causes the port container queue to 

accumulate at the GCT.  Shortly after time 4320 minutes, when the container volume is 

reduced but the background traffic is still at the higher volume scenario, the port 

container queue at the GCT begins to dissipate.  Therefore, there must be a relationship  

between the number of port trucks necessary and the combined effects of roadway 

network congestion and port container volume.   

 

5.3.4  Steady State Behavior and Initial Transient Phases 

The experiment presented in Chapter 4 and the results presented earlier in this 

chapter suggest that the federated simulation, as modeled, is capable of achieving steady 

state operation and importantly, capturing the impact of each model on the steady state of 

the other.  All truck utilization and location, container and truck queue lengths, and travel 

time data exhibit steady state behavior at some point during the five days of simulation.  

Much of the truck utilization and location data after day two is inconclusive as to whether 

steady state operation was achieved.  This suggests that in many cases, one day is not a 

sufficiently long time interval to allow the model to readjust to steady state operation 

after the input parameters changes used in this study.  Similarly, queue length data 

indicates that the model is capable of steady state operation, but again that one day is not 

a sufficiently long time interval to readjust to steady state.  This is evident in Figure 64 
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where it is inconclusive whether the port container queue achieves steady state in day two 

before its sharp increase in day three.  Conversely, all travel time data exhibits steady 

state behavior across all five days of simulation.  This suggests that one day is a sufficient 

time interval for travel times to readjust to steady state output. 

The initial transient phases determined earlier in this chapter confirm that a time-

lag can be defined between when input parameters are adjusted and when the effects of 

those adjustments are visible in the federated system.  The queue length data suggests 

that the startup time-lag is greater for distribution centers submodels than for the GCT 

Gate submodel.  This is likely explained by the additional time needed for the initial 

supply of trucks and containers to circulate and distribute throughout the federated 

system.  

The travel time data and initial transient phase analysis suggest that there is a 

longer time-lag associated with federation start-up than following adjustments to input 

parameters during runtime.  The data also suggest that once the federated simulation has 

initialized, time-lag for travel times associated with variations in background traffic 

volumes on the network are generally between 100 minutes and 300 minutes. 

Truck utilization and location data indicates that a longer start-up time-lag is 

associated with port trucks and containers than with road trucks and containers.  This can 

be explained by the added time necessary for arriving containers to process through the 

aggregated GCT submodels and arrive at the GCT Gate submodel.  Road trucks and 

containers are simply created at the I-16 Junction submodel and immediately passed to 

the roadway network model federate with much less processing delay.  Therefore, the 

start-up time-lag associated with road trucks and containers is comparably shorter.  The 
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data is inconclusive as to the truck utilization and location time-lag associated with 

adjustments to model input parameters during runtime.  Indeed, the only time-lag that 

could be determined is for changes to the port truck “On Roadway Total” location count 

in the second day following the increase in port container volume.  Nonetheless, the time-

lag associated with this change is comparably shorter than the start-up time-lag, as one 

would expect.       
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CHAPTER 6 

CONCLUSION 

 

This study has developed a federated simulation method to model the combined 

operations of a port system and roadway network using disparate modeling software 

packages.  This federation method has been inspired by the High Level Architecture 

(HLA), acting as a guide to better inform the development process.  The federated 

simulation method consists of four components: (1) a port model developed in Arena©, 

(2) a roadway network model developed in VISSIM©, (3) a runtime infrastructure (RTI) 

developed in Visual Studio 2005©, and (4) a federation database developed in Access 

2003©.  The federated simulation was then tested using a time-lag experiment to 

understand characteristics of the federated system’s operations.  This experiment also 

tests for the presence of feedback loops between federate model components wherein 

variations in input parameters of one federate model can be seen to affect system 

performance of the other. 

This chapter discusses conclusions about the development and implementation of 

the federated simulation method.  It then discusses the method’s ability to capture the 

interaction between the modeled port components as seen in the experimental results.  

This section then discusses the challenges associated with federating two disparate 

transportation simulation platforms and proposes future research needs in this area. 
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6.1  Federated Transportation Simulation Development and Implementation 

As has been discussed, the HLA rules have been used in this study to inform the 

development of the proposed federated simulation method.  These include the use of an 

RTI for data, object, and time management, and to facilitate the interaction of federate 

model components.  The HLA rules have provided a good platform for the federation of 

two disparate transportation simulators, and future efforts to develop and refine such 

federation methods should incorporate greater HLA compliance.   

One of the primary challenges to federating two disparate transportation 

simulators is the issue of time management.  As time is addressed differently in 

continuous time-stepped models (e.g., VISSIM©) and event-based models (e.g., 

Arena©), one key function of the federation is to reconcile these differences.  This study 

has proposed one method to coordinate the runtime operation of two disparate 

transportation simulators by first advancing the continuous time-stepped model, pausing 

that model, and then allowing the event-based model to advance through as many steps as 

are necessary to “catch up.”  One challenge is that this method can create up to a one 

second time disparity in model federate simulation clocks.   Depending on the required 

resolution of simulation results, this may or may not be problematic.   

The second challenge has been to effectively exchange objects and data between 

model federates.  This study has developed an RTI to facilitate this exchange and a 

federation database to maintain a time-stamped record of all transactions between model 

federates during simulation runtime.   
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6.2  Dynamic Interaction of Model Federates 

One of the primary objectives of this study was to determine if the proposed 

federation method could establish feedback loops between two modeled systems and 

therefore capture the dynamic interaction between the two models during runtime.  To 

accomplish this, an experiment was conducted wherein input parameters for both models 

were sequentially adjusted during runtime, and various output data were collected and 

analyzed.   

The experiment has shown that adjustments to input parameters in one model 

federate can be seen in the performance output of the other model, and therefore that 

feedback loops exist between model federates.  One example of this is the sharp increase 

in the port container queue length (a performance metric for the port model) as a result of 

an increase in the background traffic volume on the roadway network (an input parameter 

of the roadway network model).  As second example is the slight increase in several 

background traffic travel times (a performance metric for the roadway network) as a 

result of an increase in the port container volume (an input parameter of the port model).   

A secondary objective of this study was to identify characteristics of the operation 

of the federated system, as it has been modeled.  To accomplish this, the experimental 

output data was analyzed to determine the presence and extent of steady state operation 

and initial transient phases, or time-lags, in the output data.  This study has shown that 

the federated simulation is capable of steady state operation, but that variable time 

intervals are required to allow the federated system to adjust to steady state operation.  

Similarly, this study has shown that initial transient phases can be determined and that 
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there are time-lag constants associated with the changes in the output data following 

several changes to model input parameters.   

 

6.3  Challenges and Future Research Needs 

By developing a method for federating port and transportation simulators, this 

study has provided a foundation for future work in this area.  This section outlines several 

of the challenges and related future research needs for the federation of transportation-

related simulation.   

First, future efforts should endeavor to make federations fully HLA compliant.  

As the HLA provides a recognized standard for federated simulation, incorporating 

greater compliance to the rules outlined therein will increase the flexibility and 

reusability of future federated simulations. 

Throughout earlier discussions, several elements of the federated simulation have 

been identified as “hard coded” into the RTI and model components.  Examples of this 

include the one second time-resolution of the federation’s execution, and the 5000 second 

“look-back” time associated with the vehicle diffusion module.  These hard coded values 

effectively limit the flexibility of the federated simulation.  In the example of the one 

second time-resolution, this prevents modeling efforts that require either greater or lesser 

data resolution.  Future work should avoid hard coded federation values, instead 

incorporating user-defined values, and thereby increasing the flexibility and reusability of 

model federates and the federation method. 

Several model limitations were identified throughout this study, most notably the 

detection of exiting vehicles and diffused vehicles in the roadway network model 
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federate.  Future work should investigate alternate methods for detecting port vehicles 

exiting the roadway network that avoid stop-controlled and single-lane exit links.  

Furthermore, the 5000 second delay associated with detecting a diffused vehicle in the 

roadway network model federate creates some data clarity issues.  Future editions of 

VISSIM© may incorporate COM interface objects that allow the RTI to access vehicle 

diffusion information during runtime, however more immediate efforts should investigate 

diffused vehicle detection methods that minimize the delay between diffusion and 

detection. 

One current practical limitation of the federation method proposed in this study is 

the amount of time required to execute one replication of federated simulation.  Given the 

discussion of parallel and distributed computing in Chapter 2, this federation method is a 

good candidate for such computing methods.  Distributing simulation model federates 

and federation components across either several computing platforms or several 

processers in a single computing platform could likely increase the execution time, and 

therefore practicality, of this federated simulation method. 

Finally, many assumptions about the roadway network and port facility operations 

have been made during this study.  For example, the traffic signal timing plans were 

developed that were tailored to the traffic demand modeled, but are not accurate 

reflections of conditions found in the field.  Similarly, assumed truck quantities and 

container generation rates were chosen for this study that do not necessarily reflect the 

operational characteristics of the Port of Savannah.  Future modeling efforts should 

incorporate design and operational parameters that more accurately reflect actual port and 

roadway operations. 
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APPENDIX A 

RUNTIME INFRASTRUCTURE COMMAND CODE 

 
 
Imports Microsoft.Office.Interop.Excel 
Imports Microsoft.Office.Interop 
Imports Microsoft.Vbe.Interop.Forms 
Imports Microsoft.Office.Interop.Access 
Imports VISSIM_COMSERVERLib 
Imports Arena 
Imports System.Text 
Imports System.Net.Sockets 
Imports System.Convert 
Imports ADODB 
Imports System.Data.Odbc 
 
Public Class Form1 
    '*********************************************************************************** 
    '************************   Define Programs   ************************************** 
 
    'Define Program Directories 

Dim DirectoryArena As String = "C:\Documents and Settings\twall3\Desktop\Port 
Federation\Arena Working Models\Savannah Port\" 

Dim DirectoryVISSIM As String = "C:\Documents and Settings\twall3\Desktop\Port 
Federation\VISSIM Working Models\Port Network\Util Version 3 HV ContainerFirst\" 

Dim DirectoryAccess As String = "C:\Documents and Settings\twall3\Desktop\Port 
Federation\Access Working Database\" 

 
    'Define Arena Program  
    Dim ArenaSim As Arena.Application 
    Dim ArenaModel As Arena.Model 
    Dim ArenaLanguage As SIMAN 
 
    'Define VISSIM Program  
    Dim vissim As Vissim    'VISSIM model components 
    Dim simulation As Simulation    'VISSIM simulation 
    Dim vehicle As Vehicle  'VISSIM vehicle 
    Dim links As Links  'Collection of links in VISSIM 
    Dim detectors As Detectors 'Collection of detectors in VISSIM 
    Dim detector As Detector 'Individual Detector 
 
    'Define Access Program 
    Dim StarfleetDataSet As StarfleetDataSet 
 
    Dim ContainerTable As StarfleetDataSet.ContainerTableDataTable 
    Dim ContainerTempTable As StarfleetDataSet.ContainerTableDataTable 

Dim ContainerAdapter As StarfleetDataSetTableAdapters.ContainerTableTableAdapter 
    Dim ContainerTempRow As StarfleetDataSet.ContainerTableRow 
 
    Dim IndexTable As StarfleetDataSet.IndexTableDataTable 
    Dim IndexTempTable As StarfleetDataSet.IndexTableDataTable 
    Dim IndexAdapter As StarfleetDataSetTableAdapters.IndexTableTableAdapter 
    Dim IndexTempRow As StarfleetDataSet.IndexTableRow 
 
    Dim VehicleTable As StarfleetDataSet.VehicleTableDataTable 
    Dim VehicleTempTable As StarfleetDataSet.VehicleTableDataTable 

Dim VehicleAdapter As StarfleetDataSetTableAdapters.VehicleTableTableAdapter 
    Dim VehicleTempRow As StarfleetDataSet.VehicleTableRow 
 
    Dim DispersionTable As StarfleetDataSet.DispersionDataTable 
    Dim DispersionRow As StarfleetDataSet.DispersionRow 
    Dim DispersionTempRow As StarfleetDataSet.DispersionRow 
    Dim DispersionTempTable As StarfleetDataSet.DispersionDataTable 

Dim DispersionAdapter As StarfleetDataSetTableAdapters.DispersionTableAdapter 
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    Dim ContainerLogTable As StarfleetDataSet.ContainerLogDataTable 
Dim ContainerLogAdapter As StarfleetDataSetTableAdapters.ContainerLogTableAdapter 

 
    Dim VehicleLogTable As StarfleetDataSet.VehicleLogDataTable 
    Dim VehicleLogTempTable As StarfleetDataSet.VehicleLogDataTable 
    Dim VehicleLogTempRow As StarfleetDataSet.VehicleLogRow 

Dim VehicleLogAdapter As StarfleetDataSetTableAdapters.VehicleLogTableAdapter 
 
    Dim UtilizationTable As StarfleetDataSet.UtilizationDataTable 

Dim UtilizationAdapter As StarfleetDataSetTableAdapters.UtilizationTableAdapter 
 
    Dim QueuesTable As StarfleetDataSet.QueuesDataTable 
    Dim QueuesAdapter As StarfleetDataSetTableAdapters.QueuesTableAdapter 
 
'*******************Assign Variables   ******************** 
 
    'Define variable values to be used in the program 
    Dim Time As Long    'Time used in the Simulation Loop 
    Dim DurationTime As Long 
    Dim aTime As Long   'Arena Time 
    Dim fTime As Long   'VISSIM Time / Federation Time 
    Dim systemtime As Date 
 
    'Define VISSIM objects 
    Dim PortDetector As Detector 
    Dim Dist1Detector As Detector 
    Dim Dist2Detector As Detector 
    Dim Dist3Detector As Detector 
    Dim RoadDetector As Detector 
    Dim portcount As Long 
    Dim distcount As Long 
    Dim roadcount As Long 
 
    'Dim Port Veh/Cont Information Arrays 
    Dim array5011 As Long 
    Dim array5012 As Long 
    Dim array5013 As Long 
    Dim array5014 As Long 
    Dim array5015 As Long 
    Dim array5016 As Long 
    Dim array5017 As Long 
    Dim array5018 As Long 
    Dim array5019 As Long 
    Dim array5110 As Long 
    Dim array5111 As Long 
 
    'Dim Port Release Information Arrays 
    Dim array9210 As Long 
    Dim array9211 As Long 
    Dim array9212 As Long 
 
    'Dim Dist1 Veh/Cont Information Arrays 
    Dim array5021 As Long 
    Dim array5022 As Long 
    Dim array5023 As Long 
    Dim array5024 As Long 
    Dim array5025 As Long 
    Dim array5026 As Long 
    Dim array5027 As Long 
    Dim array5028 As Long 
    Dim array5029 As Long 
    Dim array5120 As Long 
    Dim array5121 As Long 
    Dim array5122 As Long 
 
    'Dim Dist2 Veh/Cont Information Arrays 
    Dim array5031 As Long 
    Dim array5032 As Long 
    Dim array5033 As Long 
    Dim array5034 As Long 
    Dim array5035 As Long 
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    Dim array5036 As Long 
    Dim array5037 As Long 
    Dim array5038 As Long 
    Dim array5039 As Long 
    Dim array5130 As Long 
    Dim array5131 As Long 
    Dim array5132 As Long 
 
    'Dim Dist3 Veh/Cont Information Arrays 
    Dim array5041 As Long 
    Dim array5042 As Long 
    Dim array5043 As Long 
    Dim array5044 As Long 
    Dim array5045 As Long 
    Dim array5046 As Long 
    Dim array5047 As Long 
    Dim array5048 As Long 
    Dim array5049 As Long 
    Dim array5140 As Long 
    Dim array5141 As Long 
    Dim array5142 As Long 
 
    'Dim Road Veh/Cont Information Arrays 
    Dim array5065 As Long 
    Dim array5066 As Long 
    Dim array5067 As Long 
    Dim array5068 As Long 
    Dim array5069 As Long 
    Dim array5160 As Long 
 
    'Dim Dist 1 to Port Rerouting Arrays 
    Dim array9022 As Long 
    Dim array9023 As Long 
    Dim array9024 As Long 
 
    'Dim Dist 2 to Port Rerouting Arrays 
    Dim array9032 As Long 
    Dim array9033 As Long 
    Dim array9034 As Long 
 
    'Dim Dist 3 to Port Rerouting Arrays 
    Dim array9042 As Long 
    Dim array9043 As Long 
    Dim array9044 As Long 
 
    'Dim Road Empty Vehicle Creation Arrays 
    Dim array9110 As Long 
    Dim array9111 As Long 
    Dim array9112 As Long 
 
    'Dim Detector VEHICLEID Arrays 
    Dim array1010 As Long 
    Dim array2020 As Long 
    Dim array2030 As Long 
    Dim array2040 As Long 
    Dim array3060 As Long 
 
    Dim VehIDPort1 As Long 
    Dim VehIDPort2 As Long 
    Dim VehIDDist11 As Long 
    Dim VehIDDist12 As Long 
    Dim VehIDDist13 As Long 
    Dim VehIDDist21 As Long 
    Dim VehIDDist22 As Long 
    Dim VehIDDist23 As Long 
    Dim VehIDDist31 As Long 
    Dim VehIDDist32 As Long 
    Dim VehIDDist33 As Long 
    Dim VehIDRoad1 As Long 
    Dim VehIDRoadEmpty As Long 
    Dim VehIDPortRelease As Long 
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    Dim PortContID As Long 
    Dim PortVehID As Long 
    Dim PortDestID As Long 
    Dim PortDestID2 As Long 
    Dim PortVehType As Long 
    Dim PortOriginID As Long 
 
    Dim Dist1ContID As Long 
    Dim Dist1VehID As Long 
    Dim Dist1DestID As Long 
    Dim Dist1DestID2 As Long 
    Dim Dist1VehType As Long 
    Dim Dist1OriginID As Long 
 
    Dim Dist2ContID As Long 
    Dim Dist2VehID As Long 
    Dim Dist2DestID As Long 
    Dim Dist2DestID2 As Long 
    Dim Dist2VehType As Long 
    Dim Dist2OriginID As Long 
 
    Dim Dist3ContID As Long 
    Dim Dist3VehID As Long 
    Dim Dist3DestID As Long 
    Dim Dist3DestID2 As Long 
    Dim Dist3VehType As Long 
    Dim Dist3OriginID As Long 
 
    Dim RoadContID As Long 
    Dim RoadVehID As Long 
    Dim RoadDestID As Long 
    Dim RoadDestID2 As Long 
    Dim RoadVehType As Long 
    Dim RoadOriginID As Long 
 
    Dim PortVehOrigin As Long 
    Dim Dist1VehOrigin As Long 
    Dim Dist2VehOrigin As Long 
    Dim Dist3VehOrigin As Long 
    Dim RoadVehOrigin As Long 
 
    Dim RouteIndex As Long 
    Dim RerouteIndex As Long 
 
    Dim dummy As Long 
    Dim countport As Long 
    Dim countd1 As Long 
    Dim countd2 As Long 
    Dim countd3 As Long 
 
    Dim DispersionSysTime As Long 
    Dim DispersionVehTime As Long 
    Dim DispersionContainer As Long 
    Dim DispersionVehicle As Long 
    Dim DispersionIndex As Long 
    Dim DispersionType As Long 
    Dim DispersionDestination As Long 
    Dim DispersionOrigin As Long 
    Dim DispersionArray() As Long 
    Dim i As Long 
 
    Dim PortUtil1 As Long 
    Dim PortUtil2 As Long 
    Dim PortUtil3 As Long 
    Dim RoadUtil1 As Long 
    Dim RoadUtil2 As Long 
    Dim RoadUtil3 As Long 
 
    Dim Dist1VehQp As Long 
    Dim Dist1ContQp As Long 
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    Dim Dist1VehQh As Long 
    Dim Dist1ContQh As Long 
 
    Dim Dist2VehQp As Long 
    Dim Dist2ContQp As Long 
    Dim Dist2VehQh As Long 
    Dim Dist2ContQh As Long 
 
    Dim Dist3VehQp As Long 
    Dim Dist3ContQp As Long 
    Dim Dist3VehQh As Long 
    Dim Dist3ContQh As Long 
 
    Dim gctVehQp As Long 
    Dim gctContQp As Long 
    Dim gctVehQh As Long 
    Dim gctContQh As Long 
 
    Dim RoadDispCount As Long 
    Dim PortDispCount As Long 
 
    Dim Dist1Delay1 As Long 
    Dim Dist1Delay2 As Long 
    Dim Dist1Delay3 As Long 
    Dim Dist1Delay4 As Long 
 
    Dim Dist2Delay1 As Long 
    Dim Dist2Delay2 As Long 
    Dim Dist2Delay3 As Long 
    Dim Dist2Delay4 As Long 
 
    Dim Dist3Delay1 As Long 
    Dim Dist3Delay2 As Long 
    Dim Dist3Delay3 As Long 
    Dim Dist3Delay4 As Long 
 
    Dim GCTDelay1 As Long 
    Dim GCTDelay2 As Long 
    Dim GCTDelay3 As Long 
 
 
 
    Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System. 

EventArgs) Handles Button1.Click 
        '*************************************************************************** 
'************************   OPEN PROGRAMS   ******************************** 
 
'Generate Access DB Components 
StarfleetDataSet = New StarfleetDataSet 
ContainerTable = New StarfleetDataSet.ContainerTableDataTable() 
ContainerAdapter = New   

StarfleetDataSetTableAdapters.ContainerTableTableAdapter 
IndexTable = New StarfleetDataSet.IndexTableDataTable() 
IndexAdapter = New StarfleetDataSetTableAdapters.IndexTableTableAdapter 
VehicleTable = New StarfleetDataSet.VehicleTableDataTable 
VehicleAdapter = New StarfleetDataSetTableAdapters.VehicleTableTableAdapter 
ContainerLogTable = New StarfleetDataSet.ContainerLogDataTable 
ContainerLogAdapter = New  

StarfleetDataSetTableAdapters.ContainerLogTableAdapter 
VehicleLogTable = New StarfleetDataSet.VehicleLogDataTable 
VehicleLogAdapter = New StarfleetDataSetTableAdapters.VehicleLogTableAdapter 
DispersionTable = New StarfleetDataSet.DispersionDataTable 
DispersionAdapter = New StarfleetDataSetTableAdapters.DispersionTableAdapter 
 
UtilizationTable = New StarfleetDataSet.UtilizationDataTable 
UtilizationAdapter = New  

StarfleetDataSetTableAdapters.UtilizationTableAdapter 
 
QueuesTable = New StarfleetDataSet.QueuesDataTable 
QueuesAdapter = New StarfleetDataSetTableAdapters.QueuesTableAdapter 
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'Open Vissim File 
vissim = CreateObject("vissim.vissim") 
vissim.LoadNet(DirectoryVISSIM & "savannahRun1r2HV.inp") 
vissim.LoadLayout(DirectoryVISSIM & "vissim.ini") 
 
'Open Arena and Assign SIMAN operators 
ArenaSim = CreateObject("Arena.Application") 
ArenaModel = ArenaSim.Models.Open(DirectoryArena & "Three_Port_Model_v14r21  

HV Port First.doe") 
ArenaLanguage = ArenaModel.SIMAN 
DurationTime = 432000 
ArenaModel.ReplicationLength = DurationTime 
 
 
        '*************************************************************************** 
'************************   Prepare Simulation  **************************** 
 
'Assign simulation characteristics into VISSIM 
simulation = vissim.Simulation 
simulation.Period = DurationTime 
simulation.Resolution = 1 
simulation.Speed = 1000 
 
'Reset simulation time values 
aTime = 0   'Simulation Time in Arena 
fTime = 0   'Simulation Time in VISSIM 
portcount = 0 
distcount = 0 
roadcount = 0 
 
'Assign VISSIM detectors - Detectors for traffic ENTERING each locatoin 
detectors =  

vissim.Net.SignalControllers.GetSignalControllerByNumber(1).Detectors 
Dist1Detector = detectors.GetDetectorByNumber(1) 
Dist2Detector = detectors.GetDetectorByNumber(2) 
Dist3Detector = detectors.GetDetectorByNumber(3) 
RoadDetector = detectors.GetDetectorByNumber(6) 
PortDetector = detectors.GetDetectorByNumber(7) 
 
'**************************************************************************** 
'************************   Simulation Runs ******************************* 
 
        '**************************************************************************** 
'************************   Entities Exiting VISSIM  ************************ 
 
For Time = 1 To simulation.Period 
 

'Advancing VISSIM Model/Time 
      simulation.RunSingleStep()    'Run a single step of VISSIM 
      fTime = vissim.Simulation.AttValue("ELAPSEDTIME")   'Obtain the current  

simulation time in VISSIM 
 

'Check Vehicles Entering ARENA at PORT 
      If PortDetector.AttValue("IMPULSE") = 1 Then   'causes following  

sequence if vehicle is present at detector 
            array1010 = PortDetector.AttValue("VEHICLEID")  'identifies which  

Vehicle from Index table is entering 
            vissim.Net.Vehicles.RemoveVehicle(array1010) 
            ArenaLanguage.VariableArrayValue(1010) = array1010  'writes  

vehicle Index ID to Arena variable 
 
            IndexTempTable = IndexAdapter.GetDataByIndexID(array1010) 
            IndexTempRow = IndexTempTable.FindByindex_id(array1010) 
            PortContID = IndexTempRow.container_id 
            PortVehID = IndexTempRow.vehicle_id 
 
            If PortContID = 0 Then 
               VehicleTempTable =  

VehicleAdapter.GetDataByVehicleID(PortVehID) 
                  VehicleTempRow =  

VehicleTempTable.FindByvehicle_id(PortVehID) 
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                  PortVehType = VehicleTempRow.vehicle_type 
                  PortVehOrigin = VehicleTempRow.origin_id 
 
                  ArenaLanguage.VariableArrayValue(1012) = PortVehID 
                  ArenaLanguage.VariableArrayValue(1013) = PortVehType 
                  ArenaLanguage.VariableArrayValue(8010) = 1 
 
                  IndexAdapter.DeleteIndex(array1010) 
                  VehicleAdapter.UpdateVeh(PortVehID, PortVehType, 0,  

PortVehOrigin, 0, 7, fTime, PortContID, PortVehID) 
                  VehicleLogAdapter.Insert(PortVehID, PortVehType, 0,  

PortVehOrigin, 0, 7, fTime, PortContID, array1010) 
            Else 
                  ContainerTempTable =  

ContainerAdapter.GetDataByContainerID(PortContID) 
                  ContainerTempRow =  

ContainerTempTable.FindBycontainer_id(PortContID) 
                  PortDestID = ContainerTempRow.destination_id 
                  PortDestID2 = ContainerTempRow.destination_id2 
                  PortOriginID = ContainerTempRow.origin_id 
 
                  VehicleTempTable =  

VehicleAdapter.GetDataByVehicleID(PortVehID) 
                  VehicleTempRow =  

VehicleTempTable.FindByvehicle_id(PortVehID) 
                  PortVehType = VehicleTempRow.vehicle_type 
                  PortVehOrigin = VehicleTempRow.origin_id 
 
                  ArenaLanguage.VariableArrayValue(1011) = PortContID 
                  ArenaLanguage.VariableArrayValue(1012) = PortVehID 
                  ArenaLanguage.VariableArrayValue(1013) = PortVehType 
                  ArenaLanguage.VariableArrayValue(1014) = PortDestID 
                  ArenaLanguage.VariableArrayValue(1015) = PortDestID2 
                  ArenaLanguage.VariableArrayValue(1016) = PortOriginID 
 
                  ArenaLanguage.VariableArrayValue(8010) = 1       'triggers  

vehicle creation in Arena 
                  ArenaLanguage.VariableArrayValue(8011) = 1 
 
                  IndexAdapter.DeleteIndex(array1010) 
                  ContainerAdapter.UpdateCont(PortContID, PortVehID,  

PortOriginID, PortDestID, PortDestID2, 7, fTime,  
PortContID) 

                  VehicleAdapter.UpdateVeh(PortVehID, PortVehType, 0,  
PortVehOrigin, 0, 7, fTime, PortContID, PortVehID) 

                  ContainerAdapter.DeleteCont(PortContID) 
 
                  ContainerLogAdapter.Insert(PortContID, PortVehID,  

PortOriginID, PortDestID, PortDestID2, 7, fTime,  
array1010) 

                  VehicleLogAdapter.Insert(PortVehID, PortVehType, 0,  
PortVehOrigin, 0, 7, fTime, PortContID, array1010) 

       End If 
End If 

      'Check Vehicles Entering ARENA at DIST CTR 1. 
      If Dist1Detector.AttValue("IMPULSE") = 1 Then 
       array2020 = Dist1Detector.AttValue("VEHICLEID") 
            vissim.Net.Vehicles.RemoveVehicle(array2020) 
            ArenaLanguage.VariableArrayValue(2020) = array2020 
 
            IndexTempTable = IndexAdapter.GetDataByIndexID(array2020) 
            IndexTempRow = IndexTempTable.FindByindex_id(array2020) 
            Dist1ContID = IndexTempRow.container_id 
            Dist1VehID = IndexTempRow.vehicle_id 
 
            If Dist1ContID = 0 Then 
             VehicleTempTable =  

VehicleAdapter.GetDataByVehicleID(Dist1VehID) 
                  VehicleTempRow =  

VehicleTempTable.FindByvehicle_id(Dist1VehID) 
                  Dist1VehType = VehicleTempRow.vehicle_type 
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                  Dist1VehOrigin = VehicleTempRow.origin_id 
 
                  ArenaLanguage.VariableArrayValue(2022) = Dist1VehID 
                  ArenaLanguage.VariableArrayValue(2023) = Dist1VehType 
                  ArenaLanguage.VariableArrayValue(8020) = 1 
 
                  IndexAdapter.DeleteIndex(array2020) 
                  VehicleAdapter.UpdateVeh(Dist1VehID, Dist1VehType, 0,  

Dist1VehOrigin, 0, 1, fTime, Dist1ContID, Dist1VehID) 
                  VehicleLogAdapter.Insert(Dist1VehID, Dist1VehType, 0,  

Dist1VehOrigin, 0, 1, fTime, Dist1ContID, array2020) 
         Else 
             ContainerTempTable =  

ContainerAdapter.GetDataByContainerID(Dist1ContID) 
                  ContainerTempRow =  

ContainerTempTable.FindBycontainer_id(Dist1ContID) 
                  Dist1DestID = ContainerTempRow.destination_id 
                  Dist1DestID2 = ContainerTempRow.destination_id2 
                  Dist1OriginID = ContainerTempRow.origin_id 
 
                  VehicleTempTable =  

VehicleAdapter.GetDataByVehicleID(Dist1VehID) 
                  VehicleTempRow =  

VehicleTempTable.FindByvehicle_id(Dist1VehID) 
                  Dist1VehType = VehicleTempRow.vehicle_type 
                  Dist1VehOrigin = VehicleTempRow.origin_id 
 
                  ArenaLanguage.VariableArrayValue(2021) = Dist1ContID 
                  ArenaLanguage.VariableArrayValue(2022) = Dist1VehID 
                  ArenaLanguage.VariableArrayValue(2023) = Dist1VehType 
                  ArenaLanguage.VariableArrayValue(2024) = Dist1DestID 
                  ArenaLanguage.VariableArrayValue(2025) = Dist1DestID2 
                  ArenaLanguage.VariableArrayValue(2026) = Dist1OriginID 
 
                  ArenaLanguage.VariableArrayValue(8020) = 1 
                  ArenaLanguage.VariableArrayValue(8021) = 1 
 
                  IndexAdapter.DeleteIndex(array2020) 
                   If Dist1DestID2 = 1 Then 
                         ContainerAdapter.DeleteCont(Dist1ContID) 
                     Else 
                         ContainerAdapter.UpdateCont(Dist1ContID,  

Dist1VehID, Dist1OriginID, Dist1DestID,  
Dist1DestID2, 1, fTime, Dist1ContID) 

                     End If 
                 VehicleAdapter.UpdateVeh(Dist1VehID, Dist1VehType, 0,  

Dist1VehOrigin, 0, 1, fTime, Dist1ContID, Dist1VehID) 
 
                  ContainerLogAdapter.Insert(Dist1ContID, Dist1VehID,  

Dist1OriginID, Dist1DestID, Dist1DestID2, 1, fTime,  
array2020) 

                  VehicleLogAdapter.Insert(Dist1VehID, Dist1VehType, 0,  
Dist1VehOrigin, 0, 1, fTime, Dist1ContID, array2020) 

         End If 
    End If 
      'Check Vehicles Entering ARENA at DIST CTR 2. 
      If Dist2Detector.AttValue("IMPULSE") = 1 Then 
       array2030 = Dist2Detector.AttValue("VEHICLEID") 
            vissim.Net.Vehicles.RemoveVehicle(array2030) 
            ArenaLanguage.VariableArrayValue(2030) = array2030 
 
            IndexTempTable = IndexAdapter.GetDataByIndexID(array2030) 
            IndexTempRow = IndexTempTable.FindByindex_id(array2030) 
            Dist2ContID = IndexTempRow.container_id 
            Dist2VehID = IndexTempRow.vehicle_id 
 
            If Dist2ContID = 0 Then 

 
VehicleTempTable =  

VehicleAdapter.GetDataByVehicleID(Dist2VehID) 
                  VehicleTempRow =  
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VehicleTempTable.FindByvehicle_id(Dist2VehID) 
                  Dist2VehType = VehicleTempRow.vehicle_type 
                  Dist2VehOrigin = VehicleTempRow.origin_id 
 
                  ArenaLanguage.VariableArrayValue(2032) = Dist2VehID 
                  ArenaLanguage.VariableArrayValue(2033) = Dist2VehType 
                  ArenaLanguage.VariableArrayValue(8030) = 1 
 
                  IndexAdapter.DeleteIndex(array2030) 
                  VehicleAdapter.UpdateVeh(Dist2VehID, Dist2VehType, 0,  

Dist2VehOrigin, 0, 2, fTime, Dist2ContID, Dist2VehID) 
                  VehicleLogAdapter.Insert(Dist2VehID, Dist2VehType, 0,  

Dist2VehOrigin, 0, 2, fTime, Dist2ContID, array2030) 
            Else 
             ContainerTempTable =  

ContainerAdapter.GetDataByContainerID(Dist2ContID) 
                  ContainerTempRow =  

ContainerTempTable.FindBycontainer_id(Dist2ContID) 
                  Dist2DestID = ContainerTempRow.destination_id 
                  Dist2DestID2 = ContainerTempRow.destination_id2 
                  Dist2OriginID = ContainerTempRow.origin_id 
 

VehicleTempTable =  
VehicleAdapter.GetDataByVehicleID(Dist2VehID) 

                  VehicleTempRow =  
VehicleTempTable.FindByvehicle_id(Dist2VehID) 

                  Dist2VehType = VehicleTempRow.vehicle_type 
                  Dist2VehOrigin = VehicleTempRow.origin_id 
 
                  ArenaLanguage.VariableArrayValue(2031) = Dist2ContID 
                  ArenaLanguage.VariableArrayValue(2032) = Dist2VehID 
                  ArenaLanguage.VariableArrayValue(2033) = Dist2VehType 
                  ArenaLanguage.VariableArrayValue(2034) = Dist2DestID 
                  ArenaLanguage.VariableArrayValue(2035) = Dist2DestID2 
                  ArenaLanguage.VariableArrayValue(2036) = Dist2OriginID 
 
                  ArenaLanguage.VariableArrayValue(8030) = 1 
                  ArenaLanguage.VariableArrayValue(8031) = 1 
 
                  IndexAdapter.DeleteIndex(array2030) 
                  If Dist2DestID2 = 2 Then 
                   ContainerAdapter.DeleteCont(Dist2ContID) 
                  Else 
                   ContainerAdapter.UpdateCont(Dist2ContID, Dist2VehID,  

Dist2OriginID, Dist2DestID, Dist2DestID2, 2,  
fTime, Dist2ContID) 

                  End If 
                  VehicleAdapter.UpdateVeh(Dist2VehID, Dist2VehType, 0,  

Dist2VehOrigin, 0, 2, fTime, Dist2ContID, Dist2VehID) 
                  ContainerLogAdapter.Insert(Dist2ContID, Dist2VehID,  

Dist2OriginID, Dist2DestID, Dist2DestID2, 2, fTime,  
array2030) 

                  VehicleLogAdapter.Insert(Dist2VehID, Dist2VehType, 0,  
Dist2VehOrigin, 0, 2, fTime, Dist2ContID, array2030) 

          End If 
      End If 
      'Check Vehicles Entering ARENA at DIST CTR 3. 
     If Dist3Detector.AttValue("IMPULSE") = 1 Then 
       array2040 = Dist3Detector.AttValue("VEHICLEID") 
            vissim.Net.Vehicles.RemoveVehicle(array2040) 
            ArenaLanguage.VariableArrayValue(2040) = array2040 
 
            IndexTempTable = IndexAdapter.GetDataByIndexID(array2040) 
            IndexTempRow = IndexTempTable.FindByindex_id(array2040) 
            Dist3ContID = IndexTempRow.container_id 
            Dist3VehID = IndexTempRow.vehicle_id 
 
            If Dist3ContID = 0 Then 
             VehicleTempTable =  

VehicleAdapter.GetDataByVehicleID(Dist3VehID) 
             VehicleTempRow =  



 

233 

VehicleTempTable.FindByvehicle_id(Dist3VehID) 
             Dist3VehType = VehicleTempRow.vehicle_type 
             Dist3VehOrigin = VehicleTempRow.origin_id 
 
             ArenaLanguage.VariableArrayValue(2042) = Dist3VehID 
             ArenaLanguage.VariableArrayValue(2043) = Dist3VehType 
             ArenaLanguage.VariableArrayValue(8040) = 1 
 
             IndexAdapter.DeleteIndex(array2040) 
             VehicleAdapter.UpdateVeh(Dist3VehID, Dist3VehType, 0,  

Dist3VehOrigin, 0, 3, fTime, Dist3ContID, Dist3VehID) 
             VehicleLogAdapter.Insert(Dist3VehID, Dist3VehType, 0,  

Dist3VehOrigin, 0, 3, fTime, Dist3ContID, array2040) 
         Else 
             ContainerTempTable =  

ContainerAdapter.GetDataByContainerID(Dist3ContID) 
                  ContainerTempRow =  

ContainerTempTable.FindBycontainer_id(Dist3ContID) 
                  Dist3DestID = ContainerTempRow.destination_id 
                  Dist3DestID2 = ContainerTempRow.destination_id2 
                  Dist3OriginID = ContainerTempRow.origin_id 
 
                  VehicleTempTable =  

VehicleAdapter.GetDataByVehicleID(Dist3VehID) 
                  VehicleTempRow =  

VehicleTempTable.FindByvehicle_id(Dist3VehID) 
                  Dist3VehType = VehicleTempRow.vehicle_type 
                  Dist3VehOrigin = VehicleTempRow.origin_id 
 
                  ArenaLanguage.VariableArrayValue(2041) = Dist3ContID 
                  ArenaLanguage.VariableArrayValue(2042) = Dist3VehID 
                  ArenaLanguage.VariableArrayValue(2043) = Dist3VehType 
                  ArenaLanguage.VariableArrayValue(2044) = Dist3DestID 
                  ArenaLanguage.VariableArrayValue(2045) = Dist3DestID2 
                  ArenaLanguage.VariableArrayValue(2046) = Dist3OriginID 
 
                  ArenaLanguage.VariableArrayValue(8040) = 1 
                  ArenaLanguage.VariableArrayValue(8041) = 1 
 
                  IndexAdapter.DeleteIndex(array2040) 
                  If Dist3DestID2 = 3 Then 
                   ContainerAdapter.DeleteCont(Dist3ContID) 
                  Else 
                   ContainerAdapter.UpdateCont(Dist3ContID, Dist3VehID,  

Dist3OriginID, Dist3DestID, Dist3DestID2, 3,  
fTime, Dist3ContID) 

                  End If 
                  VehicleAdapter.UpdateVeh(Dist3VehID, Dist3VehType, 0,  

Dist3VehOrigin, 0, 3, fTime, Dist3ContID, Dist3VehID) 
                  ContainerLogAdapter.Insert(Dist3ContID, Dist3VehID,  

Dist3OriginID, Dist3DestID, Dist3DestID2, 3, fTime,  
array2040) 

                  VehicleLogAdapter.Insert(Dist3VehID, Dist3VehType, 0,  
Dist3VehOrigin, 0, 3, fTime, Dist3ContID, array2040) 

            End If 
      End If 
      'Check Vehicles Entering Arena at ROADWAY. 
      If RoadDetector.AttValue("IMPULSE") = 1 Then 
       array3060 = RoadDetector.AttValue("VEHICLEID") 
            vissim.Net.Vehicles.RemoveVehicle(array3060) 
            ArenaLanguage.VariableArrayValue(3060) = array3060 
 
            IndexTempTable = IndexAdapter.GetDataByIndexID(array3060) 
            IndexTempRow = IndexTempTable.FindByindex_id(array3060) 
            RoadContID = IndexTempRow.container_id 
            RoadVehID = IndexTempRow.vehicle_id 
 
            If RoadContID = 0 Then 
             VehicleTempTable =  

VehicleAdapter.GetDataByVehicleID(RoadVehID) 
                  VehicleTempRow =  
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VehicleTempTable.FindByvehicle_id(RoadVehID) 
                  RoadVehType = VehicleTempRow.vehicle_type 
                  RoadVehOrigin = VehicleTempRow.origin_id 
 
                  ArenaLanguage.VariableArrayValue(3062) = RoadVehID 
                  ArenaLanguage.VariableArrayValue(3063) = RoadVehType 
                  ArenaLanguage.VariableArrayValue(8060) = 1 
 
                  IndexAdapter.DeleteIndex(array3060) 
                  VehicleAdapter.UpdateVeh(RoadVehID, RoadVehType, 0,  

RoadVehOrigin, 0, 6, fTime, RoadContID, RoadVehID) 
                  VehicleAdapter.DeleteVeh(RoadVehID) 
                  VehicleLogAdapter.Insert(RoadVehID, RoadVehType, 0,  

RoadVehOrigin, 0, 6, fTime, RoadContID, array3060) 
           Else 
             ContainerTempTable =  

ContainerAdapter.GetDataByContainerID(RoadContID) 
                  ContainerTempRow =  

ContainerTempTable.FindBycontainer_id(RoadContID) 
                  RoadDestID = ContainerTempRow.destination_id 
                  RoadDestID2 = ContainerTempRow.destination_id2 
                  RoadOriginID = ContainerTempRow.origin_id 
 
                  VehicleTempTable =  

VehicleAdapter.GetDataByVehicleID(RoadVehID) 
 
                  VehicleTempRow =  

VehicleTempTable.FindByvehicle_id(RoadVehID) 
                  RoadVehType = VehicleTempRow.vehicle_type 
                  RoadVehOrigin = VehicleTempRow.origin_id 
 
                  ArenaLanguage.VariableArrayValue(3061) = RoadContID 
                  ArenaLanguage.VariableArrayValue(3062) = RoadVehID 
                 ArenaLanguage.VariableArrayValue(3063) = RoadVehType 
                  ArenaLanguage.VariableArrayValue(3064) = RoadDestID 
                  ArenaLanguage.VariableArrayValue(3065) = RoadDestID2 
                  ArenaLanguage.VariableArrayValue(3066) = RoadOriginID 
 
                  ArenaLanguage.VariableArrayValue(8060) = 1 
                  ArenaLanguage.VariableArrayValue(8061) = 1 
 
                  IndexAdapter.DeleteIndex(array3060) 
                  ContainerAdapter.UpdateCont(RoadContID, RoadVehID,  

RoadOriginID, RoadDestID, RoadDestID2, 6, fTime,  
RoadContID) 

                  VehicleAdapter.UpdateVeh(RoadVehID, RoadVehType, 0,  
RoadVehOrigin, 0, 6, fTime, RoadContID, RoadVehID) 

 
                  ContainerAdapter.DeleteCont(RoadContID) 
                  VehicleAdapter.DeleteVeh(RoadVehID) 
 
                  ContainerLogAdapter.Insert(RoadContID, RoadVehID,  

RoadOriginID, RoadDestID, RoadDestID2, 6, fTime,  
array3060) 

                  VehicleLogAdapter.Insert(RoadVehID, RoadVehType, 0,  
RoadVehOrigin, 0, 6, fTime, RoadContID, array3060) 

            End If 
End If 

 
      'Advancing Arena Time 
      While Int(aTime) <= fTime   'While Arena time is less than or equal to  

VISSIM Time 
       ArenaModel.Step()                  'Step Arena 
       aTime = ArenaLanguage.RunCurrentTime    'Obtain the current  

simulation time in Arena 
      End While 
 
      If fTime = i * 60 Then 
              
       Dist1VehQp = ArenaLanguage.QueueNumberOfEntities(100) 
            Dist1ContQp = ArenaLanguage.QueueNumberOfEntities(101) 
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            Dist1VehQh = ArenaLanguage.QueueNumberOfEntities(102) 
            Dist1ContQh = ArenaLanguage.QueueNumberOfEntities(103) 
            Dist2VehQp = ArenaLanguage.QueueNumberOfEntities(200) 
            Dist2ContQp = ArenaLanguage.QueueNumberOfEntities(201) 
            Dist2VehQh = ArenaLanguage.QueueNumberOfEntities(202) 
            Dist2ContQh = ArenaLanguage.QueueNumberOfEntities(203) 
            Dist3VehQp = ArenaLanguage.QueueNumberOfEntities(300) 
            Dist3ContQp = ArenaLanguage.QueueNumberOfEntities(301) 
            Dist3VehQh = ArenaLanguage.QueueNumberOfEntities(302) 
            Dist3ContQh = ArenaLanguage.QueueNumberOfEntities(303) 
            gctVehQp = ArenaLanguage.QueueNumberOfEntities(700) 
            gctContQp = ArenaLanguage.QueueNumberOfEntities(701) 
            gctVehQh = ArenaLanguage.QueueNumberOfEntities(702) 
            gctContQh = ArenaLanguage.QueueNumberOfEntities(703) 
             
            QueuesAdapter.Insert(11, i, Dist1VehQp) 
            QueuesAdapter.Insert(12, i, Dist1ContQp) 
            QueuesAdapter.Insert(13, i, Dist1VehQh) 
            QueuesAdapter.Insert(14, i, Dist1ContQh) 
            QueuesAdapter.Insert(21, i, Dist2VehQp) 
            QueuesAdapter.Insert(22, i, Dist2ContQp) 
            QueuesAdapter.Insert(23, i, Dist2VehQh) 
            QueuesAdapter.Insert(24, i, Dist2ContQh) 
            QueuesAdapter.Insert(31, i, Dist3VehQp) 
            QueuesAdapter.Insert(32, i, Dist3ContQp) 
            QueuesAdapter.Insert(33, i, Dist3VehQh) 
            QueuesAdapter.Insert(34, i, Dist3ContQh) 
            QueuesAdapter.Insert(71, i, gctVehQp) 
            QueuesAdapter.Insert(72, i, gctContQp) 
            QueuesAdapter.Insert(73, i, gctVehQh) 
            QueuesAdapter.Insert(74, i, gctContQh) 
 
            i = i + 1 

End If 
 
      '*********************************************** 
      'Check for Diffused (Deleted) Vehicles 
 
      If fTime > 5000 Then 
 
       DispersionSysTime = fTime - 5000 
            IndexTempTable = IndexAdapter.GetData 
            DispersionAdapter.InsertQuery() 
            DispersionTempTable = DispersionAdapter.GetData 
            DispersionTempRow = DispersionTempTable.FindBydisp_index(1) 
            DispersionVehTime = DispersionTempRow.time_stamp 
 
            If DispersionVehTime < DispersionSysTime Then 
             DispersionIndex = DispersionTempRow.index_id 
                  DispersionVehicle = DispersionTempRow.vehicle_id 
                  DispersionContainer = DispersionTempRow.container_id 
 
                  VehicleTempTable =  

VehicleAdapter.GetDataByVehicleID(DispersionVehicle) 
                  VehicleTempRow =  

VehicleTempTable.FindByvehicle_id(DispersionVehicle) 
 
                  DispersionType = VehicleTempRow.vehicle_type 
                  DispersionDestination = VehicleTempRow.current_destination 
                  DispersionOrigin = VehicleTempRow.origin_id 
 
                  ArenaLanguage.VariableArrayValue(8082) = DispersionVehicle 
                  ArenaLanguage.VariableArrayValue(8083) = DispersionType 
                  ArenaLanguage.VariableArrayValue(8084) =  

DispersionDestination 
                  ArenaLanguage.VariableArrayValue(8080) = 1 
 
                  IndexAdapter.DeleteIndex(DispersionIndex) 
 
                  If DispersionDestination = 6 Then 
                   If DispersionContainer = 0 Then 
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                         VehicleAdapter.DeleteVeh(DispersionVehicle) 
                             VehicleLogAdapter.Insert(DispersionVehicle,  

DispersionType, 0, 7777, 0,  
DispersionDestination, fTime,  
DispersionContainer, DispersionIndex) 

                        Else 
                           ArenaLanguage.VariableArrayValue(8081) = 1 
                             VehicleAdapter.DeleteVeh(DispersionVehicle) 
                             VehicleLogAdapter.Insert(DispersionVehicle,  

DispersionType, 0, 7777, 0,  
DispersionDestination, fTime,  
DispersionContainer, DispersionIndex) 

                                     
ContainerAdapter.DeleteCont(DispersionContainer 

) 
       
                        ContainerLogAdapter.Insert(DispersionContainer,  

DispersionVehicle, 7777, 0, 0,  
DispersionDestination, fTime,  
DispersionIndex) 

                      End If 
                Else 
                   If DispersionContainer = 0 Then 
                         VehicleAdapter.UpdateVeh(DispersionVehicle,  

DispersionType, 0, DispersionOrigin, 0, 
DispersionDestination, fTime,  
DispersionContainer, DispersionVehicle) 

                             VehicleLogAdapter.Insert(DispersionVehicle,  
DispersionType, 0, 7777, 0,  
DispersionDestination, fTime,  
DispersionContainer, DispersionIndex) 

                        Else 
                             ArenaLanguage.VariableArrayValue(8081) = 1 
                             VehicleAdapter.UpdateVeh(DispersionVehicle,  

DispersionType, 0, DispersionOrigin, 0,  
DispersionDestination, fTime,  
DispersionContainer, DispersionVehicle) 

VehicleLogAdapter.Insert(DispersionVehicle,  
DispersionType, 0, 7777, 0,  
DispersionDestination, fTime,  
DispersionContainer, DispersionIndex) 

                             
ContainerAdapter.DeleteCont(DispersionContainer 

) 
                             ContainerLogAdapter.Insert(DispersionContainer,  

DispersionVehicle, 7777, 0, 0,  
DispersionDestination, fTime,  
DispersionIndex) 

                       End If 
              End If 
          End If 
                DispersionAdapter.DeleteDispersionAll() 
            Else 
                DispersionAdapter.DeleteDispersionAll() 
    End If 
    '****************************************************************************     
'************************   Entities Exiting Arena to VISSIM **************** 
 
'************************   Exiting Port to VISSIM ************************** 
'********  Other  ******** 

If ArenaLanguage.VariableArrayValue(5012) > 0 Then 
       array5011 = ArenaLanguage.VariableArrayValue(5011) 'other  

container id 
             

     array5012 = ArenaLanguage.VariableArrayValue(5012) 'other vehicle  
id 

            array5013 = ArenaLanguage.VariableArrayValue(5013) 'port vehicle  
type 

            array5014 = ArenaLanguage.VariableArrayValue(5014) 'other  
destination id 1 

            array5019 = ArenaLanguage.VariableArrayValue(5019) 'other  
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destination id 2 
            array5111 = ArenaLanguage.VariableArrayValue(5111) 'other origin  

id 
 
            ArenaLanguage.VariableArrayValue(5012) = 0 
            ContainerTempTable = ContainerAdapter.GetData 
            If ContainerTempTable.Rows.Contains(array5011) = True Then 
             ContainerAdapter.UpdateCont(array5011, array5012,  

array5111, array5014, array5019, 9999, aTime,  
array5011) 

            Else 
             ContainerAdapter.Insert(array5011, array5012, array5111,  

array5014, array5019, 9999, aTime) 
            End If 
            VehicleTempTable = VehicleAdapter.GetData 
            If VehicleTempTable.Rows.Contains(array5012) = True Then 
             VehicleAdapter.UpdateVeh(array5012, array5013, 0, 7,  

array5014, 9999, aTime, array5011, array5012) 
            Else 
             VehicleAdapter.Insert(array5012, array5013, 0, 7,  

array5014, 9999, aTime, array5011) 
            End If 
            vehicle =  

vissim.Net.Vehicles.AddVehicleAtLinkCoordinate(array5014,  
50, 50, 1, 0) 

            VehIDPort1 = vehicle.ID 
            IndexAdapter.Insert(VehIDPort1, array5011, array5012, aTime, 1) 
 
 
            ContainerLogAdapter.Insert(array5011, array5012, array5111,  

array5014, array5019, 9999, aTime, VehIDPort1) 
            VehicleLogAdapter.Insert(array5012, array5013, 0, 7, array5014,  

9999, aTime, array5011, VehIDPort1) 
      End If 
 
      '********  Road  ******** 
      If ArenaLanguage.VariableArrayValue(5016) > 0 Then 
       array5015 = ArenaLanguage.VariableArrayValue(5015) 'road  

container id 
           array5016 = ArenaLanguage.VariableArrayValue(5016) 'road vehicle  

id 
            array5017 = ArenaLanguage.VariableArrayValue(5017) 'road vehicle  

type 
            array5018 = ArenaLanguage.VariableArrayValue(5018) 'road  

destination id 
            array5110 = ArenaLanguage.VariableArrayValue(5110) 'road origin  

id 
 
            ArenaLanguage.VariableArrayValue(5016) = 0 
            ContainerTempTable = ContainerAdapter.GetData 
            If ContainerTempTable.Rows.Contains(array5015) = True Then 
             ContainerAdapter.UpdateCont(array5015, array5016,  

array5110, array5018, array5018, 9999, aTime,  
array5015) 

            Else 
             ContainerAdapter.Insert(array5015, array5016, array5110,  

array5018, array5018, 9999, aTime) 
            End If 
            VehicleTempTable = VehicleAdapter.GetData 
            If VehicleTempTable.Rows.Contains(array5016) = True Then 
             VehicleAdapter.UpdateVeh(array5016, array5017, 0, 7,  

array5018, 9999, aTime, array5015, array5016) 
            Else 
             VehicleAdapter.Insert(array5016, array5017, 0, 7,  

array5018, 9999, aTime, array5015) 
            End If 
            vehicle =  

vissim.Net.Vehicles.AddVehicleAtLinkCoordinate(array5018,  
50, 50, 1, 0) 

            VehIDPort2 = vehicle.ID 
            IndexAdapter.Insert(VehIDPort2, array5015, array5016, aTime, 1) 
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            ContainerLogAdapter.Insert(array5015, array5016, array5110,  

array5018, array5018, 9999, aTime, VehIDPort2) 
            VehicleLogAdapter.Insert(array5016, array5017, 0, 7, array5018,  

9999, aTime, array5015, VehIDPort2) 
     End If 
 
      '********  Road Release ******** 
      If ArenaLanguage.VariableArrayValue(9210) > 0 Then 
        array9210 = ArenaLanguage.VariableArrayValue(9210) 'reroute  

vehicle id 
            array9211 = ArenaLanguage.VariableArrayValue(9211) 'reroute  

vehicle type 
            array9212 = ArenaLanguage.VariableArrayValue(9212) 'reroute  

destination 
            ArenaLanguage.VariableArrayValue(9210) = 0 
            VehicleTempTable = VehicleAdapter.GetData 
            If VehicleTempTable.Rows.Contains(array9210) = True Then 
             VehicleAdapter.UpdateVeh(array9210, array9211, 0, 7,  

array9212, 9999, aTime, 0, array9210) 
            Else 
             VehicleAdapter.Insert(array9210, array9211, 0, 7,  

array9212, 9999, aTime, 0) 
            End If 
 
            vehicle =  

vissim.Net.Vehicles.AddVehicleAtLinkCoordinate(array9212, 50, 
50, 1, 0) 

        VehIDPortRelease = vehicle.ID 
            IndexAdapter.Insert(VehIDPortRelease, 0, array9210, aTime, 1) 
 
            VehicleLogAdapter.Insert(array9210, array9211, 0, 7, array9212,  

9999, aTime, 0, VehIDPortRelease) 
    End If 
      '************************   Exiting Dist Ctr 1 to VISSIM  ************* 
      '********  Dist 1 Other  ******** 
      If ArenaLanguage.VariableArrayValue(5022) > 0 Then 
       array5021 = ArenaLanguage.VariableArrayValue(5021) 'other  

container id 
            array5022 = ArenaLanguage.VariableArrayValue(5022) 'other vehicle  

id 
            array5023 = ArenaLanguage.VariableArrayValue(5023) 'port vehicle  

type 
            array5024 = ArenaLanguage.VariableArrayValue(5024) 'other  

destination id 1 
            array5029 = ArenaLanguage.VariableArrayValue(5029) 'other  

destination id 2 
            array5121 = ArenaLanguage.VariableArrayValue(5121) 'other origin  

id 
 
            ArenaLanguage.VariableArrayValue(5022) = 0 
            ContainerTempTable = ContainerAdapter.GetData 
            If ContainerTempTable.Rows.Contains(array5021) = True Then 
             ContainerAdapter.UpdateCont(array5021, array5022,  

array5121, array5024, array5029, 9999, aTime,  
array5021) 

            Else 
             ContainerAdapter.Insert(array5021, array5022, array5121,  

array5024, array5029, 9999, aTime) 
            End If 
            VehicleTempTable = VehicleAdapter.GetData 
            If VehicleTempTable.Rows.Contains(array5022) = True Then 
             VehicleAdapter.UpdateVeh(array5022, array5023, 0, 1,  

array5029, 9999, aTime, array5021, array5022) 
            Else 
             VehicleAdapter.Insert(array5022, array5023, 0, 1,  

array5029, 9999, aTime, array5021) 
            End If 
            vehicle =  

vissim.Net.Vehicles.AddVehicleAtLinkCoordinate(array5029,  
50, 39, 1, 0) 
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            VehIDDist11 = vehicle.ID 
            IndexAdapter.Insert(VehIDDist11, array5021, array5022, aTime, 1) 
 
            ContainerLogAdapter.Insert(array5021, array5022, array5121,  

array5024, array5029, 9999, aTime, VehIDDist11) 
            VehicleLogAdapter.Insert(array5022, array5023, 0, 1, array5029,  

9999, aTime, array5021, VehIDDist11) 
      End If 
 
      '********  Dist 1 Road  ******** 
      If ArenaLanguage.VariableArrayValue(5026) > 0 Then 
       array5025 = ArenaLanguage.VariableArrayValue(5025) 'road  

container id 
            array5026 = ArenaLanguage.VariableArrayValue(5026) 'road vehicle  

id 
            array5027 = ArenaLanguage.VariableArrayValue(5027) 'road vehicle  

type 
            array5028 = ArenaLanguage.VariableArrayValue(5028) 'road  

destination id 1 
            array5122 = ArenaLanguage.VariableArrayValue(5122) 'road  

destination id 2 
            array5120 = ArenaLanguage.VariableArrayValue(5120) 'road origin  

id 
 
            ArenaLanguage.VariableArrayValue(5026) = 0 
            ContainerTempTable = ContainerAdapter.GetData 
            If ContainerTempTable.Rows.Contains(array5025) = True Then 
             ContainerAdapter.UpdateCont(array5025, array5026,  

array5120, array5028, array5122, 9999, aTime,  
array5025) 

            Else 
             ContainerAdapter.Insert(array5025, array5026, array5120,  

array5028, array5122, 9999, aTime) 
        End If 
            VehicleTempTable = VehicleAdapter.GetData 
            If VehicleTempTable.Rows.Contains(array5026) = True Then 
             VehicleAdapter.UpdateVeh(array5026, array5027, 0, 1,  

array5122, 9999, aTime, array5025, array5026) 
            Else 
             VehicleAdapter.Insert(array5026, array5027, 0, 1,  

array5122, 9999, aTime, array5025) 
            End If 
            vehicle =  

vissim.Net.Vehicles.AddVehicleAtLinkCoordinate(array5122,  
50, 39, 1, 0) 

            VehIDDist12 = vehicle.ID 
            IndexAdapter.Insert(VehIDDist12, array5025, array5026, aTime, 1) 
 
            ContainerLogAdapter.Insert(array5025, array5026, array5120,  

array5028, array5122, 9999, aTime, VehIDDist12) 
            VehicleLogAdapter.Insert(array5026, array5027, 0, 1, array5122,  

9999, aTime, array5025, VehIDDist12) 
     End If 
 
      '********  To Dist 1 ReRoute ******** 
      If ArenaLanguage.VariableArrayValue(9022) > 0 Then 
       array9022 = ArenaLanguage.VariableArrayValue(9022) 'reroute  

vehicle id 
            array9023 = ArenaLanguage.VariableArrayValue(9023) 'reroute  

vehicle type 
           array9024 = ArenaLanguage.VariableArrayValue(9024) 'reroute  

destination 
            ArenaLanguage.VariableArrayValue(9022) = 0 
            VehicleTempTable = VehicleAdapter.GetData 
            If VehicleTempTable.Rows.Contains(array9022) = True Then 
             VehicleAdapter.UpdateVeh(array9022, array9023, 0, 1,  

array9024, 9999, aTime, 0, array9022) 
            Else 
             VehicleAdapter.Insert(array9022, array9023, 0, 1,  

array9024, 9999, aTime, 0) 
            End If 
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            vehicle =  
vissim.Net.Vehicles.AddVehicleAtLinkCoordinate(array9024,  
50, 39, 1, 0) 

            VehIDDist13 = vehicle.ID 
            IndexAdapter.Insert(VehIDDist13, 0, array9022, aTime, 1) 
            RerouteIndex = 0 
 
            VehicleLogAdapter.Insert(array9022, array9023, 0, 1, array9024,  

9999, aTime, 0, VehIDDist13) 
   End If 
 
      '************************   Exiting Dist Ctr 2 to VISSIM  ************ 
      '********  Dist 2 Other  ******** 
      If ArenaLanguage.VariableArrayValue(5032) > 0 Then 
       array5031 = ArenaLanguage.VariableArrayValue(5031) 'other  

container id 
            array5032 = ArenaLanguage.VariableArrayValue(5032) 'other vehicle  

id 
            array5033 = ArenaLanguage.VariableArrayValue(5033) 'port vehicle  

type 
            array5034 = ArenaLanguage.VariableArrayValue(5034) 'other  

destination id 1 
            array5039 = ArenaLanguage.VariableArrayValue(5039) 'other  

destination id 2 
            array5131 = ArenaLanguage.VariableArrayValue(5131) 'other origin  

id 
 
            ArenaLanguage.VariableArrayValue(5032) = 0 
            ContainerTempTable = ContainerAdapter.GetData 
            If ContainerTempTable.Rows.Contains(array5031) = True Then 
             ContainerAdapter.UpdateCont(array5031, array5032,  

array5131, array5034, array5039, 9999, aTime,  
array5031) 

            Else 
             ContainerAdapter.Insert(array5031, array5032, array5131,  

array5034, array5039, 9999, aTime) 
            End If 
            VehicleTempTable = VehicleAdapter.GetData 
            If VehicleTempTable.Rows.Contains(array5032) = True Then 
             VehicleAdapter.UpdateVeh(array5032, array5033, 0, 2,  

array5039, 9999, aTime, array5031, array5032) 
            Else 
            VehicleAdapter.Insert(array5032, array5033, 0, 2, array5039,  

9999, aTime, array5031) 
            End If 
            vehicle =  

vissim.Net.Vehicles.AddVehicleAtLinkCoordinate(array5039,  
50, 29, 1, 0) 

            VehIDDist21 = vehicle.ID 
            IndexAdapter.Insert(VehIDDist21, array5031, array5032, aTime, 1) 
 
            ContainerLogAdapter.Insert(array5031, array5032, array5131,  

array5034, array5039, 9999, aTime, VehIDDist21) 
            VehicleLogAdapter.Insert(array5032, array5033, 0, 2, array5039,  

9999, aTime, array5031, VehIDDist21) 
     End If 
 
      '********  Dist 2 Road  ******** 
      If ArenaLanguage.VariableArrayValue(5036) > 0 Then 
       array5035 = ArenaLanguage.VariableArrayValue(5035) 'road  

container id 
            array5036 = ArenaLanguage.VariableArrayValue(5036) 'road vehicle  

id 
            array5037 = ArenaLanguage.VariableArrayValue(5037) 'road vehicle  

type 
            array5038 = ArenaLanguage.VariableArrayValue(5038) 'road  

destination id 1 
            array5132 = ArenaLanguage.VariableArrayValue(5132) 'road  

destination id 2 
            array5130 = ArenaLanguage.VariableArrayValue(5130) 'road origin  

id 
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            ArenaLanguage.VariableArrayValue(5036) = 0 
            ContainerTempTable = ContainerAdapter.GetData 
            If ContainerTempTable.Rows.Contains(array5035) = True Then 

ContainerAdapter.UpdateCont(array5035, array5036,  
array5130, array5038, array5132, 9999, aTime,  
array5035) 

            Else 
             ContainerAdapter.Insert(array5035, array5036, array5130,  

array5038, array5132, 9999, aTime) 
            End If 
            VehicleTempTable = VehicleAdapter.GetData 
            If VehicleTempTable.Rows.Contains(array5036) = True Then 
             VehicleAdapter.UpdateVeh(array5036, array5037, 0, 2,  

array5132, 9999, aTime, array5035, array5036) 
            Else 
             VehicleAdapter.Insert(array5036, array5037, 0, 2,  

array5132, 9999, aTime, array5035) 
            End If 
            vehicle =  

vissim.Net.Vehicles.AddVehicleAtLinkCoordinate(array5132,  
50, 29, 1, 0) 

            VehIDDist22 = vehicle.ID 
            IndexAdapter.Insert(VehIDDist22, array5035, array5036, aTime, 1) 
 
            ContainerLogAdapter.Insert(array5035, array5036, array5130,  

array5038, array5132, 9999, aTime, VehIDDist22) 
            VehicleLogAdapter.Insert(array5036, array5037, 0, 2, array5132,  

9999, aTime, array5035, VehIDDist22) 
    End If 
 
      '********  To Dist 2 ReRoute ******** 
      If ArenaLanguage.VariableArrayValue(9032) > 0 Then 
       array9032 = ArenaLanguage.VariableArrayValue(9032) 'reroute  

vehicle id 
            array9033 = ArenaLanguage.VariableArrayValue(9033) 'reroute  

vehicle type 
            array9034 = ArenaLanguage.VariableArrayValue(9034) 'reroute  

destination 
            ArenaLanguage.VariableArrayValue(9032) = 0 
            VehicleTempTable = VehicleAdapter.GetData 
            If VehicleTempTable.Rows.Contains(array9032) = True Then 
             VehicleAdapter.UpdateVeh(array9032, array9033, 0, 2,  

array9034, 9999, aTime, 0, array9032) 
            Else 
             VehicleAdapter.Insert(array9032, array9033, 0, 2,  

array9034, 9999, aTime, 0) 
            End If 
 
            vehicle =  

vissim.Net.Vehicles.AddVehicleAtLinkCoordinate(array9034,  
50, 29, 1, 0) 

            VehIDDist23 = vehicle.ID 
            IndexAdapter.Insert(VehIDDist23, 0, array9032, aTime, 1) 
            RerouteIndex = 0 
 
            VehicleLogAdapter.Insert(array9032, array9033, 0, 2, array9034,  

9999, aTime, 0, VehIDDist23) 
     End If 
      ‘************************   Exiting Dist Ctr 3 to VISSIM  *********** 
      '********  Dist 3 Other  ******** 
      If ArenaLanguage.VariableArrayValue(5042) > 0 Then 
       array5041 = ArenaLanguage.VariableArrayValue(5041) 'other  

container id 
            array5042 = ArenaLanguage.VariableArrayValue(5042) 'other vehicle  

id 
            array5043 = ArenaLanguage.VariableArrayValue(5043) 'port vehicle  

type 
            array5044 = ArenaLanguage.VariableArrayValue(5044) 'other  

destination id 1 
            array5049 = ArenaLanguage.VariableArrayValue(5049) 'other  
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destination id 2 
            array5141 = ArenaLanguage.VariableArrayValue(5141) 'other origin  

id 
 
            ArenaLanguage.VariableArrayValue(5042) = 0 
            ContainerTempTable = ContainerAdapter.GetData 
            If ContainerTempTable.Rows.Contains(array5041) = True Then 
             ContainerAdapter.UpdateCont(array5041, array5042,  

array5141, array5044, array5049, 9999, aTime,  
array5041) 

            Else 
                  ContainerAdapter.Insert(array5041, array5042, array5141,  

array5044, array5049, 9999, aTime) 
            End If 
            VehicleTempTable = VehicleAdapter.GetData 
            If VehicleTempTable.Rows.Contains(array5042) = True Then 
             VehicleAdapter.UpdateVeh(array5042, array5043, 0, 3,  

array5049, 9999, aTime, array5041, array5042) 
            Else 
             VehicleAdapter.Insert(array5042, array5043, 0, 3,  

array5049, 9999, aTime, array5041) 
            End If 
            vehicle =  

vissim.Net.Vehicles.AddVehicleAtLinkCoordinate(array5049,  
50, 77, 1, 0) 

            VehIDDist31 = vehicle.ID 
            IndexAdapter.Insert(VehIDDist31, array5041, array5042, aTime, 1) 
            ContainerLogAdapter.Insert(array5041, array5042, array5141,  

array5044, array5049, 9999, aTime, VehIDDist31) 
            VehicleLogAdapter.Insert(array5042, array5043, 0, 3, array5049,  

9999, aTime, array5041, VehIDDist31) 
     End If 
 
      '********  Dist 3 Road  ******** 
      If ArenaLanguage.VariableArrayValue(5046) > 0 Then 
       array5045 = ArenaLanguage.VariableArrayValue(5045) 'road  

container id 
            array5046 = ArenaLanguage.VariableArrayValue(5046) 'road vehicle  

id 
            array5047 = ArenaLanguage.VariableArrayValue(5047) 'road vehicle  

type 
            array5048 = ArenaLanguage.VariableArrayValue(5048) 'road  

destination id 1 
            array5142 = ArenaLanguage.VariableArrayValue(5142) 'road  

destination id 2 
            array5140 = ArenaLanguage.VariableArrayValue(5140) 'road origin  

id 
 
          ArenaLanguage.VariableArrayValue(5046) = 0 
            ContainerTempTable = ContainerAdapter.GetData 
            If ContainerTempTable.Rows.Contains(array5045) = True Then 
             ContainerAdapter.UpdateCont(array5045, array5046,  

array5140, array5048, array5142, 9999, aTime,  
array5045) 

            Else 
             ContainerAdapter.Insert(array5045, array5046, array5140,  

array5048, array5142, 9999, aTime) 
            End If 
            VehicleTempTable = VehicleAdapter.GetData 
            If VehicleTempTable.Rows.Contains(array5046) = True Then 
             VehicleAdapter.UpdateVeh(array5046, array5047, 0, 3,  

array5142, 9999, aTime, array5045, array5046) 
            Else 
             VehicleAdapter.Insert(array5046, array5047, 0, 3,  

array5142, 9999, aTime, array5045) 
            End If 
            vehicle =  

vissim.Net.Vehicles.AddVehicleAtLinkCoordinate(array5142,  
50, 77, 1, 0) 

            VehIDDist32 = vehicle.ID 
            IndexAdapter.Insert(VehIDDist32, array5045, array5046, aTime, 1) 
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            ContainerLogAdapter.Insert(array5045, array5046, array5140,  

array5048, array5142, 9999, aTime, VehIDDist32) 
            VehicleLogAdapter.Insert(array5046, array5047, 0, 3, array5142,  

9999, aTime, array5045, VehIDDist32) 
   End If 
 
      '********  To Dist 3 ReRoute ******** 
      If ArenaLanguage.VariableArrayValue(9042) > 0 Then 
       array9042 = ArenaLanguage.VariableArrayValue(9042) 'reroute  

vehicle id 
            array9043 = ArenaLanguage.VariableArrayValue(9043) 'reroute  

vehicle type 
            array9044 = ArenaLanguage.VariableArrayValue(9044) 'reroute  

destination 
            ArenaLanguage.VariableArrayValue(9042) = 0 
            VehicleTempTable = VehicleAdapter.GetData 
            If VehicleTempTable.Rows.Contains(array9042) = True Then 
             VehicleAdapter.UpdateVeh(array9042, array9043, 0, 3,  

array9044, 9999, aTime, 0, array9042) 
            Else 
             VehicleAdapter.Insert(array9042, array9043, 0, 3,  

array9044, 9999, aTime, 0) 
            End If 
 
            vehicle =  

vissim.Net.Vehicles.AddVehicleAtLinkCoordinate(array9044,  
50, 77, 1, 0) 

            VehIDDist33 = vehicle.ID 
            IndexAdapter.Insert(VehIDDist33, 0, array9042, aTime, 1) 
            RerouteIndex = 0 
 
            VehicleLogAdapter.Insert(array9042, array9043, 0, 3, array9044,  

9999, aTime, 0, VehIDDist33) 
      End If 
      '************************   Exiting Road to VISSIM ************* 
      '********  Road  ******** 
      If ArenaLanguage.VariableArrayValue(5066) > 0 Then 
       array5065 = ArenaLanguage.VariableArrayValue(5065) 'road  

container id 
            array5066 = ArenaLanguage.VariableArrayValue(5066) 'road vehicle  

id 
            array5067 = ArenaLanguage.VariableArrayValue(5067) 'road vehicle  

type 
            array5068 = ArenaLanguage.VariableArrayValue(5068) 'road  

destination id 1 
            array5069 = ArenaLanguage.VariableArrayValue(5069) 'road  

destination id 2 
            array5160 = ArenaLanguage.VariableArrayValue(5160) 'road origin  

id 
 
            ArenaLanguage.VariableArrayValue(5066) = 0 
 
            ContainerTempTable = ContainerAdapter.GetData 
            If ContainerTempTable.Rows.Contains(array5065) = True Then 
             ContainerAdapter.UpdateCont(array5065, array5066,  

array5160, array5068, array5069, 9999, aTime,  
array5065) 

           Else 
             ContainerAdapter.Insert(array5065, array5066, array5160,  

array5068, array5069, 9999, aTime) 
            End If 
            VehicleTempTable = VehicleAdapter.GetData 
            If VehicleTempTable.Rows.Contains(array5066) = True Then 
             VehicleAdapter.UpdateVeh(array5066, array5067, 0, 6,  

array5068, 9999, aTime, array5065, array5066) 
            Else 
             VehicleAdapter.Insert(array5066, array5067, 0, 6,  

array5068, 9999, aTime, array5065) 
            End If 
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            vehicle =  
vissim.Net.Vehicles.AddVehicleAtLinkCoordinate(array5068,  
50, 76, 1, 0) 

            VehIDRoad1 = vehicle.ID 
            IndexAdapter.Insert(VehIDRoad1, array5065, array5066, aTime, 1) 
            RouteIndex = 0 
 
            ContainerLogAdapter.Insert(array5065, array5066, array5160,  

array5068, array5069, 9999, aTime, VehIDRoad1) 
            VehicleLogAdapter.Insert(array5066, array5067, 0, 6, array5068,  

9999, aTime, array5065, VehIDRoad1) 
    End If 
      '********  Road Empty Vehicle ******** 
      If ArenaLanguage.VariableArrayValue(9110) > 0 Then 
       array9110 = ArenaLanguage.VariableArrayValue(9110) 'reroute  

vehicle id 
            array9111 = ArenaLanguage.VariableArrayValue(9111) 'reroute  

vehicle type 
            array9112 = ArenaLanguage.VariableArrayValue(9112) 'reroute  

destination 
            ArenaLanguage.VariableArrayValue(9110) = 0 
            VehicleTempTable = VehicleAdapter.GetData 
 

VehicleAdapter.Insert(array9110, array9111, 0, 6, array9112,  
9999, aTime, 0) 

 
            vehicle =  

vissim.Net.Vehicles.AddVehicleAtLinkCoordinate(array9112,  
50, 76, 1, 0) 

            VehIDRoadEmpty = vehicle.ID 
            IndexAdapter.Insert(VehIDRoadEmpty, 0, array9110, aTime, 1) 
 
            VehicleLogAdapter.Insert(array9110, array9111, 0, 6, array9112,  

9999, aTime, 0, VehIDRoadEmpty) 
End If 

Next 
End Sub 
End Class 
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APPENDIX B 

ARENA© GLOBAL VARIABLES 

 
Submodel Global Variable Name Global Variable Number 

Distribution Center 1 dist1_port_origin_id 5121 
Distribution Center 1 dist1_road_origin_id 5120 
Distribution Center 1 Dist1_RoadVehType_Var 5027 
Distribution Center 1 Dist1_OtherVehType_Var 5023 
Distribution Center 1 Dist1_RoadDestID2_Var 5122 
Distribution Center 1 Dist1_OtherDestID2_Var 5029 
Distribution Center 1 Dist1_RoadDestID_Var 5028 
Distribution Center 1 Dist1_OtherDestID_Var 5024 
Distribution Center 1 Dist1_RoadContID_Var 5025 
Distribution Center 1 Dist1_OtherContID_Var 5021 
Distribution Center 1 Dist1_RoadVehID_Var 5026 
Distribution Center 1 Dist1_OtherVehID_Var 5022 
Distribution Center 1 Dist1SwitchVar_Veh 8020 
Distribution Center 1 Dist1SwitchVar_Cont 8021 
Distribution Center 1 dist1_enter_originID 2026 
Distribution Center 1 Dist1_Enter_DestinationID2 2025 
Distribution Center 1 Dist1_Enter_DestinationID1 2024 
Distribution Center 1 Dist1_Enter_Vehicle_Type 2023 
Distribution Center 1 Dist1_Enter_VehicleID 2022 
Distribution Center 1 Dist1_Enter_ContainerID 2021 
Distribution Center 1 Dist1_Enter_IndexID 2020 
Distribution Center 1 Dist1_Reroute_Destination 9024 
Distribution Center 1 Dist1_PortVehReroute_VehID 9022 
Distribution Center 1 Dist1_PortVehReroute_VehType 9023 
Distribution Center 2 dist2_port_origin_id 5131 
Distribution Center 2 dist2_road_origin_id 5130 
Distribution Center 2 Dist2_RoadVehType_Var 5037 
Distribution Center 2 Dist2_OtherVehType_Var 5033 
Distribution Center 2 Dist2_RoadDestID2_Var 5132 
Distribution Center 2 Dist2_OtherDestID2_Var 5039 
Distribution Center 2 Dist2_RoadDestID_Var 5038 
Distribution Center 2 Dist2_OtherDestID_Var 5034 
Distribution Center 2 Dist2_RoadContID_Var 5035 
Distribution Center 2 Dist2_OtherContID_Var 5031 
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Submodel Global Variable Name Global Variable Number 
Distribution Center 2 Dist2_RoadVehID_Var 5036 
Distribution Center 2 Dist2_OtherVehID_Var 5032 
Distribution Center 2 Dist2SwitchVar_Veh 8030 
Distribution Center 2 Dist2SwitchVar_Cont 8031 
Distribution Center 2 dist2_enter_originID 2036 
Distribution Center 2 Dist2_Enter_DestinationID2 2035 
Distribution Center 2 Dist2_Enter_DestinationID1 2034 
Distribution Center 2 Dist2_Enter_Vehicle_Type 2033 
Distribution Center 2 Dist2_Enter_VehicleID 2032 
Distribution Center 2 Dist2_Enter_ContainerID 2031 
Distribution Center 2 Dist2_Enter_IndexID 2030 
Distribution Center 2 Dist2_Reroute_Destination 9034 
Distribution Center 2 Dist2_PortVehReroute_VehID 9032 
Distribution Center 2 Dist2_PortVehReroute_VehType 9033 
Distribution Center 3 dist3_port_origin_id 5141 
Distribution Center 3 dist3_road_origin_id 5140 
Distribution Center 3 Dist3_RoadVehType_Var 5047 
Distribution Center 3 Dist3_OtherVehType_Var 5043 
Distribution Center 3 Dist3_RoadDestID2_Var 5142 
Distribution Center 3 Dist3_OtherDestID2_Var 5049 
Distribution Center 3 Dist23_RoadDestID_Var 5048 
Distribution Center 3 Dist3_OtherDestID_Var 5044 
Distribution Center 3 Dist3_RoadContID_Var 5045 
Distribution Center 3 Dist3_OtherContID_Var 5041 
Distribution Center 3 Dist3_RoadVehID_Var 5046 
Distribution Center 3 Dist3_OtherVehID_Var 5042 
Distribution Center 3 Dist3SwitchVar_Veh 8040 
Distribution Center 3 Dist3SwitchVar_Cont 8041 
Distribution Center 3 dist3_enter_originID 2046 
Distribution Center 3 Dist3_Enter_DestinationID2 2045 
Distribution Center 3 Dist3_Enter_DestinationID1 2044 
Distribution Center 3 Dist3_Enter_Vehicle_Type 2043 
Distribution Center 3 Dist3_Enter_VehicleID 2042 
Distribution Center 3 Dist3_Enter_ContainerID 2041 
Distribution Center 3 Dist3_Enter_IndexID 2040 
Distribution Center 3 Dist3_Reroute_Destination 9044 
Distribution Center 3 Dist3_PortVehReroute_VehID 9042 
Distribution Center 3 Dist3_PortVehReroute_VehType 9043 
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Submodel Global Variable Name Global Variable Number 
I-16 Junction road_origin_id 5016 
I-16 Junction Road_RoadVehType_Var 5067 
I-16 Junction Road_RoadDestID2_Var 5069 
I-16 Junction Road_RoadDestID_Var 5068 
I-16 Junction Road_RoadContID_Var 5065 
I-16 Junction Road_RoadVehID_Var 5066 
I-16 Junction Road_Emprty_VehicleID 9110 
I-16 Junction Road_Empty_VehicleType 9111 
I-16 Junction Road_Emprty_VehicleDestination 9112 

GCT Gate port_port_origin_id 5111 
GCT Gate port_road_origin_id 5110 
GCT Gate Port_RoadVehType_Var 5017 
GCT Gate Port_PortVehType_Var 5013 
GCT Gate Port_PortDestID2_Var 5019 
GCT Gate Port_RoadDestID_Var 5018 
GCT Gate Port_PortDestID_Var 5014 
GCT Gate Port_RoadContID_Var 5015 
GCT Gate Port_OtherContID_Var 5011 
GCT Gate Port_RoadVehID_Var 5016 
GCT Gate Port_OtherVehID_Var 5012 
GCT Gate PortSwitchVar_Veh 8010 
GCT Gate PortSwitchVar_Cont 8011 
GCT Gate Port_Enter_OriginID 1016 
GCT Gate Port_Enter_DestinationID2 1015 
GCT Gate Port_Enter_DestinationID 1014 
GCT Gate Port_Enter_Vehicle_Type 1013 
GCT Gate Port_Enter_VehicleID 1012 
GCT Gate Port_Enter_ContainerID 1011 
GCT Gate Port_Enter_IndexID 1010 
GCT Gate Port_Road_Release_VehID 9210 
GCT Gate Port_Road_Release_VehType 9211 
GCT Gate Port_Road_Release_Destiation 9212 
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APPENDIX C 

ROADWAY NETWORK INTERSECTION SIGNALIZATION PLANS 

 

Intersection Phase
All 
Red Amber Green 

4 1 2 3 30 
2 2 3 10 
3 2 3 35 

5 1 2 3 25 
2 2 3 35 
3 2 3 15 

6 1 2 3 25 
2 2 3 25 

7 1 2 3 30 
2 2 3 10 
3 2 3 35 

8 1 2 3 20 
2 2 3 20 
3 2 3 35 

9 1 2 3 25 
2 2 3 35 

10 1 2 3 30 
2 2 3 10 
3 2 3 35 

11 1 2 3 30 
2 2 3 15 
3 2 3 55 

12 1 2 3 30 
2 2 3 10 

3 2 3 35 
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