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Execut ive Summary 

The past few years have witnessed a rapidly growing market in assistive driving 

technologies, designed to improve safety and operations by supporting driver performance. 

Often referred to as cooperative vehicle–highway automation (CVHA) systems, these 

assistive technologies commonly utilize radar, light detection and ranging (LiDAR), or 

other machine-vision technologies, as well as vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) technology, to obtain surrounding roadway and traffic data. Extensive 

research has been conducted on CVHA technology since the late 1990s. Findings have 

been generally positive, including potential safety benefits, high potential acceptance rates, 

and reductions in driver workload, though operations and capacity impacts have been 

mixed, depending on the technology. Numerous opportunities for further advancement in 

traffic control strategies that leverage V2V and V2I have been identified and are under 

development. 

However, from the current literature, it is not clear: (1) how some of these systems 

will operate on the existing infrastructure (e.g., autonomous vehicles), (2) how they will 

impact traffic congestion and safety, and (3) how state departments of transportation 

(DOTs) should incorporate this changing vehicle and driver environment in their planning, 

design, safety, and construction processes. The objective of the current study was to begin 

to address these concerns to ensure that state DOTs and other practitioners will have the 

information necessary to make effective policies, procedures, and management decisions 

regarding CVHA technology. 

In seeking to address these concerns, a key finding from this study is related to the 

underlying modeling approaches utilized to study many of these potential technologies. It 
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is clear that current simulation models are not capable of readily modeling cooperative 

assist technologies or autonomous vehicles. A critical component in the determination of 

the impact of many of these technologies is the human interaction with the technology, 

both those individuals inside the equipped vehicle and those driving other vehicles that 

interact with the equipped vehicle. Currently, it is not clear how individuals will interact 

with this technology on a wide scale, particularly when considering autonomous vehicles. 

To a significant degree, this lack of information is not unexpected. Current in-vehicle 

technologies are in a state of continual flux, both within and across manufacturers. The 

“driving” characteristics of an autonomous vehicle are not yet known. Potentially dozens 

of autonomous vehicles are under development, each with its own logic, algorithms, etc. 

Critically, how other drivers will interact with autonomous vehicles or other CVHA 

technology is unknown. Most previous studies have assumed a generally “well-behaved” 

interaction. However, should drivers choose to “bully” these vehicles, taking advantage of 

their safety protocols, traffic and safety improvements become much less certain.  

Thus, from this study it is clearly necessary to view simulation through a new lens. 

To date, commercial simulation packages have built-in driver behavior or traffic-flow 

models. These models contain a limited number of calibration parameters, and a limited 

range of potential behaviors. For instance, the simulation development in this study shows 

that while 16 parameters had significant impact on the model performance, only four likely 

influenced the modeling of autonomous vehicles. However, the researchers present a case 

study, seeking to model the impact of aggressive manually driven vehicle behavior toward 

autonomous vehicles. Even with the calibration parameters, significant additional efforts 

are required to capture driver behavior outside of that reflected by the default modes. 
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The case study indicates that the introduction of autonomous vehicles resulted in 

additional instability in the traffic flow. There are several possible reasons for this finding. 

First, the potential for erroneous modeling must be acknowledged. There is an aspect of 

the “black box” phenomenon when using any off-the-shelf simulation tool. It is possible 

that the developed scripts did not correctly interact with the simulation traffic flow logic, 

resulting in erroneous behavior. A second potential reason for the finding is that for mixed 

traffic (i.e., manual-driven and autonomous vehicle in the same traffic stream) the resulting 

behavior may be reasonable. The manually driven vehicles (aggressive and normal), when 

not in the presence of autonomous vehicles, have similar driving parameters. The demands 

selected for this experiment were near capacity conditions. When all vehicles have similar 

characteristics, the flow is homogeneous, likely resulting in optimal flow conditions. By 

mixing autonomous vehicles into the traffic stream, a heterogeneous flow results (with 

aggressive behavior by a subset of manually driven vehicles), likely leading to breakdown.  

As the definitions of vehicles and drivers enters a constant state of change, the 

current state of understanding and analysis will no longer be sufficient. The key finding 

from this effort is that to reflect CVHA it is necessary to design a new simulation and 

modeling approach, likely from an agent-based simulation point of view, where the vehicle 

types, behaviors, and abilities may be readily updated. Specific behaviors should not be 

“hard coded” into a model. Instead, models must provide easily acceptable interfaces, 

allowing for data exchange with new agents. Modelers must have an ability to create agents 

(i.e., new drivers, vehicles, etc.) with diverse potential characters and behaviors. From such 

a modeling tool, analysis into the ever-changing technological environment may then be 

efficiently conducted.   
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1 Int roduct ion 

In an attempt to improve safety and reduce driver frustration and congestion, a rapidly 

growing market in assistive driving technologies is being developed. These technologies 

are designed to support drivers in performing different driving tasks and help raise the 

drivers’ awareness of potential upcoming hazards. Though referred to by many names 

(e.g., congestion assistant and adaptive cruise control), these cooperative vehicle–highway 

automation (CVHA) systems commonly utilize radar, light detection and ranging 

(LiDAR), and other machine-vision technology, as well as vehicle-to-vehicle (V2V) and 

vehicle-to-infrastructure (V2I) technology, to obtain surrounding roadway and traffic data 

that can be analyzed and used for assisting driving tasks. For example, an adaptive cruise 

control (ACC) system automatically maintains the vehicle’s speed under a desired 

maximum while maintaining the following distance from a leading vehicle. Major 

automobile manufacturers, including Mercedes-Benz, BMW, Audi, and others, are 

developing higher levels of vehicle driver assistance that control steering and acceleration, 

with some of these systems already commercially available (Lieberman, 2013; General 

Motors, 2015).  

Extensive research has been conducted on CVHA technology since the late 1990s. 

In a 2005 study, the coexistence of cooperative autonomous vehicles and non-autonomous 

vehicles showed promise for the not-too-distant future, with the successful testing of 

different automated maneuvers in the midst of non-automated vehicles (Baber et al., 2005). 

Moreover, the interest in automated vehicles also has been increasing worldwide with 

Europe and Japan leading the way in several key applications of CHVA technologies, 
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including: automated truck platooning, automated buses, personal rapid transit systems, 

and human factors (Shladover, 2012a; 2012b). 

While these systems are being developed and deployed with the intent of reducing 

driver stress, alleviating congestion, and improving traffic safety, it is not clear: (1) how 

they will be operated on the existing infrastructure, (2) how they will actually impact traffic 

congestion and safety, and (3) how state departments of transportation (DOTs) should 

incorporate this changing vehicle and driver environment in their planning, design, and 

construction processes. The objective of the current study is to begin to address these 

concerns to ensure that state DOTs and other practitioners will have the information 

necessary to make effective policies, procedures, and management decisions regarding 

CVHA technology. 
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2 Literature Review 

2.1 INTRODUCTION 

This section provides a comprehensive review of the literature summarizing the current 

state of knowledge regarding the impacts of CVHA technology on congestion mitigation, 

safety, and management of existing transportation infrastructure. It comprises four primary 

components:  

• An overview of the currently available CVHA technology on the market  

• A review of existing field/on-road tests of CVHA technology 

• A review of existing driver simulator studies evaluating the influence of human 

factors  

• A review of existing microscopic traffic simulation studies evaluating the impacts 

of CVHA technology on traffic conditions 

2.2 OVERVIEW OF CVHA TECHNOLOGY 

Before diving into past research, an overview of CVHA technology is essential to provide 

the necessary foundational knowledge. With the rapid pace of innovation and vast array of 

CVHA technologies, this overview is not intended to be all-encompassing, but instead 

provides the context for CVHA studies. Shladover (2008) defines CVHA systems as 

systems that provide driving control assistance or fully automated driving, and are based 

on information about the vehicle’s driving environment that can be received by 

communication from other vehicles (V2V) or from the infrastructure (V2I or I2V), as well 
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as from their own on-board sensors. Many assistive driving technologies on the market 

today are CVHA systems, including those that help the driver perform tasks involving the 

following: 

• Lateral movement 

• Forward movement 

• Reverse movement 

• Crash avoidance/severity reduction 

• Parking 

• Attention monitoring 

• Congestion assistant 

Each of these system types is described in the following sections and offered by a cross 

section of manufactures (Table 1). Note that the names applied in this literature review are 

used only to describe the systems and should not be taken as their official names.  
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Table 1. Available Assistive Driving Technologies 
 

 
Note: Sources up to 2015, “exp” is expected. 
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2.2.1 Lateral Movement  

There are two CVHA systems that support the vehicle’s lateral movement, and a different 

type of technology is applied to each of those functions. These systems have the potential 

to impact lane-changing characteristics and, particularly, gap acceptance for lane changing. 

2.2.1.1 Lane Keeping 

Lane-keeping systems monitor lane markings through built-in cameras located generally 

above the central rearview mirror, and use this information to determine vehicle position. 

This technology can provide two types of assistance: (1) a lane-departure warning (LDW) 

system that gives a warning to the driver when the vehicle begins to move out of its lane 

on freeways and arterial roads (unless a turn signal is on in that direction), and (2) a lane-

keeping assistant system that includes active intervention to help the driver maintain lane 

position through automated steering and/or braking. Figure 1 shows how a vehicle 

equipped with this system will provide automated steering to keep its lane. These systems 

are currently offered by many vehicle manufacturers (see Table 1) (“2014 Cadenza 

Features & Specs,” 2014; “2014 Lincoln MKS,” 2014; “Equipment highlights of the new 

Audi A8,” 2015; “Leading through Innovation,” 2014; “2014 LS Features - Safety,” 2014; 

“2014 Q70 Features,” 2014; “2014 RLX Features,” 2014; “2014 Taurus Features,” 2014; 

“2014 XTS Sedan Trims & Specifications,” 2014; “2015 K900 Features & Specs,” 2015; 

“2015 Volvo V60 Features & Options,” 2015; “Driver Assistance. Drive smarter, safer and 

with confidence.,” 2014; Ayapana, 2013; Boeriu, 2014; Boeriu, 2013; Lieberman, 2013; 

Timmins, 2012; Tingwall, 2014; Udy, 2014). 
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Figure 1. Lane-Keeping Assistant System Maintaining Vehicle Position in Lane  
(“Lane Keeping Assist: Always on the Right Track,” 2014) 

2.2.1.2 Lane Changing 

Lane-changing systems warn drivers of the presence of traffic in the target lane, where the 

target lane is indicated through turn signals or the driver actively changing lanes. This 

feature uses short-range radar sensors commonly located in the front and rear bumpers that 

monitor the zones to the sides and rear of the car. If the system detects a vehicle alongside 

the car in the blind spot area, it will display a warning symbol in or near the associated side 

mirror. If the driver ignores the warning and signals a lane change, further alerts and 

warnings are given inside the car. This system operates in high speeds and typically is not 

used in heavy inner-city traffic since the system would provide too frequent a warning. 

These systems are also known as blind spot detection systems (“2014 Cadenza Features & 
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Specs,” 2014; “2014 Lincoln MKS,” 2014; “Equipment highlights of the new Audi A8,” 

2015; “Leading through Innovation,” 2014; “2014 LS Features - Safety,” 2014; “2014 Q70 

Features,” 2014; “2014 Taurus Features,” 2014; “2014 XTS Sedan Trims & 

Specifications,” 2014; “2015 K900 Features & Specs,” 2015; “2015 Volvo V60 Features 

& Options,” 2015; “Driver Assistance. Drive smarter, safer and with confidence.,” 2014; 

Ayapana, 2013; Boeriu, 2014; Boeriu, 2013; Lieberman, 2013; Timmins, 2012; Tingwall, 

2014; Udy, 2014). 

2.2.2 Forward Movement 

Several CVHA systems also support the vehicle’s forward motion. These systems have the 

potential to significantly impact car-following and lane-changing characteristics, as they 

provide distance headway-control and brake-assist functions. 

2.2.2.1 Adaptive Cruise Control 

Adaptive cruise control monitors traffic ahead of the vehicle through radar or laser sensors 

and cameras, detects any vehicles in the same lane, and calculates and maintains the 

distance and speed of the vehicle relative to the leading vehicle. The driver can set the 

desired following distances and maximum speeds of the vehicle, as shown in Figure 2. 

When the vehicle approaches a slower vehicle ahead or when another vehicle pulls in front, 

the system automatically slows down the vehicle and maintains the desired distance. If the 

required rate of deceleration exceeds 30 percent of the vehicle’s maximum stopping power, 

visual and audible warning signals will prompt the driver to apply the brakes manually. 

ACC systems with laser sensors are typically lower in cost but have difficulty with adverse 

weather and non-reflective vehicles. ACC systems with radar sensors are typically higher 
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in cost but overcome the laser sensors’ drawbacks and can be hidden behind plastic. Most 

vehicle manufacturers offer ACC in their higher end vehicles (see Table 1) (“2014 Cadenza 

Features & Specs,” 2014; “2014 Lincoln MKS,” 2014; “Equipment highlights of the new 

Audi A8,” 2015; “Leading through Innovation,” 2014; “2014 LS Features - Safety,” 2014; 

“2014 Q70 Features,” 2014; “2014 RLX Features,” 2014; “2014 Taurus Features,” 2014; 

“2014 XTS Sedan Trims & Specifications,” 2014; “2015 K900 Features & Specs,” 2015; 

“2015 Volvo V60 Features & Options,” 2015; “Driver Assistance. Drive smarter, safer and 

with confidence.,” 2014; Ayapana, 2013; Boeriu, 2014; Boeriu, 2013; Lieberman, 2013; 

Timmins, 2012; Tingwall, 2014; Udy, 2014). 

 
Figure 2. Adaptive Cruise Control Showing Selected Maximum Speed and Time 

Gap Setting (Johnson, 2012) 

2.2.2.2 Front Cross-Traffic Monitoring 

Front cross-traffic monitoring systems use cameras and a color display screen to minimize 

danger of collisions when approaching crossings or T-intersections. If the system detects a 
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risk of collision, it boosts the braking power applied by the driver until it is sufficient to 

prevent a crash or reduce the amount of damage (i.e., see Section 2.2.4 Crash 

Avoidance/Severity Reduction). This feature is currently offered only by Mercedes-Benz 

(Ayapana, 2013; “Leading through Innovation,” 2014; Lieberman, 2013).  

2.2.3 Reverse Movement 

There are two types of CVHA systems that aid the vehicle’s reverse movement: (1) rear 

view camera and (2) rear cross-traffic monitoring. 

Available in most vehicle makes (“2014 Cadenza Features & Specs,” 2014; “2014 

Lincoln MKS,” 2014; “Equipment highlights of the new Audi A8,” 2015; “Leading 

through Innovation,” 2014; “2014 Q70 Features,” 2014; “2014 RLX Features,” 2014; 

“2014 Taurus Features,” 2014; “2014 XTS Sedan Trims & Specifications,” 2014; “2015 

K900 Features & Specs,” 2015), the rear view camera provides the driver with a camera 

view of the area behind the vehicle, which is activated as soon as the driver engages the 

reverse gear. This technology alone does not provide any automated braking or steering. 

The rear cross-traffic monitoring system uses cameras and a color display screen to 

minimize danger of collisions when performing a reverse movement, much like the front 

cross-traffic monitoring system (“2014 Cadenza Features & Specs,” 2014; “2014 Lincoln 

MKS,” 2014; “Leading through Innovation,” 2014; “2014 LS Features - Safety,” 2014; 

“2014 Q70 Features,” 2014; “2014 Taurus Features,” 2014; “2014 XTS Sedan Trims & 

Specifications,” 2014; “2015 K900 Features & Specs,” 2015; “2015 Volvo V60 Features 

& Options,” 2015; Udy, 2014). The two functions may exist separately or work together to 

provide a more comprehensive system. 
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2.2.4 Crash Avoidance/Severity Reduction 

These systems recognize imminent incidents through the use of cameras and on-board 

sensors, and alert the driver and/or control the vehicle to allow for crash avoidance or 

reduction in crash severity. There are three types of such crash avoidance/severity 

reduction systems: (1) forward collision warning (FCW), (2) brake assistant, and (3) active 

protection system. 

The forward collision warning system detects potential crashes and warns the 

driver without active intervention. The brake assistant takes the same information obtained 

for the FCW system and applies the appropriate braking force to lessen impact severity or 

potentially enable the driver to avoid the collision. This system can also work in 

conjunction with a cross-traffic monitoring system. The active protection system works 

together with the FCW and brake assistant systems. When an emergency stop is performed 

or if a crash is imminent, the system prepares the vehicle by closing its windows and 

sunroof, tightening seatbelts, and placing seats upright. At least one of these three crash 

avoidance systems is available in most vehicle makes (see Table 1) (“2014 Cadenza 

Features & Specs,” 2014; “2014 Lincoln MKS,” 2014; “Equipment highlights of the new 

Audi A8,” 2015; “Leading through Innovation,” 2014; “2014 LS Features - Safety,” 2014; 

“2014 Q70 Features,” 2014; “2014 RLX Features,” 2014; “2014 Taurus Features,” 2014; 

“2014 XTS Sedan Trims & Specifications,” 2014; “2015 K900 Features & Specs,” 2015; 

“2015 Volvo V60 Features & Options,” 2015; “Driver Assistance. Drive smarter, safer and 

with confidence.,” 2014; Ayapana, 2013; Boeriu, 2014; Boeriu, 2013; Lieberman, 2013; 

Timmins, 2012; Tingwall, 2014; Udy, 2014).  
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2.2.5 Parking 

These systems assist the driver in performing the parking task and are generally activated 

when the driver engages the reverse gear and when the vehicle speed is below 10 miles per 

hour. There are generally two system types: (1) a parking space finder that uses radar 

sensors and cameras to aid in searching adjacent areas for adequate parking spaces (“2014 

Cadenza Features & Specs,” 2014; “2014 LS Features - Safety,” 2014; “2015 K900 

Features & Specs,” 2015); and (2) the active parking assistant that aids in the search for a 

parking space, as well as automatically parking the vehicle (Figure 3). The active parking 

assistant system also differs slightly between vehicle manufacturers; some systems are 

equipped to fully park the vehicle without any driver input while other systems automate 

only the steering wheel but require the driver to control gear-shifting, accelerating, and 

braking (“2014 Cadenza Features & Specs,” 2014; “2014 Lincoln MKS,” 2014; 

“Equipment highlights of the new Audi A8,” 2015; “Leading through Innovation,” 2014; 

“2014 LS Features - Safety,” 2014; “2014 Q70 Features,” 2014; “2014 RLX Features,” 

2014; “2014 Taurus Features,” 2014; “2014 XTS Sedan Trims & Specifications,” 2014; 

“2015 K900 Features & Specs,” 2015; “Driver Assistance. Drive smarter, safer and with 

confidence.,” 2014).  
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Figure 3. Ford’s Active Park Assist (“Ford’s New Active Park 

Assist Aims to Curb Stress,” 2009) 

2.2.6 Attention Monitoring 

These systems monitor driver attention through facial analysis. They detect specific 

prolonged facial features that may suggest driver fatigue (such as closed eyes or not looking 

forward), as well as certain steering behaviors that suggest the onset of drowsiness. These 

systems are designed to consider several of these factors and conclude whether the potential 

for driver fatigue exists. If the system determines that the driver is fatigued, an alert is 

displayed that encourages the driver to stop for a rest. Currently BMW, Volvo, Mercedes-

Benz, and Lexus offer this driving feature (“Leading through Innovation,” 2014; “Driver 

Assistance. Drive smarter, safer and with confidence.,” 2014; “2014 LS Features - Safety,” 

2014; “2015 Volvo V60 Features & Options,” 2015). 

 



 

 
14 

 

2.2.7 Congestion Assistant 

These systems are very similar to the ACC system but are designed to operate during 

congested conditions. Like the ACC system, congestion assistant systems monitor traffic 

ahead and calculate the distance and speed relative to the leading vehicle. These systems 

relieve drivers from the task of congestion driving and take control of the vehicle’s braking, 

acceleration, and lane-keeping tasks. Several manufacturers require the driver to have a 

hand on the steering wheel, while others require no touch at all from the driver. These 

systems are beginning to enter the market with BMW and Mercedes-Benz as forerunners, 

and they are expected to reduce congestion, increase throughput, and improve safety 

(Ayapana, 2013; Boeriu, 2013, 2014; “Ford Develops ‘Traffic Jam Assist’ and New 

Parking Technology to Help Address Future Mobility Challenges,” 2012; 

Hammerschmidt, 2012; Lieberman, 2013; Max, 2012; Miersma, 2014; Stertz, 2012; 

Timmins, 2012). Figure 4 shows an Audi dashboard interface when congestion assistant is 

active. 

 
Figure 4. Audi’s Traffic Jam Assistant Interface 

(“Audi Traffic Jam Assistant Photos,” 2014) 
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2.2.8 Summary of CVHA Technology 

Table 1 summarizes the available CVHA technologies that currently exist. While this table 

is not exhaustive, and new systems are constantly entering the market, it does provide 

conceptually many of the existing systems. It is also clear that driving characteristics are 

rapidly changing and there exists a need to evaluate the impacts on the aggregate 

performance of the transportation system. 
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2.2.9 Full Automation 

Researchers have studied the topic of autonomous vehicles extensively all over the world. 

Shladover (2012a) summarized the European CVHA research in two different approaches: 

one emphasizes partial automation systems in mixed traffic, and the other emphasizes 

driverless settings in dedicated roadway infrastructure. LIVIC, a research laboratory in 

France, has been exploring vehicle automation and interactions with human drivers for 

more than 10 years. Germany’s research on vehicle automation is driven primarily by the 

automotive original equipment manufacturers (OEMs). The OEMS have taken the 

leadership role in vehicle innovation with the initial aim to promote their competitiveness 

in the high-end automotive market. As a result, Germany’s research on CVHA is more 

inclined to developing vehicle systems rather than infrastructure systems.  

The SARTRE project (Bergenhem, C.; Hedin, E.; Skarin, 2012), led by the United 

Kingdom and sponsored by the European Commission, was highly ambitious in the level 

of automation at the time. The project implemented an experiment with close-formation 

automated vehicle platoons under mixed-traffic environments, with the objective of 

enhancing lane capacity and reducing energy consumption. The platoon forms on a 

manually driven leading truck, followed closely by a fleet of automated vehicles. A safety 

concern in this approach is the platoon being highly dependent on the behavior of the 

leading truck. For each individual vehicle in the platoon, the lateral movement of entering 

or leaving the platoon is steered manually by the human driver, while the longitudinal 
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movement of following the lead truck is automated with the help of a comprehensive suite 

of sensor systems. 

Another project (Hoeger, R.; Amditis, A.; Kunert, M.; Hoess, A.; Flemish, F.; 

Krueger, H., Bartels, A.; Beutner, 2008) sponsored by the European Commission is 

HAVEit. This project developed an experiment scenario for four levels of automation and 

driver–vehicle interaction, ranging from full manual control to highly automated systems 

with longitudinal and lateral automated control. This project incorporated test vehicles with 

the existing commercial sensors and driving assistance systems in 2008 to collect test-drive 

data. A driving simulator study also tested human drivers’ interactions with the four levels 

of automation. SMART 64, which aims to investigate the strategies and challenges of 

vehicle automation systems, has described such automation concepts under three kinds of 

road environments. 

The KONVOI project (Wille, M.; Röwenstrunk, M.; Debus, 2008) conducted in 

Germany examined the impacts of a truck-platooning system on traffic flow and energy 

consumption under a public, mixed-traffic environment. The platoon formation of this 

project was somewhat similar to the SARTRE project, in which the leading truck was 

manually driven with a driver-assistance system. An automated system controlled the 

following trucks, although control could be taken over by a human driver in case of failure 

or emergency. As a measure of safety, the following trucks would perform hard braking if 

other vehicles attempted to pull in front of the truck. The results in this project showed 

some energy savings when the experiment was conducted on the test track. However, due 

to the disturbances from other vehicles to the traffic dynamics of the platoon, the study 

showed no energy savings when tested on the public highway. According to the summary 
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of Shladover’s report (2012a), “The minimum allowable gap between trucks was set at 10 

m (33 ft) based on analyses of the effects of cut-ins at highway entrance ramps, where hard 

braking of the following truck could be required.” When testing against emergency braking 

maneuvers with the first truck decelerating at 0.7 g (22.5 ft/s2), the second truck would 

close the gap from 33 ft to 16 ft but avoid the crash. Through that study, it is realized that 

successfully mixing the truck platoon with manual traffic will be imperative for efficient 

and stable traffic. As stated in the report, “The traffic dynamics generated by all the other 

vehicles imposed disturbances on the truck platoon that prevented it from smoothing out 

its driving profile enough to actually save significant fuel. The cut-ins required expanding 

and contracting the gaps within the platoon, by decelerating and then accelerating, 

subsequently interrupting constant-speed cruising.” 

2.3 CVHA FIELD TESTS & EXPERIMENTS 

Several field tests and experiments have been performed in the past to evaluate the use of 

CVHA technology on vehicles and drivers. The results of these studies have shown 

promise, and a few examples are discussed in further detail. 

2.3.1 Adaptive Cruise Control 

In 1998, Fancher et al. performed a field operational test on ACC technology. A fleet of 

10 passenger cars was equipped with ACC and given to 108 volunteer drivers to use as 

their personal cars for two or five weeks. The central finding was that ACC was remarkably 

attractive to most drivers. Participants frequently utilized the system over a broad range of 

conditions and adopted tactics that prolonged the time span of each continuous 
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engagement. Moreover, participants were completely successful at operating the ACC over 

some 35,000 miles of system engagement. However, Fancher et al. also observed that there 

were subtle issues relating to the shared-control nature of ACC driving (i.e., where drivers 

still need to have steering control while the ACC controls speed and headway) whose long-

term safety and traffic implications were not yet known (Fancher et al., 1998).  

2.3.2 Forward Collision Warning 

In 2011, Forkenbrock et al. examined how distracted drivers respond to forward collision 

warning alerts in a crash-imminent scenario. A diverse sample of 64 drivers was recruited 

to participate. The researchers asked each participant to follow a moving leading vehicle 

within the confines of a controlled test course and, while attempting to maintain a constant 

headway, to perform a series of four tasks intended to divert his or her attention briefly 

away from a forward-viewing position. With the participant fully distracted during the final 

task, the leading vehicle was abruptly steered out of the travel lane, revealing a stationary 

vehicle in the participant’s immediate path (a realistic-looking full-size balloon car). At a 

time to collision of 2.1 seconds from the stationary vehicle, the participant was presented 

with one out of eight FCW alerts. The results found that the haptic seat belt alert elicited 

the most effective crash avoidance performance. Other FCW alerts included a visual-only 

alert; an auditory-only alert; combinations of visual, auditory, and/or haptic seat belt alerts; 

as well as a no-alert reference scenario (Forkenbrock et al., 2011).  
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2.3.3 Cooperative Adaptive Cruise Control 

In 2010, a study was performed by the University of California at Berkeley to evaluate 

drivers’ choices of following distances while operating a vehicle with cooperative ACC 

(CACC). The CACC system, an enhancement to the already existing ACC system, further 

enabled by wireless V2V communication, was installed on two test vehicles. The results 

show that drivers of the CACC selected vehicle-following gaps that were approximately 

half of the length of the gaps they selected when driving the ACC system; the latter gaps 

were comparable to vehicle-following gaps in congested highway driving. The study also 

found that male drivers were more likely to choose shorter gaps in both ACC and CACC 

driving. In both cases, the likelihood of drivers choosing shorter gaps will contribute to 

highway lane-capacity increases (Nowakowski, Shladover, & Cody, 2010). A similar study 

in 2014 also found that the use of CACC resulted in reduced gap variability, indicating the 

potential for CACC to attenuate disturbances, improve highway capacity, and improve 

traffic flow stability (Milanés et al., 2014). 

From these studies, different vehicle-following gaps are seen between CACC and 

ACC. Drivers’ willingness to travel shorter time gaps with CACC is expected to increase 

throughput. However, a potential negative implication is that shorter time gaps may reduce 

time for corrective actions due to poor judgment (Jones, 2013). In the Atlanta context, 

existing vehicle-following gaps are already short and it would be interesting to see whether 

these gaps can be made uniform across all vehicles (thereby improving traffic throughput), 

and/or if drivers would choose even shorter gaps. 
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2.3.4 Parking Assist Technologies 

In 2010, Reimer et al. evaluated driver reactions to new vehicle parking assist technologies 

developed to reduce driver stress. Their study used heart rate as an objective physiological 

arousal measure, along with more traditional self-reported ratings to evaluate the extent to 

which two particular technologies (i.e., active park assist [APA] and cross traffic alert 

[CTA]) impact driver stress levels. After becoming familiar with the technology, 

participants rated their stress levels significantly lower when using APA, and recordings 

of heart rates provided confirmation of a lower state of stress. Mean self-report and heart-

rate data suggested some reduction in stress levels with CTA, as well, though these 

differences were not statistically significant. Overall, the general rating of APA and CTA 

were positive with 76.1 percent of participants stating that the system makes it easier to 

park (Reimer, Mehler, & Coughlin, 2010). 

2.4 DRIVER SIMULATOR STUDIES 

As technology continues to push toward more complex assistance and automation, there is 

a challenge, a risk, and a chance for human factors to either contribute to, or help to handle, 

the complexity of tomorrow (Flemisch, Kelsch, Löper, Schieben, & Schindler, 2008). 

Consequently, extensive research has been done using driver simulators to understand the 

interaction between humans and machines in the area of vehicle automation. A number of 

studies have used driver simulators simply as a tool to find the most effective combination 

of driver alerts. Other studies have used driver simulators to gauge the impacts that vehicle 

automation will have on driver acceptance and performance.  
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2.4.1 Driver Acceptance 

As stated in a 2005 study by Biester and Bosch (Biester & Bosch, 2005), the interaction 

between human and machine will change fundamentally within the next decades. The 

technological sophistication and complexity of systems in the intelligent transportation 

sector is increasing, propelling the need for further understanding of driver acceptance of 

such technologies. An understanding of driver acceptance will inform the collective 

knowledge regarding driver and machine interactions, as well as the assumptions about the 

market penetration rates of future CVHA technology.  

Flemisch et al. (2008a) were among the first to point out that while assistance and 

automation can have benefits, such as improved safety or lower driver workload, they may 

also come with challenges regarding the interplay between the driver and the technology. 

In their evaluation of different human–vehicle interfaces for assistance and automation, 

Flemisch et al. found that the haptic design of the interface was well accepted as useful, 

easy to understand, safe, and pleasant compared to manual driving. Forkenbrock et al. 

(2011) found the same result in their field experiment of forward collision warning, and 

Flemisch et al. (2008a) also found a high acceptance of the fully automated condition. 

Similar positive findings about driver acceptance were found by Biester and Bosch 

(Biester & Bosch, 2005). They conducted a driving simulator experiment in which the 

driver had to perform several standardized overtaking maneuvers on a two-lane German 

highway, either manually, cooperatively, semi-automatic, or fully automatic in a between-

subjects design. In terms of cooperative automation in vehicles, the participants indicated 

that they accepted the general concept, though no extremely positive feedback was 

received. Compared to manual, semi-automatic, and fully automatic driving, participants 
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indicated that they were most aware of the situation and most trusting of cooperative 

driving—a finding similar to that of Flemisch et al. (2008a).  

Encouragingly, positive results can be found with not only ACC systems but with 

other CVHA systems, as well. Brookhuis et al. (2009) and Van Driel et al. (2007) found in 

their driver simulator experiments of a congestion assistant prototype that participant 

acceptance levels were generally positive of the system. Reimer et al. (Reimer et al., 2010) 

likewise found that participants had positive outlooks on parking-assist technologies. 

While most studies have found clear positive results on driver acceptance of CVHA 

technology, Eriksson et al. (2013) did not have such straightforward findings. They 

investigated, using a driver simulator experiment, whether drivers more readily accepted 

either rumble strips or a lane-departure warning system in unintentional lane departures. 

The results indicated that while participants showed more satisfaction from using the LDW, 

they also showed more trust in the rumble strips. An interesting finding in this study was 

that about 25 percent of participants thought it would be good to present both types of 

warning in parallel, suggesting that they prefer a combination of visual, auditory, and 

haptic alerts—a finding that was also observed in other studies (Flemisch, Kelsch, Loper, 

et al., 2008b; Forkenbrock et al., 2011).  

2.4.2 Mental Workload 

An understanding of the impacts of CVHA technology on the mental workload of drivers 

is also critical to ultimately successful implementation. The majority of studies done in this 

area using driving simulators has consistently shown decreases in the mental workload of 

participants when using some type of CVHA technology. In a study that evaluated 



 

 
24 

 

participant stress levels when utilizing an active park assistant, Reimer et al. (2010) found 

that heart rate readings decreased significantly when using the CVHA, confirming a lower 

state of stress. In another study that evaluated driver mental workload and acceptance when 

driving with a congestion assistant prototype, Brookhuis et al. (2009) found that 

participants’ mental workload with the CVHA system was lower when driving in 

congestion but higher in the approach phase toward the congestion. This suggests that 

increasing familiarity and trust of the technology could reduce the latter finding as well, 

through a higher level of automation that also takes control of driving in the approach to 

congestion. This is suggested by Flemisch et al. (2008b) where they found that the effort 

that participants reported (i.e., workload) decreases with higher automation levels. In 

conditions of manual and assisted driving, the mental demand of the driving task in 

combination with secondary tasks is relatively high in comparison to fully automated 

driving.  

2.4.3 Driver Performance 

One Swedish study attempted to evaluate driver performance using a driver simulator. In 

their study involving lane-departure warning systems and rumble strips, Eriksson et al. 

(2013) collected four measures to evaluate driver performance: (1) response completion 

time—the time from when warning was given to the completion of a response maneuver; 

(2) time to back in lane—the time from when warning was given to when all wheels are 

back in the lane; (3) lane exceedance area—the amount of road surface exceeded from the 

driving lane; and (4) standard deviation of lateral lane position. The study yielded some 

mixed results: the mean response completion time was longer for participants driving with 
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LDW than for participants driving with only roadway rumble strips, while the remaining 

three measures were not significantly different between driver groups. Ultimately, the 

authors found no major overall differences in driving performance between the uses of 

LDW and rumble strips, and that more research is needed in this area for an improved 

understanding.  

2.5 MICROSCOPIC SIMULATION STUDIES 

The most current tool in modeling and evaluating traffic flow and operations is the 

microscopic traffic simulation model. However, current traffic simulation software is based 

on algorithms that were not designed to address most CVHA technologies. To properly 

analyze the traffic impacts of these systems, changes and additions to existing simulation 

models have to be implemented to incorporate the elements of driver behavior and CVHA 

systems design that could affect traffic flow dynamics (Elefteriadou et al., 2011).  

This section discusses work that has been conducted previously to evaluate the 

impacts of CVHA systems on traffic flow and safety using traffic simulation models. Most 

of the research undertaken using microscopic simulation models has been on ACC and has 

focused on analyzing its impact on traffic flow. However, as advancements in the 

automated vehicle technology occur, research has begun to explore other technologies and 

applications. 

2.5.1 Adaptive Cruise Control 

In 1999, Minderhoud & Bovy conducted a simulation study to assess the impacts of 

intelligent cruise control (ICC), an early ACC prototype, on roadway capacity. They 
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investigated 10 different ICC designs and compared those to a base without-ICC reference, 

and studied several penetration rates. Capacity gains of 4 percent were found to be possible 

at a headway setting of 1.0 second, while no significant changes were observed for any of 

the ICC designs at a headway setting of 1.2 seconds. In that study, headway setting had a 

large impact on roadway capacity, especially at penetration rates above 20 percent.  

Continuing on the work performed in that study, Hoogendoorn & Minderhoud 

(2001; 2002) conducted further studies in the early 2000s. One of the CVHA systems 

studied was autonomous intelligent cruise control (AICC), another early ACC prototype. 

They found similar results in that AICC had positive effects on bottleneck capacity at all 

penetration rates and bottleneck layouts. However, the extent of the improvements and the 

optimal penetration level were dependent on the considered bottleneck layout. This study 

likewise found that headway setting was an important factor in evaluating impacts on 

roadway capacity.  

Wang and Rajamani (2004) specifically evaluated the importance of headway 

settings with respect to capacity impacts of ACC vehicles. They focused on a common 

ACC systems design characteristic where a constant time-gap is maintained between 

vehicles. However, they developed in their study a new inter-vehicle spacing policy in 

which the inter-vehicle spacing is a nonlinear function of vehicle speed. This new variable 

time-gap policy was shown through traffic simulations to lead to improved traffic flow and 

an increased highway capacity.  

In 2007, Kesting et al. (Kesting, Treiber, Schönhof, & Helbing, 2007; Kesting, 

Treiber, Schonhof, Kranke, & Helbing, 2007) found additional positive results with the use 

of ACC. At penetration rates as low as 10 percent, the maximum travel-time delay of 
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individual drivers can be reduced by about 30 percent and the cumulated time delay by 

50 percent. The ACC vehicles also significantly reduced the maximum queue length. 

Ultimately, their study showed that even at small penetration rates, there was a marginal 

increase in free and dynamic capacity leading to a drastic reduction of traffic congestion, a 

finding that supports those of Minderhoud & Bovy (1999), and Hoogendoorn & 

Minderhoud (2001; 2002).  

However, not all evaluations of ACC have yielded positive results. Shladover et al. 

(2012) used AIMSUN as a simulation tool to model ACC and estimate its effect on 

highway capacity with varying market penetration rates. Their results show that 

conventional ACC is unlikely to produce any significant change in highway capacity 

because drivers are only comfortable with the ACC system at gap settings similar to the 

gaps they choose when driving manually. Similarly, Davis (2004) found that at high 

speeds, congestion occurs for penetration rates of 10 percent or less. Positive impacts are 

only found starting at a 20 percent penetration rate, while a 50 percent rate only yields 

modestly reduced travel times and larger flow rates. Finally, Elefteriadou et al. (2011) also 

concluded that ACC could significantly increase speeds for congested conditions even at a 

market penetration rate of 20 percent, but that bottlenecks can be created at locations where 

a significant number of drivers are likely to turn their ACC off.  

While more studies are needed to determine the optimal headway/gap settings, 

based on the available studies the potential benefits of ACC appear to be more definite at 

higher market penetration rates. 
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2.5.2 Congestion Assistant 

A few researchers have looked also at evaluating a technology similar to ACC for use 

during congested conditions: the congestion assistant or traffic jam assistant. As early as 

1999, Minderhoud & Bovy included a special stop-and-go design in their study of the 

impact of intelligent cruise control. However, they found this design not to improve the 

traffic-flow quality. Extensive work on a congestion assistant prototype has been done by 

Van Driel and Van Arem (Van Driel & Van Arem, 2008; Van Driel, 2007). In those studies, 

they adopted the ITS Modeler as a traffic simulation tool and modeled a congestion 

assistant system consisting of a stop-and-go feature and an active pedal system that 

supports the braking process during the approach to congestion. Several different 

combinations of the congestion assistant were implemented, differing in headway settings 

and distance-to-congestion settings. These were assessed in a four-lane roadway segment 

with a left lane drop scenario. Results showed that the average delay time could be reduced 

by 30 percent with a 10 percent penetration rate and up to 60 percent with a 50 percent 

penetration rate. The stop-and-go function was found to increase hard braking due to its 

shorter time gaps, but the active pedal function reduced the amount of hard braking in the 

approach of congestion, thereby making a safer transition to congested driving. 

2.5.3 Vehicle-to-Vehicle and Vehicle-to-Infrastructure Communications 

CVHA technologies are not only sensor-based technologies; they can also be supported by 

V2V and V2I technology (Shladover, 2008). To optimize and achieve full vehicle 

automation, connectivity needs to be achieved between vehicles as well as with 

infrastructure. The convergence of communication- and sensor-based technologies has the 
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potential to obtain better safety, mobility, and self-driving capabilities than either 

technology could achieve on its own (Silberg et al., 2012). The following subsections 

review some of the simulation research undertaken to evaluate V2V- and V2I-supported 

CVHA systems. 

2.5.3.1 V2V-supported CVHA 

While many CVHA systems can be enhanced with use of V2V communication, most 

studies that have been performed on V2V-supported CVHA have been undertaken on 

cooperative adaptive cruise control—an enhancement of the ACC system by which 

vehicles are enabled to wirelessly communicate with other vehicles.  

2.5.3.1.1 Cooperative Adaptive Cruise Control  

Researchers have found mixed results regarding CACC. Using MIXIC as their simulation 

software, Alkim et al. (2000) found that after the introduction of CACC, the speed variance 

of vehicles in one lane and the speed difference between lanes were decreased—a finding 

that is also supported by Wang et al. (2014). However, Alkim et al. also found that roadway 

capacity decreased as CACC penetration rates were decreased, which contradicts the 

expectation that roadway capacity would be improved when vehicles use shorter, more 

uniform headways. However, it was unclear whether this finding was a result of CACC or 

a limitation of the mandatory lane-change model of MIXIC. Similar findings were found 

by Van Arem et al. (2006) in their MIXIC evaluation of CACC. Although their results also 

indicated that CACC has the ability to improve traffic flow, the extent of improvement 

depends heavily on the specific traffic flow conditions and the CACC penetration rate. 
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They concluded that the introduction of CACC is unlikely to produce enhancements to 

highway capacity. 

In contrast, Shladover et al. (2012) found that CACC could substantially increase 

highway capacity when it reaches a moderate to high market penetration rate. Their effort 

assumed that the higher dynamic response capabilities would give drivers confidence that 

they could follow safely at shorter gap settings. They found that the maximum lane capacity 

at full penetration of CACC could be increased to 4000 vehicles per hour. In addition, the 

capacity benefits of CACC can be accelerated, or obtained at somewhat lower market 

penetrations, if the rest of the non-CACC vehicle population are equipped with vehicle 

awareness devices (VADs), allowing them to serve as lead vehicles for CACC following 

vehicles. A VAD is a device that provides basic GPS coordinates, vehicle speeds, and 

heading information. 

Other studies have shown that capacity benefits from CACC can be obtained when 

the system is applied during specific situations. For example, a specific application of 

CACC used in merging situations (i.e., ‘cooperative merging’) has been found to improve 

throughput and increase distance traveled in a fixed time (Davis, 2007). Davis found that 

if an on-ramp demand is moderate, cooperative merging produces significant improvement 

in throughput (e.g., 20 percent) and increases up to 3.6 km in distance traveled per 

600 seconds for a 50 percent penetration rate. Similarly, when CACC vehicles were given 

priority access to HOV lanes, Arnaout and Bowling (2014) found that highway capacity 

could be significantly improved with a penetration rate of as low as 20 percent.  

To obtain the desired benefits from such a system, Calvert et al. (2012) investigated 

what the theoretical optimum headway setting would be for a CACC system. They found 
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that 0.9 second is the optimum number, although the default setting of the CACC system 

they modeled was 1.2 seconds. Comparison of the network performance between the two 

time headways shows a large improvement for intermediate CACC penetration rates of 

50 and 75 percent. At 100 percent penetration, the default setting seemed to have resolved 

all congestion and, hence, further improvement was not possible.  

2.5.3.1.2 Other V2V Applications 

With recent advancements in vehicle positioning and wireless communication 

technologies, such as the increasing availability of real-time traffic information, many 

opportunities to develop more sophisticated traffic control and information strategies are 

present. For instance, when an upstream incident occurs, drivers could have the potential 

to obtain travel-time information that uses the distance from their current location to the 

incident location and, thus, recognize that their future travel plans are controllable. To this 

goal, Yeo et al. (2010) proposed a V2V hazard alert system and showed that the 

deployment of such a system has the potential to mitigate traffic congestion with higher 

penetration rates if it can provide lane-specific information. The feasibility of this concept 

was further explored by Rim et al. (2011) wherein they proposed a methodology for 

estimating lane-level travel times. Their analysis showed that a 6 to 8 percent error rate is 

achievable with at least a 20 percent market penetration rate for a representative section’s 

travel time, showing great potential for this particular application of V2V communications.  

All these potential enhancements to the transportation system do come with 

limitations, however. Proposed systems rely on either onboard range sensors or V2V 

communications to obtain pertinent information about surrounding vehicles and to decide 

on appropriate acceleration or deceleration commands, and a critical element that has been 
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ignored in the study of these innovations is delay in data acquisition. Liu et al. (2006) 

attempted to quantify the safety effects created by this delay through the use of traffic 

simulation. Their results indicated that this delay can affect the operation of these CVHA 

systems, particularly when delays result in the use of information older than a certain 

threshold, found in this case to be 0.5 second.  

2.5.3.2 V2I-supported CVHA 

Research also has shown the great potential of V2I systems in not only improving traffic 

conditions and safety, but also positively influencing emissions and other environmental 

concerns.  

In 1999, Hogema evaluated an early model of ACC combined with roadside-

vehicle communication in MIXIC. The roadside system was designed to perform a 

homogenizing function; that is, when traffic volume increases and speed decreases, the 

beacon starts to influence traffic upstream to try to create a homogeneous, steady traffic 

stream. This system should prevent a breakdown in traffic for as long as possible. The 

study found that as the penetration level of V2I-equipped vehicles and roadside systems 

increases, traffic could become safer and smoother through decreases of the mean speed, 

speed standard deviation, and percentage of critical time to collisions.  

Another investigation of V2I systems with positive results was conducted by Lee 

et al. (2011). They defined V2I systems as cooperative vehicle infrastructure systems 

(CVIS), and their goal was to investigate the safety aspects of a CVIS-based urban traffic 

control system. They performed a simulation-based case study on a hypothetical arterial 

consisting of four intersections with four traffic congestion cases covering high- to low-

volume conditions. When compared to coordinated actuated control, the CVIS control 
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dramatically improved the urban corridor, where between 92 and 100 percent of delay time 

reductions were estimated for the volume of cases tested. However, taking into 

consideration that these improvements were obtained by ensuring high-speed crossing at 

intersections, the CVIS control would likely result in more dangerous situations as 

indicated by the reduction of the average time to collision (TTC) and post-encroachment 

time (PET) by 0.69 and 1.94 seconds, respectively. Nonetheless, the CVIS control reduced 

the frequency of such dangerous situations where the number of rear-end conflict events 

was decreased by 58 percent under the CVIS-based control, indicating safer driving 

conditions.  

Finally, Wu et al. (2010) discovered through modeling in PARAMICS that V2I 

systems could also reduce vehicle fuel consumption and CO2 emissions by up to 40 percent. 

They tested two types of V2I systems: (1) a stationary system based on roadside 

infrastructure, such as changeable message signs (CMSs), and (2) an in-vehicle system 

much like a V2I-supported CVHA system. Simulation results showed that the in-vehicle 

system offered greater benefits in terms of fuel consumption and emissions in most of their 

tested cases. 

Although there is great potential in V2I systems as shown through these studies, 

these proposed systems would be affected by the quality of wireless communications (Lee 

et al., 2011; Y. Liu et al., 2006). Thus, the aspect of communication must be incorporated 

in future research for a more realistic assessment of benefits.  
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2.5.4 Speed Limiters 

Speed limiters have also received some attention in the academic world with their potential 

to control maximum speeds of vehicles so equipped, and the results have been positive. 

Simulation-based evaluations of speed limiters have shown their potential at reducing 

average traffic speeds, suppressing momentary high speeds in traffic, and reducing speed 

variation, which in turn is likely to have a beneficial impact on safety (Liu & Tate, 2004; 

Toledo et al., 2007). Additionally, while speed limiters reduced excessive traffic speeds, 

the researchers found that they did not affect average journey times. In particular, Liu and 

Tate (2004) found that the total vehicle-hours travelling at speeds below 10 km (6.2 mph) 

per hour were not changed, indicating that the speed control did not induce more slow-

moving queues to the network. A statistically significant reduction in fuel consumption 

also was found with 100 percent speed limiter market penetration (Liu & Tate, 2004).  

2.6 CONCLUSIONS 

There are several CVHA systems already available, particularly in high-end vehicles, by 

several manufacturers. While these systems have significant potential to reduce driver 

stress, alleviate congestion, and improve traffic safety, it is not clear how they will be 

operated on the existing infrastructure, how they will impact traffic congestion and safety, 

and how state DOTS and other transportation agencies should incorporate this changing 

vehicle and driver environment in its planning, design, and construction process.  

Research has been conducted from as early as the late 1990s to gain better 

understanding of the public’s acceptance and the potential benefits and limitations of these 

systems. Findings include the following: 
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• A number of driver simulator studies have found that participants/drivers have 

highly accepted these systems.  

• Driver simulator studies also have found that participants’ mental workloads are 

reduced when using these systems, especially during congestion, and they are 

further reduced as automation levels are increased. During approaches to 

congestion, however, participants’ mental workload was observed to be higher 

when driving with a CVHA system.  

• Traffic simulation studies have found mixed results with respect to the 

operational impacts of adaptive cruise control. However, when benefits have been 

observed, they are generally in both low and high market-penetration levels of 

ACC. More importantly, these studies have found that the potential capacity 

benefits are driven by the headway/gap times that the ACC-equipped vehicles are 

using during following conditions. 

• Since cooperative adaptive cruise control enables vehicles to communicate with 

one another, this system has the potential to smooth traffic and lower 

headway/gap settings over that of ACC (although research has shown mixed 

results as well).  

• Capacity benefits from CACC can be obtained from applying specific strategies 

instead of waiting for a general market penetration threshold, such as requiring 

CACC during merging situations (i.e., cooperative merging) and dedicating lanes 

for equipped vehicles (e.g., similar to HOV).  
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• Optimal headway/gap settings need to be determined and could be a potential 

area where DOTs and other transportation agencies can provide guidance and 

regulation. 

• With the advancement of vehicle positioning and wireless communication 

technologies, V2V and V2I applications also show great potential in further 

improving traffic conditions with many opportunities to develop more 

sophisticated traffic control and information strategies. However, a limitation to 

this would be delay in data acquisition since all these proposed systems rely 

heavily on dependable data.  

Additional study is necessary to further researchers’ understanding of the impacts of 

CVHA technology: for instance, research to replicate and confirm previous findings that 

headway/gap setting is an important factor that could influence potential capacity benefits. 

More importantly, however, since CVHA systems are already available, studies should be 

conducted to determine and evaluate strategies to be implemented to optimize the benefits 

of these systems as they arrive. Strategies that should be evaluated include: (1) using a 

dedicated lane similar to an HOV lane, (2) providing regulations as to allowable 

headway/gap settings, and (3) providing regulations as to when and where CHVA systems 

should be active. Critical to all of these studies will be modeling assumptions and 

calibrations. The next chapters will explore these issues.  
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3 Simulat ion Development  

3.1 DIFFERENCES BETWEEN CVHA AND MANUALLY DRIVEN 

VEHICLES 

For this effort, the research focuses on how CVHA technologies may affect traffic 

operations, efficiency, and safety. This report also specifically highlights automated or 

autonomous vehicles, as this technology represents the ultimate CVHA application; the 

human driver is removed entirely from the CVHA vehicle while interaction is maintained 

with other manually driven vehicles on the roadway. Chapter 4 presents a simulation-based 

case study for the autonomous vehicle in such a mixed environment, built on the efforts 

presented in this chapter.  

To prepare for the case study in Chapter 4, this chapter first considers the 

capabilities of commercially available models to simulate CVHA and autonomous 

vehicles. Commercially available microscopic traffic simulation packages employ models 

developed and calibrated to represent the behavior of human drivers. While many of the 

variables and behaviors in those models may be used without adjustment when modeling 

CVHA and autonomous vehicle applications, others need to be adjusted to account for the 

difference between these technologies and human-driver behavior. This research utilizes 

the VISSIM microscopic simulation model. Consequently, the traffic-flow model and 

parameters discussed are specific to VISSIM. However, an approach similar to that 

presented within this chapter could be taken with other commercially available models. 

This chapter begins with a description of observations and assumptions regarding the 

differences in driving behavior between human-driven vehicles and automated vehicles. 
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The chapter then presents the results of a study that determines the parameters that should 

be considered for calibration, to configure a VISSIM model to reflect both human-driven 

and automated vehicles. 

3.1.1 Observations and Assumptions 

The most significant aspect of a simulation influencing results is the underlying traffic-

flow or car-following model. VISSIM uses the Wiedemann car-following model to 

simulate traffic. The basic concept of the Wiedemann car-following model, according to 

the VISSIM 5.20 User Manual (PTV Vision, VISSIM 5.20 User Manual., 2009), is that 

there are four driving states: free driving, approaching, following, and braking. The driver 

switches from one mode to another when parameters such as driver-desired speed and 

safety distance reach given thresholds. These thresholds vary from one driver to another, 

one of the means by which VISSIM introduces stochasticity into its modeling framework. 

As a human driver cannot perceive the exact speed and acceleration of the lead vehicle, an 

oscillation between thresholds will simulate a human driver’s behavior. Figure 5 shows 

how the current driving state of a following vehicle is determined by the relative difference 

in speed and distance with the lead vehicle. In this figure, the zones labeled “no reaction,” 

“reaction,” “unconscious reaction,” and “deceleration” correspond to the driving states of 

free driving, approaching, following, and braking, respectively. 
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Figure 5. Psychophysical Car-Following Model by Wiedemann (1974) 

(Source: VISSIM 5.20 User Manual, 2009)  

3.1.1.1 Safety Distance 

Two different Wiedemann car-following models, based on the concept in Figure 5, are 

available in VISSIM. The Wiedemann 74 model is generally suitable for urban traffic, 

while the Wiedemann 99 model is generally suitable for freeway traffic. As the case study 

in Chapter 4 concentrates on freeway operations and capacity, the Wiedemann 99 model is 

discussed here. Both models compute the safety distance using the following equation: 

𝑑𝑑𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐶𝐶𝐶𝐶0 + 𝐶𝐶𝐶𝐶1 ∗ 𝑣𝑣 

where, CC0 (standstill distance) represents the desired distance between stopped vehicles 

and CC1 (headway time) represents the driver-desired time gap when the vehicle is 

moving. The safety distance (dxsafe) is defined as the minimum distance a driver will keep 
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while following another car (VISSIM 5.20 User Manual, 2009). A vehicle maintaining this 

safety distance is in the car-following driving state. When the distance between the leading 

and following vehicles drops below this value, the following vehicle will go into the 

“braking” driving state. The higher the value of CC0 and CC1, the more conservatively a 

driver reacts to the lead vehicle. The safety distance (and thus CC0 and CC1) tend to be 

critical parameters when considering the influence of driver (or autonomous/CVHA 

vehicle) behavior on the capacity of a roadway. These two parameters belong to the set of 

10 car-following parameters of the Wiedemann 99 model. Other parameters in this set 

influence the acceleration and deceleration characteristics, how much oscillation is allowed 

in maintaining the safety distance, etc. A full list of parameters may be found in Section 

3.2, later in this chapter.  

3.1.1.2 Lane Changes 

Lane-changing behavior logic can also significantly influence results in a simulation, and 

is often one of the most difficult aspects of a model to calibrate. The lane-changing logic 

in VISSIM (Willmann, 1978; Sparmann, 1979) comprises two kinds of lane changes: 

necessary lane changes and free lane changes (VISSIM 5.20 User Manual, 2009). Lane 

selection is the first step of a lane-changing maneuver. In a necessary lane change, the 

desired lane is identified as the one that allows the driver to follow the intended route with 

the least number of necessary lane changes. In a free lane change, the desired lane is 

identified as the lane that provides either a higher speed or a better interaction situation 

(Fellendorf & Vortisch, 2010). In a vehicle’s lane-changing maneuver, decisions on gap 

acceptance as well as cooperative merging are involved in seeking the best chance for a 

successful lane change.  
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Both of these criteria can be calibrated. The Wiedemann model has been well 

calibrated for human driver lane changing and is generally accepted for most traffic 

simulation applications. However, the method by which a CVHA vehicle, in particular an 

autonomous vehicle, selects lane-change opportunities may not be well represented by 

current calibrations. For instance, autonomous vehicles’ reaction to traffic relies on more 

precise sensors and the capability of instantaneous reaction to maintain a following 

distance—a capability that is nearly impossible to achieve in a human-driven vehicle. 

However, the autonomous vehicle, when compared to human drivers, may not have the 

same anticipatory abilities and its aggressiveness (or required safety) in merging may 

differ. While some level of following distance variability is necessary for passenger 

comfort (otherwise the trip would be a constant oscillation between acceleration and 

braking), the driving behavior differences between autonomous/CVHA vehicles and 

human drivers will require new calibrations that could significantly influence model 

results.  

3.1.2 Adapting Existing Microscopic Simulation Models 

With increased adoption of CVHA technologies, simulations capable of modeling mixed 

fleets of manually driven, CVHA-assisted, and automated vehicles are becoming 

increasing necessary. To reflect these new driving characteristics, it is desirable to develop 

a methodology for calibrating existing microscopic simulations. The first step in such a 

calibration is to determine the model parameter set that affects traffic flow. It is then 

necessary to determine which of these parameters may need calibration to reflect CVHA 

and autonomous vehicles’ operation. It is critical to realize that, at the current time, it may 
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not be possible to definitively calibrate these parameters, as new CVHA technologies are 

continually being introduced and updated, and the behavior of autonomous vehicles 

remains for the most part unknown. Until these technologies are adequately standardized, 

future studies will be limited to sensitivity analysis on these parameters, to determine the 

range of potential facility operations as these vehicles are introduced into the fleet.  

3.2 VARIABLES IMPACTING MODEL PERFORMANCE 

3.2.1 Method 

To test which parameters impact model performance, the researchers developed a test 

scenario for a Monte Carlo simulation by varying parameter values, consistent with 

previous research (Miller et al., 2012). In these tests, travel time and capacity were utilized 

as critical measures of effectiveness (MOEs) to determine influence of a parameter on the 

model. 

The modeled test site consisted of a 12.5-mile, three-lane freeway segment with an 

on-ramp at a point 9.5 miles downstream of the beginning of the section (Figure 6). A 

650-ft acceleration lane connected the on-ramp with the mainline, after which the 

acceleration lane dropped. In Figure 6, “EB-Long,” “EB-Short,” “Ramp-Long,” and 

“Ramp-Short” refer to sections over which performance measures were collected (Table 

2).  
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Figure 6. Study Site Configuration 

 

Table 2. Study Section Definitions 
MOE Section 

Name Starting Point Ending Point 

EB-Long Mainline entrance Mainline exit 

EB-Short 1000 ft upstream of merge point 
on mainline 

1000 ft downstream of merge 
point on mainline 

Ramp-Long On-ramp entrance Mainline exit 

Ramp-Short 1000 ft upstream of merge point 
on on-ramp 

1000 ft downstream of merge 
point on mainline 

 

A list of 29 parameters in VISSIM’s car-following and lane-changing model were selected 

as the initial input set (Table 3) (Miller et al., 2012). 
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Table 3. List of Parameters Studied 
# Parameter Initial Range 

1 Desired speed distribution range (avg. 65 mph) 
0.0–15.0 mph 

2 Look ahead distance min. (ft) 0–900 ft 

3 Look ahead distance max. (ft) 500–1000 ft 

4 Number of observed vehicles 2–8 veh 

5 Look back distance min. (ft) 0–1000 ft 

6 Look back distance max. (ft) 0–1000 ft 

7 CC0 standstill distance (ft) 0–15 ft 

8 CC1 headway time (s) 0–5 s 

9 CC2 following variation (ft) 5–50 ft 

10 CC3 threshold for entering ‘following’ −25–0 

11 CC4 negative following threshold −5–0 

12 CC5 positive following threshold 0–5 

13 CC6 speed dependency of oscillation 0–15 

14 CC7 oscillation acceleration (ft/s2) 0–5 ft/s2 

15 CC8 standstill acceleration (ft/s2) 0–15 ft/s2 

16 CC9 acceleration at 80 km/hr (ft/s2) 0–15 ft/s2 

17 Maximum deceleration (own) −20–0 ft/s2 

18 Maximum deceleration (trailing) −20–0 ft/s2 

19 Accepted deceleration (own) −6–0 ft/s2 

20 Accepted deceleration (trailing) −6–0 ft/s2 

21 Reduction rate (as ft per 1 ft/s2) (own) 20–300 

22 Reduction rate (as ft per 1 ft/s2) (trailing) 20–300 

23 Waiting time before diffusion 0–80 s 

24 Minimum headway (front/rear) 1–30 ft 

25 Safety distance reduction factor 0–1 

26 Maximum deceleration for cooperative braking −40–0 ft/s2 

27 Emergency stop distance 0–35 ft 

28 Lane change distance 0–1500 ft 

29 Random seed value 1–999 
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For capacity MOEs, two methods were adopted: 95th percentile of overall flows, and 95th 

percentile of flows with speed ≥60 mph. There were three throughput data collection points 

in the network: start of mainline, merge point, and end of mainline.  

The Monte Carlo method is an iterative process. In each iteration, parameter ranges 

are further refined or parameters are eliminated that do not significantly influence the 

MOEs. The iterations continue until no further parameter range refinements or eliminations 

can be justified. The parameters remaining after the last iteration in this study are those that 

should be calibrated in a CVHA modeling effort. The Monte Carlo process was 

implemented as follows: 

1. For each iteration, generate 1000 sets of combinations of parameter values for the 

parameters under study. For the initial iteration set, each parameter is randomly set 

to a value within the ranges in Table 3. The initial iteration set contains all 

29 variables in Table 3. New random seeds are used for each parameter set, in each 

iteration.  

2. Generate a VISSIM input file for each parameter set. All input files have a 

simulation length of 8 hours, with the same network and volume input 

configuration. During the simulation, mainline volume is increased from a value 

well under-capacity, to over-capacity, allowing for identification of the demand at 

capacity. Volume levels utilized throughout each simulation run are listed in Table 

4. 

3. Execute each input file for 1000 total VISSIM runs and generate MOEs for each 

model run. These data are used in the sensitivity analysis and parameter 

elimination. 
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4. Determine parameters to eliminate as non-significant (i.e., parameter has minimal 

influence on MOEs) or refine the range given in Table 3 as follows: 

a. For each MOE, create a scatter plot relative to each parameter. Perform a 

linear regression for the sample mean, 5th percentile, and 95th percentile of 

the given parameter. Figure 7 provides example scatter plots of travel time 

over two different segments versus the CC1 parameter value.  

b. Compute the effect on the mean (EOM) as the slope of the linear regression 

on the mean multiplied by the parameter range. 

c. (For odd iterations steps only) Adjust parameter ranges from Table 3 

manually, based on the scatter plots. The objective of this iteration is to 

refine the parameter ranges to eliminate the generation of VISSIM 

parameter sets resulting in non-reasonable MOEs. 

d. (For even iteration steps only) Eliminate those parameters with three or 

more EOMs less than 5 percent, while examining their variability change 

manually (by reviewing scatter plots for significant changes in variability; 

i.e., the width changes between the 5 percent and 95 percent regression 

lines). 

5. Iterate through steps 1 through 4, until no parameter eliminations or refinements 

occur.  
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Table 4. Input Volume Variation over Simulation Time 

Simulation Time 
(hour) 

Input at Mainline Entrance 
(veh/hr) 

Input at On-ramp Entrance 
(veh/hr) 

0–1 500 500 

1–2 1000 500 

2–3 1500 500 

3–4 1700 500 

4–5 1900 500 

5–6 2100 500 

6–7 2300 500 

7–8 2500 500 

 

3.2.2 Results 

The list of parameters (16 parameters) remaining at the end of 25 iterations, and their new 

ranges are shown in Table 5. The number of parameters identified that could potentially 

influence the travel time and capacity MOEs is large, possibly resulting in an untenable 

calibration or analysis process. In conducting any calibration for autonomous-vehicle or 

CVHA technology, it is not necessary that all parameters be calibrated, but only those that 

may be influenced by the given technology. An example would be standstill acceleration, 

which is associated with passenger comfort rather than vehicle technology. Other 

parameters, such as standstill distance and threshold for following, may not require direct 

calibration utilizing field data; instead, they can be set to known values associated with the 

new technology. Finally, other variables, such as headway times, will need to be tested 

under a range of values, allowing for a sensitivity analysis across potential technology 
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assumptions. Examples of the findings for several individual parameters are provided in 

Table 5. 

Table 5. Significant Parameters 

# Parameter Range 

4 Number of observed vehicles 2–8 veh 

7 CC0 standstill distance (ft) 0–15 ft (0–4.6 m) 

8 CC1 headway time (s) 0.4–2.0 s 

9 CC2 following variation (ft) 5–39.4 ft (1.6–12 m) 

10 CC3 threshold for entering ‘following’ −25–(−4) 

11 CC4 negative following threshold −3–0 

12 CC5 positive following threshold 0–3 

14 CC7 oscillation acceleration (ft/s2) 0–3 ft/s2 (0–0.9 m/s2) 

15 CC8 standstill acceleration (ft/s2) 5–15 ft/s2 (1.5–4.6 m/s2) 

18 Maximum deceleration (trailing) −20–(−8) ft/s2 (−6.1–[−2.4] m/s2) 

24 Minimum headway (front/rear) 1–16.4 ft (0.3–5 m) 

25 Safety distance reduction factor 0.1–0.9 

26 Maximum deceleration for cooperative 
braking 

−40–(−14.8) ft/s2  
(−12.2–[−4.5] m/s2) 

27 Emergency stop distance 5–35 ft (1.5–10.7 m) 

28 Lane change distance 80–1500 ft (24.4–457.2 m) 
 

Figure 7 shows the average travel-time plots with respect to CC1 (headway time) 

for the EB-long overall segment. The range is reduced from 0–5 s to 0.4–2.0 s. (When 

considering the shorter headway values, recall that in VISSIM the safe following distance 

also includes the standstill distance.) The variability stabilizes when the range is adjusted 

to the appropriate scale by excluding headways that contain extreme values of average 

travel time. Only where a given technology would imply longer headways should values 

outside this range be considered. 
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Figure 7. Travel-time vs Headway (CC1), Original Range (top) and Reduced Range 
(bottom) 
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Figure 8 shows the average travel-time plots for the EB-long overall segment, with 

respect to the safety distance reduction factor, a parameter that measures the safety distance 

reduction when a vehicle performs a lane change. In the first plot, the range is 0–1 while 

in the second plot the extreme values of 0 and 1 are removed as a vehicle may not disregard 

the safety distance when lane changing (value of 0), and it is unlikely that the vehicle will 

maintain the same safety distance as it maintains at free-flow speed (value of 1). The trend 

in the data can be observed more clearly in the second plot after eliminating the responses 

to the extreme values. 

Figure 9 shows the average travel-time plots with respect to minimum look-ahead 

and minimum look-back distance, respectively, for the EB-long overall segment. The slope 

of the regression on the mean is not significant, and the variability change is not obvious; 

therefore, these two parameters are eliminated. 
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Figure 8. Travel-time vs Safety Distance Reduction Factor, 

Original Range (top) and Reduced Range (bottom) 
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Figure 9. Travel-time vs Look-ahead Distance (top) and 

Travel Time vs Look-back Distance (bottom) 
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3.3 RECOMMENDATIONS FOR SIMULATION ANALYSIS 

The results showed that 16 parameters had a significant impact on the performance of the 

model as reflected by the response of the MOE. While changes to these parameters impact 

model performance, changes to all variables are not necessary to elicit the differences in 

behavior between automated and non-automated vehicles. For instance, from the list of 17 

parameters, the following four are critical to changing the behavior of vehicles in VISSIM 

to reflect automated and human driving characteristics.  

1. Variable 8—CC1 headway time: Many of the benefits identified in the literature 

related to automated vehicles, are a result of reductions in headway time. The 

assumption is that, particularly in platooning with an essentially 0-second reaction 

time, autonomous vehicles may maintain significantly shorter headways. However, 

in a mixed-traffic environment autonomous vehicles may be more cautious than 

typical freeway drivers and, as a result, headway time could be higher for automated 

vehicles. Thus, operation alternatives should be studied over a range of headway 

values. 

2. Variable 9—CC2 following variation: Automated vehicles are expected to have 

less variation in their car-following distance when compared to human-driven 

vehicles. Therefore, following variation distance should be reduced for automated 

vehicles. 

3. Variable 25—Safety distance reduction factor: Safety distance reduction factor is 

used to represent human behavior where humans are willing to accept smaller gaps 

or following distances than usual when performing a driving maneuver such as a 

lane change. Automated vehicles are anticipated to follow safety rules uniformly, 
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so this value will likely be higher than that for human drivers. As with headway, 

however, this parameter may be scenario-specific and related to the particular 

vehicle manufacturer. Future studies should consider a range of potential values. 

4. Variable 26: Maximum deceleration for cooperative braking: Cooperative braking 

represents how much drivers are willing to brake to widen a gap for a vehicle 

changing from an adjacent lane. This value should be adjusted according to 

potential level of automation. If an automated vehicle is assumed to be cooperative, 

this value should be increased in magnitude to represent greater willingness to 

brake. If an automated vehicle is assumed to have no situational awareness outside 

of its lane, this value should be decreased in magnitude to represent a lack of 

response due to inability to respond to vehicles in adjacent lanes. 
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4 Use Case: Simulat ing Freeway Diverges 

4.1 INTRODUCTION 

Building on the efforts of Chapter 3, this chapter presents an initial attempt to model the 

potential impact of a CVHA use case, focusing on autonomous vehicles. As discussed in 

Chapter 3, the rapid advances in technology during the past decade and the availability of 

increasingly advanced, accurate, and affordable sensors has contributed significantly to the 

development of automated systems. Numerous autonomous technologies are being pilot 

tested on public streets. However, the establishment of an understanding of how these 

systems will influence traffic has lagged the advance of the technology. Thus, the 

objectives of this case study are three-fold:  

1. To demonstrate a methodology for modeling autonomous vehicles in a mixed-

fleet (i.e., autonomous and manually driven vehicles) environment, highlighting 

challenges with the approach.  

2. Based on the results of the case study, to contribute to the understanding of how 

autonomous vehicles may operate on existing infrastructure and how they may 

affect traffic congestion and safety.  

3. To provide a discussion on how state DOTs may need to respond, or be proactive, 

to the introduction of this technology. 
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4.2 ASSUMPTIONS 

It is all but assured that autonomous vehicles will be widely commercially available in the 

future, through individual vehicle ownership, fleet mobility services, or some other means. 

However, even as such technology becomes widely available, this research assumes that 

manually driven vehicles, without or with limited communication or automation 

technology, will remain part of the traffic fleet on the roadways for the foreseeable future, 

likely many decades.  

There has been significant focus on the potential operational and safety benefits of 

the interaction between technology-enabled vehicles on the roadway. However, when 

considering the interaction of vehicles with mixed levels of technology, the understanding 

of effects on traffic system operational efficiency and safety is less certain. Further, where 

research has occurred there is often an underlying assumption of cooperation between 

autonomous and manually driven vehicles. That is, it is assumed that manually driven 

vehicles will behave toward autonomous vehicles in a manner similar to their behavior 

toward other manually driven vehicles. While this may not be an explicit assumption of a 

study, it often implicitly exists in the underlying model. As seen in Chapter 3, it is necessary 

to calibrate a model to reflect the driving characteristics related to the introduction of 

autonomous vehicles. While the necessity to develop driving characteristics for the 

autonomous vehicle is clear, consideration must be given to the calibration of the human 

driver characteristics. The calibration of current models represents human drivers 

interacting with human drivers; however, it is likely that human driver behavior may alter 

when interacting with autonomous vehicles. Where manual-driver characteristics are not 

calibrated for this interaction the implied assumption is that their interaction with the 
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autonomous vehicles will be the same as with other manually driven vehicles. This study 

demonstrates that such an implicit assumption can significantly influence model findings.  

Given the preceding discussion, for this modeling effort, the following assumptions 

are applied to model a mixed fleet of autonomous and manually driven vehicles: 

1. Manually driven vehicles and autonomous vehicles use the same roadway, 

including all lanes (i.e., there are no dedicated autonomous vehicle lanes).  

2. In mixed traffic, an autonomous vehicle follows similar headway, desired speed, 

acceleration, and deceleration characteristics as human drivers. For instance, in 

mixed traffic, autonomous vehicles will not utilize shorter headways 

(i.e., platooning) due to potential difficulties in manually driven vehicle interaction 

with these platoons. 

3. Autonomous vehicles are highly cooperative; this assumption posits that an 

autonomous vehicle’s safety protocols will prioritize crash avoidance, resulting in 

the acceptance of high decelerations to avoid crashes. It is also assumed that 

autonomous vehicles will not attempt to “hold their space” or “box out” vehicles 

attempting to merge in front. That is, when manually driven vehicles attempt to 

merge in front of an autonomous vehicle, the autonomous vehicle will always yield 

due to its collision avoidance safety protocols. 

4. Aggressive drivers are more likely to “take advantage” of autonomous vehicles 

because of the conservative safety behavior of autonomous vehicles, as identified 

in the prior assumption. This has been referred to as the “bully” phenomenon 

(Condliffe, J. 2016; Connor S., 2016).  
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5. Aggressive drivers will attempt to perform necessary lane changes (e.g., at a lane 

closure or exit ramp) as late as possible where this advances their position on the 

roadway and an autonomous vehicle is present to enable aggressive lane changing. 

6. Aggressive drivers will not display the above aggressiveness when interacting with 

other manually driven vehicles. Underlying this assumption is a secondary 

assumption that human drivers can easily distinguish between autonomous and 

non-autonomous vehicles. 

Finally, for these experiments, the simulations do not account for potential benefits 

derived from communication between autonomous vehicles; future efforts will incorporate 

this potential expansion. In the simulations, an autonomous vehicle utilizes only 

information that could be received through onboard sensors such as video and radar.  

4.3 METHOD 

4.3.1 VISSIM Model Description 

Building on the efforts of Chapter 3, the case study model is constructed in VISSIM 5.4. 

In the remaining text, all references to VISSIM assume VISSIM version 5.4. The core 

behavior model in VISSIM consists of two major components: the car-following model 

that captures the psychophysical driver-behavior model developed by Wiedemann in 1974 

(PTV Vision, VISSIM 5.20 User Manual., 2009), and the lane-changing model that is 

developed by Willmann (1978) and Sparmann (1979).  

This study focuses on reflecting the interactions between aggressive drivers and 

autonomous vehicles, and the capacity and travel-time impacts of this interaction, 
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particularly aggressive merges, toward autonomous vehicles. Thus, three types of “drivers” 

are included in the simulation experiments: normal and aggressive drivers of manually 

driven vehicles, and autonomous “drivers.” The manually driven aggressive vehicle 

interaction with an autonomous vehicle is implemented using VISSIM application 

programming interfaces (APIs): the Component Object Model (COM) interface and the 

External Driver Model (EDM). Initial efforts sought to handle these behaviors solely 

through parameter calibration using the methodology outlined in Chapter 3. However, as 

discussed in the next sections of this chapter, the underlying traffic flow model was not 

amenable to sufficient adjustments through these parameters alone, to adequately capture 

the assumptions in the preceding section. In particular, the necessity to model different 

interaction characteristics between aggressive manually driven vehicles with autonomous 

vehicles and aggressive manually driven vehicles with other manually driven vehicles 

required the use of APIs. This likely indicates a need to develop more robust and flexible 

simulation implementations of the underlying car following to reflect the rapid pace of 

introduction of these disruptive technological innovations.  

4.3.2 VISSIM Component Object Model (COM) Interface 

The VISSIM program is based on an object-oriented architecture; that is, the program is 

coded using interacting objects, which represent items such as vehicles, links, input 

volume, driving behavior parameter sets, routing decisions, etc. The COM interface is a 

powerful module provided by VISSIM for additional functionality through a built-in 

scripting and external programming environment (COM Interface Manual, 2009). COM 

allows automation of VISSIM runs and provides input/output (I/O) access to many of the 
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VISSIM objects during a simulation run. COM provides greater flexibility in modifying 

some parameters and accessing objects’ properties, allowing model developers to 

customize simulation modifications not addressed in the standard VISSIM user interface.  

Through COM, many properties of traffic objects may be dynamically modified, 

such as vehicle type, length, color, current lane and desired speed. Critical to this study, 

COM allows for the generation and tracking of individual traffic. Although parsimony must 

be exercised in the use of COM, particularly in the identification and tracking of vehicles, 

as significant computational overhead may be incurred resulting in prohibitive simulation 

runtimes. In this study, COM is adapted to model the algorithm of lane-changing behavior 

in aggressive manually driven and autonomous-vehicle interaction. 

While COM provides solid and powerful interfaces for customized simulation, 

there are certain simulation limitations that could not be resolved through the COM 

interface alone. For instance, the parameter sets in the Wiedemann 99 model and lane-

changing model (discussed in Chapter 3) apply to a Vehicle Type. When updating a 

Vehicle Type parameter during runtime, all vehicle instances of that type will experience 

the parameter change. The parameter set for a single instance of a Vehicle Type may not 

be updated in isolation. However, in this model “aggressive” driver behavior is dependent 

on the vehicle with which they are currently interacting. Aggressive drivers act 

aggressively only when interacting with an autonomous vehicle, while not displaying 

aggressive behavior toward other manually driven vehicles. Thus, in the simulation 

implementation, an aggressive driver Vehicle Type requires one calibrated parameter set 

when interacting with other manually driven vehicles and a second calibrated parameter 

set when interacting with autonomous vehicles. Therefore, a capability to modify the 
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parameters for individual vehicles during runtime is required. While not insurmountable 

through COM, the computational overhead to address this drawback results in prohibitive 

model run times.  

A second COM drawback is constraints in overwriting some critical parameters. 

While most parameters are accessible through a COM “READ” command during runtime 

(i.e., script may be generated to read a parameter value while the simulation is running), 

only a subset of variables allow a “WRITE” command. That is, only a subset of variables 

may be updated through scripting during runtime. For example, to override a vehicle’s 

internal car-following model the speed and acceleration must be accessed and modified in 

run-time, yet the acceleration attribute of each individual vehicle in VISSIM COM is read-

only. Thus, through COM, behavior changes may not be directly forced (i.e., generate a 

more aggressive acceleration) for a specific vehicle during a given time step. Another issue 

relevant to this effort is an inability in COM to transition a vehicle from one lane to an 

adjacent lane over multiple time steps. COM “WRITE” commands place a vehicle in a 

single lane; thus, lane changes are instantaneous.  

To overcome these limitations of the COM interface, a direct interface with the 

underlying car-following model is needed. VISSIM provides the EDM API to help address 

these shortcomings.  

4.3.3 VISSIM External Driver Model API 

The External Driver Model is an API developed by VISSIM to provide extra flexibility in 

replacing the internal driver model, including car-following characteristics and lane-

changing behavior. In the EDM, acceleration is the critical parameter that determines the 
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traffic-flow characteristics. The EDM also provides a set of interfaces for users to replace 

the lane-changing logic, if desired. Thus, in each time step of simulation, VISSIM will 

provide the current state for each vehicle controlled by the external model, such as speed, 

acceleration, lane change decision, and surrounding vehicles. The EDM then calculates the 

acceleration and lane-change decision according to user-defined car-following and lane-

changing models. These parameters are returned to VISSIM, replacing the VISSIM 

generated values. If there is no user-defined car-following model, default VISSIM behavior 

is returned (Fellendorf & Vortisch, 2010). These EDM functionalities compensate for 

COM’s inability to change a vehicle’s car-following behavior and lateral movements. 

Therefore, by combining COM and EDM, VISSIM provides the potential for full control 

of individual vehicles. A limitation of EDM, however, is that EDM’s perception of a 

vehicle’s surrounding is limited to two vehicles in all directions. In contrast, COM provides 

access to all vehicles within the model. In this effort, a combination of COM and EDM is 

utilized to model the aggressive driver behavior (Figure 10). 

In the architecture in Figure 10, the communication between the COM interface 

and EDM is required. EDM is compiled as a dynamic link library (DLL) file and linked to 

a specific vehicle type in VISSIM. As EDM has its own local memory stack in the 

computer, separate from COM, direct information sharing between the EDM and COM is 

not readily possible. Another strategy is to use a vehicle attribute that EDM could recognize 

as a flag to engage or disengage EDM control of a vehicle. This requires the same I/O 

privilege in both COM and EDM over a vehicle property (i.e., both the COM interface and 

EDM can read and overwrite the same vehicle property). In this implementation, the color 

of vehicle is used as the flag for the activation and deactivation of EDM. 
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The detailed mechanism of how VISSIM runs with COM and EDM is illustrated in 

the following flowchart. 

 
Figure 10. The Internal Mechanism between COM Interface, 

VISSIM Simulator, and EDM DLL 

4.3.4 Simulation Configuration 

This example models a single direction of a 1.3-mile freeway segment, two lanes in one 

direction, with a downstream right-side off-ramp 0.9 miles from the segment start (Figure 

11). Upstream of the ramp junction, aggressive manually driven vehicles are in the left 

lane, autonomous vehicles are assumed to travel in the right lane, and normal manually 

driven vehicles may select either lane. All aggressive manually driven vehicles have a 

routing decision to exit the freeway; thus, they must change lanes from the left lane to the 

right lane, prior to the exit. Normal manually driven vehicles may have either routing 

decision, to stay on the mainline or to exit the freeway. 
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Figure 11.  Simulated Study Site with Different Types of Vehicles 
 

The left-lane volume is 500 vehicles per lane per hour; the right-lane volume is 

1800 vehicles per lane per hour. The proportion of aggressive vehicles on the left lane 

ranges from 0 to 100 percent in stepped increases of 25 percent, depending on the 

simulation run. The proportion of autonomous vehicles in the right lane ranges from 0 to 

100 percent with stepped increases of 25 percent, also depending on the simulation run. 

Parameters were set according to the outcomes in Chapter 3, manipulating only 

variables shown to impact the model flow. These parameters are shown in Table 6. For 

each parameter set of aggressive ratio and autonomous ratio, 10 replicates of different 

random seeds were utilized for generating the results. 
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Table 6. Parameter Set Used in Simulation Study of Aggressive and Autonomous 
Vehicle Interactions 

Parameter List 
VISSIM 
Default 
Vehicles 

Aggressive 
Vehicles 

Autonomous 
Vehicles 

CC1 (second) 0.9 0.3 0.9 

CC2 (ft) 13.12 13.12 0 

Safety distance reduction 
factor 0.6 0.6 0.1 

Maximum deceleration for 
cooperative braking (ft/s2) −9.84 −9.84 −29.53 

Desired speed (mph) 60 70 60 

Lane change distance (ft) 1312 

4.3.5 Algorithms for Targeting 

As stated in the previous section, the modeled user case seeks to determine the potential 

impact of aggressive drivers who are exiting a freeway seeking additional advantage by 

“targeting” or “bullying” an autonomous vehicle. As the aggressive vehicle (currently 

positioned in the left lane) approaches the ramp, it begins to search for downstream 

autonomous vehicles in the right lane. The aggressive vehicle seeks the greediest merge 

(i.e., the farthest downstream gap prior to the ramp junction) created by a viable 

autonomous vehicle. A viable autonomous vehicle is defined as an autonomous vehicle 

that the aggressive vehicle could overtake prior to reaching the downstream exit. If upon 

searching, an aggressive vehicle does not find a viable autonomous vehicle downstream, it 

will default to normal driving characteristics and merge with normal manually driven 

vehicles in the right lane.  

To capture this behavior, one possible algorithm is that an aggressive vehicle will 

seek the farthest downstream currently viable autonomous vehicle for targeting. However, 
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the dynamic of traffic flow changes makes the viability decision process increasingly 

uncertain as the distance between the aggressive vehicle and autonomous vehicle increases. 

Alternatively, this research implemented an incremental advancement approach. In this 

approach, the aggressive vehicle targets the nearest downstream viable autonomous 

vehicle. Upon overtaking the target autonomous vehicle, the aggressive vehicle will search 

to determine if another viable autonomous vehicle is present downstream. If a viable 

autonomous vehicle is present, the aggressive vehicle will now target that vehicle. If no 

additional viable autonomous vehicles are present in the traffic stream, the aggressive 

vehicle will merge in front of the current target vehicle. This process will continue until 

the aggressive vehicle either must merge into the right lane in order to exit, or no additional 

viable autonomous vehicles are present. Additional logic is also included to reflect the 

possibility of the left lane speed dropping below the right lane. In this instance, the 

aggressive vehicle will aggressively merge in front of an autonomous vehicle that is 

overtaking it in the right lane.  

The architecture of aggressive merging is implemented as follows: each time step, 

COM iterates through every aggressive vehicle in the system, checking for the nearest 

downstream autonomous vehicle on the target lane. COM determines whether the 

aggressive vehicle should aim for the potential target autonomous vehicle by determining 

if the aggressive vehicle has sufficient distance to overtake the autonomous vehicle (i.e., 

determining if targeting of the autonomous vehicle is viable), assuming a 10 mph higher 

speed of the aggressive vehicle and no downstream vehicles blocking the aggressive 

vehicle’s lane. If a target autonomous vehicle is identified, the aggressive vehicle will 

accelerate to overtake its target autonomous vehicle. When the aggressive vehicle 
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sufficiently overtakes the autonomous vehicle to allow for an aggressive merge (i.e., the 

autonomous vehicle could hard-brake to allow the merge, as determined by VISSIM’s lane-

changing parameters), COM will communicate with EDM to initiate an overwrite of 

VISSIM’s behavioral characteristics of the aggressive vehicle. The aggressive vehicle will 

take advantage of the safety constraint of the autonomous vehicle by merging into the 

autonomous vehicle’s lane even though the minimum safety requirements as defined in 

VISSIM are not met. The aggressive vehicle will force its way in front of the autonomous 

vehicle, triggering the autonomous vehicle’s rapid safety braking. After the aggressive 

lane-change maneuver is finished, EDM will be deactivated for this individual vehicle, and 

all controls of this vehicle resume the previous behavior settings in VISSIM. 

4.4 RESULTS 

Figure 12 shows the right lane speed-flow charts with data collected 100 ft upstream of the 

off-ramp connector. As described previously, the proportion of aggressive vehicles in the 

left-lane traffic and the proportion of autonomous vehicles in the right-lane traffic are 

varied from 0 to 100 percent. Each column denotes the aggressive vehicle ratio ranging 

from 0 to 100 percent. Each row denotes the autonomous vehicle ratio ranging from 0 to 

100 percent. 
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Figure 12. Speed-flow Grid Plots of Aggressive Vehicle Ratio Versus 
Autonomous Vehicle Penetration 

 
From these diagrams, it is evident that the introduction of autonomous vehicles 

resulted in additional instability in the traffic flow. There are several possible reasons for 

this finding. First, the potential for erroneous modeling must be acknowledged. While both 

COM and EDM were utilized, there is still an aspect of the “black box” phenomenon when 
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using VISSIM. It is possible that the developed scripts did not correctly interact with the 

VISSIM traffic flow logic, resulting in erroneous behavior. For instance, in reviewing 

individual vehicle trajectories during merging events the model rarely reflected the hard 

braking expected for the autonomous vehicles. However, a second underlying reason for 

the finding is that mixed traffic, manually driven and autonomous, may reasonably result 

in this behavior. The manually driven vehicles (aggressive and normal), when not in the 

presence of autonomous vehicles, have similar driving parameters. The demands selected 

for this experiment were near capacity conditions. When all vehicles have similar 

characteristics, the flow is homogeneous, likely resulting in optimal flow conditions. By 

mixing autonomous vehicles into the traffic stream, a heterogeneous flow results, likely 

leading to breakdown. Of course, the realism of this finding is debatable. When using a 

single vehicle type, VISSIM may over-estimate flow when compared to the real world that 

often has significantly more heterogeneous flow, even in the absence of autonomous 

vehicles. However, this does not negate the potential that a significant introduction of 

technology may negatively impact traffic flow. If autonomous vehicle technology (as well 

as other CHVA technology) is introduced by multiple manufacturers with widely ranging 

characteristics, the aggregate impact may be negative.  

Additionally, as the share of aggressive vehicles increases, the traffic flow is seen 

to improve. This results from an interesting aspect of assumed aggressive manually driven 

vehicle behavior. It is assumed that the aggressive vehicles stay in the left lane until the 

last possible advantageous moment to merge right. This had the impact of reducing the 

demand over much of the right lane, thus improving flow until prior to the exit. It was also 

observed (not shown) that the aggressive drivers could incorrectly gauge traffic, move too 
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far downstream, and create a breakdown in the left lane when unable to merge successfully. 

The aggressive vehicles failed to reach their intended target and found themselves trapped 

in the left lane. Ultimately, in-field calibration efforts are needed to determine if this is a 

failure of the developed scripts to accurately capture aggressive vehicle behavior or if the 

behavior would be realized.  

To provide some additional insights, example trajectory plots for each vehicle type 

of the experiment are shown in the following figures (Figure 13 to Figure 15). In these 

plots, the aggressive vehicle targeting of autonomous vehicles is disabled, although 

aggressive merging in the presence of autonomous vehicles occurs. 
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Figure 13. Trajectory Plot for Manually Driven Normal Vehicles 
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Figure 14. Trajectory Plot for Manually Driven Aggressive Vehicles 
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Figure 15. Trajectory Plot for Autonomous Vehicles 
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Figure 13 presents the normal manually driven vehicle trajectories, Figure 14 represents 

the aggressive manually driven vehicle trajectories, and Figure 15 represents the 

autonomous vehicle trajectories. It is clear that the aggressive vehicles are rewarded for 

their behavior, with minimal speed reduction, only occurring downstream near the ramp 

exit. The autonomous vehicles experience significant disruption (shock waves) because of 

the aggressive vehicle merges. This disruption is experienced by the normal manually 

driven vehicles, as well, as they are in the traffic stream with the autonomous vehicles. In 

alternatives where the autonomous vehicles are not present and, thus, there is no aggressive 

merging, this disruption is not witnessed. 
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5 Conclusions and Recommendat ions 

The past few years have witnessed a rapidly growing market in assistive driving 

technologies, designed to improve safety and operations by supporting driver performance. 

Often referred to as cooperative vehicle–highway automation systems, these assistive 

technologies commonly use radar, LiDAR, or other machine-vision technologies, as well 

as vehicle-to-vehicle and vehicle-to-infrastructure technology, to obtain surrounding 

roadway and traffic data. Extensive research has been conducted on CVHA technology 

since the late 1990s. Findings have been generally positive, including potential safety 

benefits, high potential acceptance rates, and reductions in driver workload. Operations and 

capacity impacts have been mixed, depending on the technology. In addition, numerous 

opportunities for further advancement in traffic control strategies that leverage V2V and 

V2I have been identified and are under development.  

A key finding from this study is related to the underlying modeling approach to 

study many of these potential technologies. It is clear that current simulation models are 

not capable of readily modeling cooperative assist technologies or autonomous vehicles. A 

critical component in the determination of the impact of many of these technologies is the 

human interaction with the technology, including both those individuals inside the 

equipped vehicle and those driving other vehicles that interact with the vehicle. Currently, 

it is not clear how individuals will interact with this technology on a wide scale, particularly 

when considering autonomous vehicles. To a significant degree this lack of information is 

not unexpected. Current in-vehicle technologies are in a state of continual flux, both within 

and across manufacturers. The “driving” characteristics of an autonomous vehicle are not 

yet known. Potentially dozens of autonomous vehicles are under development, each with 
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its own logic, algorithms, etc. Pilot tests and constant updating govern the foreseeable 

future of development. More importantly, as highlighted in Chapter 4, it is not known how 

other drivers will interact with autonomous vehicles or other CVHA technology. Most 

previous studies have assumed a generally “well-behaved” interaction. However, should 

drivers choose to “bully” these vehicles, taking advantage of their safety protocols, traffic 

and safety improvements become much less certain.  

Thus, it is necessary to view simulation through a new lens. To date, commercial 

simulation packages have built-in driver behavior for traffic flow models. These models 

contain a limited number of calibration parameters, and a limited range of potential 

behaviors. For instance, Chapter 3 shows that while 16 parameters had significant impact 

on the model performance, only four likely influenced the modeling of autonomous 

vehicles. However, in Chapter 4 the use case revealed that even with these parameters, 

significant additional efforts were required in the attempt to capture driver behavior outside 

of that reflected by the default modes.  

As the definitions of vehicles and drivers enter a constant state of change, this will 

no longer be sufficient. The key finding from this effort is that to reflect CVHA it is 

necessary to design a new simulation and modeling approach, likely from an agent-based 

simulation point of view, where the vehicle types, behaviors, and abilities may be readily 

updated. Specific behaviors should not be “hard coded” into a model. Instead, models must 

provide easily acceptable interfaces, allowing for data exchange with new agents. Modelers 

must have an ability to create agents (i.e., new drivers, vehicles, etc.) with diverse potential 

characters and behaviors. From such a modeling tool, analysis of the ever-changing 

technological environment may then be efficiently conducted.  
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